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Abstract

A practical method was proposed recently for finding local bifurca-
tion points in an n-dimensional vector field F by seeking their ‘under-
lying catastrophes’. Here we apply the idea to the homogeneous steady
states of a partial differential equation as an example of the role that
catastrophes can play in reaction diffusion. What are these ‘underly-
ing’ catastrophes? We then show they essentially define a restricted
class of ‘solvable’ rather than ‘all classifiable’ singularities, by identi-
fying degenerate zeros of a vector field F without taking into account
its vectorial character. As a result they are defined by a minimal set
of r analytic conditions that provide a practical means to solve for
them, and a huge reduction from the calculations needed to classify a
singularity, which we will also enumerate here. In this way, underlying
catastrophes seem to allow us apply Thom’s elementary catastrophes
in much broader contexts.
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1 Introduction

Catastrophe theory was introduced by René Thom to explain how disconti-
nuities in behaviour can arise out of smooth changes in a system’s equations.
This marked a conceptual step in the history of calculus that was very in-
fluential in physics, particularly in optics [20, 30], and despite some overly
speculative applications that attracted fair skepticism, its importance to
science was never really in doubt, see for example the polemic [29] and its
rebuttal [3].

These days catastrophes have been largely absorbed into the broader
theory of bifurcations, but here we will argue that a wider application of
Thom’s original concept is possible, using the idea of underlying catastro-
phes introduced in [12]. This concept attempts to apply the elementary
catastrophes to much wider classes of systems than they were intended to
encompass, basically to any multidimensional systems with general spatial
and temporal variations. So it is worth summarizing Thom’s catastrophes
briefly, pertaining to a gradient function F = ∇V , in preparation to apply
them to any general vector field F.

Indeed Thom’s elementary catastrophes are so simple, we can encapsu-
late them in just fig. 1. Consider a scalar function V : Rn × Rp → R, over
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Figure 1: Thom’s elementary catastrophes. A scalar function V over variables
(x, y, ...) typically has turning points where F = ∇V = 0. The catastrophe is the
set of folds where these turning points ‘collide’ as parameters α = (a, b, ...) vary. As
we add more variables (x, y, ...), higher ‘coranks’ of catastrophe are possible. Note that
we choose different spaces to picture these in as we add dimensions and parameters.
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variables x ∈ Rn and parameters α ∈ Rp. This will typically have turning
points where ∇V = 0. Let F = ∇V . The catastrophe surface is the manifold
upon which those turning points are degenerate, colliding (as the parameters
α vary) pairwise in folds, folds colliding in cusps, cusps colliding in swal-
lowtails, and so on. In fig. 1 we plot the catastrophe surfaces of F based on
Thom’s forms in [25], but using the specific forms laid out in the excellent
exposition [20], in variables x = (x, y, ....) and parameters α = (a, b, c, d, ...)
(and to depict the butterfly/parabolic we set d = 0). The simplest are the
n = 1, or ‘corank 1’ catastrophes. In n = 2 or more dimensions we can also
have the ‘corank 2’ umbilic catastrophes. This paper will deal in detail with
the corank 1 underlying catastrophes, and the first forays into corank 2 can
be found in [13]. We will give explicit conditions that can be solved to find
these folds, cusps, swallowtails, etc., here, but in a manner not restricted to
gradient vector fields.

Notice that catastrophes provide two powerful tools: first a way to clas-
sify the topology of a function (via its stationary points), and second, simple
conditions to locate changes in that topology (as stationary points appear
or disappear with changes in parameters). Notice, however, that the catas-
trophes deal only with the turning points of a potential (scalar) function
V , and hence the zeros of its gradient function F = ∇V . This is what
we will generalise here. We will also show how this permits the finding of
singularities that are otherwise incomputable.

Not only do bifurcations become increasingly difficult to classify as we
go to systems with more variables and more parameters, but to classify any
bifurcation, its location must first be known. Here lies our problem. The
known classification of bifurcations (e.g. [25, 2, 16, 10]) involve calculations
whose implicitness, and shear numerousness (as we will show here), make
locating such points impossible beyond low order cases. Moreover it is un-
clear to what extent such classifications can be applied beyond mere vector
fields, for example to spatiotemporal problems like reaction-diffusion. Some
authors have been drawn to catastrophes as a simpler means to understand
behaviour in dynamical systems and partial differential equations, and yet
hindered by the fact that catastrophes apply only to scalar potentials. Re-
cent examples include the identification of butterfly catastrophes in reaction
diffusion problems in [6, 14], a cusp catastrophe in a crowd density prob-
lem in [28], and attempts to apply catastrophe theory to specific contexts
in liquid crystals [8] or variational PDEs [15]. The importance of nonlinear
terms in reaction-diffusion has of course been clear right from the outset of
the modern interest in pattern formation [7, 23, 26]; I will recount some of
this in section 2.
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A more direct extension of catastrophes to such problems is made possi-
ble by a recent suggestion from [12], that any bifurcation actually has an ele-
mentary catastrophe underlying it. The underlying catastophe was described
in [12] as ‘a zero of a vector field encountering a singularity’, and I will make
this identification precise here. I also give an example of a reaction-diffusion
problem where diffusion terms trigger an underlying catastrophe, separat-
ing a system’s steady state concentrations into different mixing regimes, the
boundaries between which are clearly recognisable as a butterfly catastro-
phe. This is done without restricting attention to scalar catastrophes at any
point.

We define an underlying catastrophe as follows.
Take a smooth vector field F : Rn × Rr → Rn with components F =

(f1, f2, ..., fn). Write F = F(x,α) for a variable x ∈ Rn and parameter α ∈
Rr, with gradient operator ∇ = ∂

∂x . A point where the vectors ∇f1, ...,∇fn,
are linearly dependent creates a singularity, but we can typically assume
that any n−1 of the gradient vectors ∇f1, ...,∇fn, are linearly independent.
The Jacobian determinant B1 = |∇ (f1, , f2, ..., fn)|, then vanishes, and the
degeneracy of the point can be characterized by a sequence of determinants
Bi = |∇ (Bi−1, f2, ..., fn)|, letting B0 = f1.

The vanishing of all Bi for i = 1, ..., r will signal a catastrophe of codimen-
sion r. The system 0 = F = B1 = ... = Br is solvable to find the point where
a catastrophe occurs if an accompanying family of determinants Gr,k1..kr−1 is
non-vanishing. The definition of these B and G determinants will be outlined
below, and given more completely in section 3.

This is easiest to see by considering a vector field of the form

F =
(
f(x1,α) + τ · x , λ2x2 , ... , λnxn

)
(1)

where f(x1,α) = xr+1
1 + αrx

r−1
1 + ...+ α2x1 + α1 ,

with τ ·x = τ2x2+...+τnxn, for which the conditions Bi = 0 reduce to just the
one-dimensional conditions ∂i

∂xi
1
f = 0 that identify elementary catastrophes

of the scalar field f . There are three sets of parameters here, of which the αi

are the most important, as these unfold the catastrophe as they vary about
(α1, ..., αr) = (0, ..., 0). The constants τi and λi for i = 2, ..., n are required to
be non-zero for the equations 0 = F = B1 = ... = Br to be solvable, and they
determine the values of the Gr,k1..kr−1 to be defined below. The expression
(1) is called the primary form of the catastrophe in [12], and is similar to
Arnold’s expressions for the principle family of class Ar+1 for singularities
of vector fields from [2]. The extent to which this constitutes a local model
or ‘normal form’ of a codimension r underlying catastrophe, such that F
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can be transformed into such an expression locally, will be discussed in a
forthcoming work [5].

More completely, the following was proposed in [12].

Definition 1.1. A vector field F : Rn × Rr → Rn exhibits an underlying
catastrophe of codimension r if it has a point (x∗,α∗) ∈ Rn×Rr at which
F = 0 and

B1 = ... = Br = 0 . (2)

We say the catastrophe is full if non-degeneracy conditions

Gr,k1...kr−1 ̸= 0 , (3)

hold at (x∗,α∗) for every kj ∈ {1, ..., n}, j = 1, ..., r − 1. The functions
Bi and Gr,k1...kr−1 are defined in section 3 definition 3.1 (and outlined more
informally below in (4)-(6)). Following Thom’s elementary catastrophes we
call these underlying catastrophes the fold (r = 1), cusp (r = 2), swallowtail
(r = 3), etc.

The functions Gr,k1...kr−1 are a set of extended determinants whose non-
vanishing ensures non-degeneracy of the catastrophe and solvability of the
conditions (2). They are more numerous that the Bis but it is straightfor-
ward to calculate them and just verify that they are nonzero. First, note
that in defining the Bi determinants,

B1 = |∇ (f1 , f2..., fn)| ,
B2 = |∇ (B1, f2..., fn)| , (4)

B3 = |∇ (B2, f2..., fn)| , ...

we have chosen to replace the first component of F each time, but one could
choose to replace one of the other components. Let B2,k1 be the alternative
to B2 with B1 instead place in the kth1 component of F, and so iteratively let
each Bi,k1...ki−1

be an alternative to Bi with Bi−1,k1...ki−2
placed in the kthi−1

component of F, giving

B2,k1 =

∣∣∣∣∂(f1, ..., fk1−1,B1, fk1+1, ..., fn)

∂(x1, ..., xn)

∣∣∣∣ ,

B3,k1k2 =

∣∣∣∣∂(f1, ..., fk2−1,B2,k1 , fk2+1, ..., fn)

∂(x1, ..., xn)

∣∣∣∣ , ... (5)

and so on. Hence identifying B2,1 ≡ B2, B3,11 ≡ B3, etc. brings us back
to the choices (4). The functions Grk essentially establish an independence
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between these functions by evaluating extended determinants over Rn ×Rr

given by

G1 =

∣∣∣∣ ∂(f1, ..., fn,B1)

∂(x1, ..., xn, α1)

∣∣∣∣ ,

G2,k1 =

∣∣∣∣∂(f1, ..., fn,B1,B2,k1)

∂(x1, ..., xn, α1, α2)

∣∣∣∣ ,

G3,k1k2 =

∣∣∣∣∂(f1, ..., fn,B1,B2,k1 ,B3,k1k2)

∂(x1, ..., xn, α1, α2, α3)

∣∣∣∣ , ... (6)

These provide the non-degeneracy conditions to be evaluated in (3). Again,
although these Gi,k are numerous, one need only check that they are non-
zero. For the primary forms (1) they extend the familiar non-degeneracy
conditions for catastrophes of a scalar function f .

The key to underlying catastrophes is that the conditions (2) typically
give a set of r algebraic equations which, along with F = 0 and provided (3)
hold, are solvable in n variables and r parameters. Were we to attempt to
find a point in a system where all of the possible Bi,k1...ki−1

vanished we would
have roughly nr conditions, requiring a system to have this many parameters
to satisfy them in general. The complete classification of singularities and
bifurcations contain many more cases, which in general are defined by more
conditions still, the number of them growing superfactorially (as factorials
of factorials, as we will show) in n and r. The underlying catastrophes
reduce our attention, by satisfying (3), to cases with the minimal number
of conditions n + r, and provides the simple determinant conditions (2) to
find them.

We will first give a suggestion of the practical possibilities of these con-
ditions with an example applying underlying catastrophes to a reaction-
diffusion equation in section 2. We then give more formal statements and
general expressions for these ‘B-G’ determinants in section 3, recapping from
[12]. To help understand how underlying catastrophes relate to established
bifurcation theory, we will show that we can locate the conditions Bi = 0
within the Thom-Boardman classification of singularities, treating the func-
tion F as a general mapping rather than specifically a vector field. We outline
the Thom-Boardman scheme in section 4, and show how the vast number
of calculations involved (which we enumerate in appendix A), reduce to
the B-G determinants of underlying catastrophes for corank 1 singularities.
The proof of this result is instructive, so we explore it in some length in
section 4.4, ending with some final remarks in section 5.
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2 Example: a reaction-diffusion catastrophe

Let us write a reaction-diffusion equation for two species A and B on a
spatiotemporal domain (t, x, y). The usual introduction to Turing patterns
starts from equations with a linear reaction term, some

∂
∂tA = ∇2d1A+ µ1A+ µ2B ,
∂
∂tB = ∇2d2B + ν1A+ ν2B , (7)

with reaction coefficients µi, νi, and diffusion constants di. Near a steady
state one assumes that wave-like solutions permit us to replace the derivative
∇2 by a factor −k2.

At the end of his seminal paper [26], Turing noted that the linear reaction
rates in (7) were valid for a system just leaving its homogeneous state,
but more commonly one would expect to see a system passing from one
pattern to another, and the study of such non-linear reaction-diffusion has
continued intensively since, but let us revisit the problem using catastrophes.
Assuming we can replace ∇2 by the factor −k2 (of course this does not hold
exactly in a nonlinear system, but we employ it here just as a preliminary
investigation of nonlinear perturbations), take an example

∂
∂tA = −k2d1A+ µ1A+ µ2B + α1B

2 + α2B
3 ,

∂
∂tB = −k2d2B + ν1A+ ν2B + γ1A

2 + γ2A
3 . (8)

This is motivated by the form of various equations from Turing’s own planned
follow-up work on phyllotaxis [7, 22], similar to the Swift-Hohenberg model
[23], and various other models of biological potentials, chemical reactions,
and crystal growth, such as [1, 6, 8, 11, 14, 15, 27] for example. We specif-
ically choose nonlinear terms such that the righthand-side of (8) is simple
enough to analyze by hand, but is not a gradient field (so that something
beyond standard catastrophe theory is required), and any nonlinear terms
(including mixed terms like ‘AB’) may be added in general.

It will be convenient to make a linear transformation (u, v) = (A +
γ1
3γ2

, B + α1
3α2

) to remove the quadratic term. Let µi = νi = 0 to simplify
further (since we will still be left with a linear term from the diffusion), and
let α2 = γ2 = −1, then tidy up constants by defining α = 1

3α
2
1, γ = 1

3γ
2
1 ,

β = 1
3γ1d1 −

2
27α

3
1, δ = 1

3α1d2 − 2
27γ

3
1 , ki = k2di, leaving us with

∂
∂tu = −k1u− β − αv − v3 ,
∂
∂tv = −k2v − δ − γu− u3 , (9)
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for some diffusion constants k1, k2, and reaction constants α, β, γ, δ.
Our purpose now is to use this to illustrate the finding of underlying

catastrophes. We will not explore the reaction diffusion problem thoroughly
in any specific context, that is left to more exhaustive future work. For ease
of discussion let us say that u(t, x, y) < 0 < v(t, x, y) indicates v (i.e. B) is
dominant over u (i.e. A), and vice versa, at some given (t, x, y).

Let us get some basic intuition for this system’s dynamics, starting with
its homogeneous steady states. This is purely for illustration so will not be
complete.

To look at the homogeneous system, set the diffusion constants to k1 =
k2 = 0. The righthand side is then divergence-free, equal to −∇ × ϕ with
ϕ = δu + βv + 1

2(γu
2 + αv2) + 1

4(u
4 + v4). At α = β = γ = δ = 0 the

righthand side is (−v3,−u3), with a highly degenerate saddlepoint at the
origin.

Perturbing any of the coefficients can cause this to degenerate into up
to 9 steady states. Diffusion given by k1, k2 > 0, for instance, stabilizes
the origin, creating an attractor where the species A and B are ‘balanced’
with concentrations u = v = 0. Examples with and without diffusion are
shown in fig. 2: without diffusion in (a) the origin is a saddlepoint, but with
diffusion in (b) the origin becomes attracting.
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Figure 2: Flow in the (u, v) plane with α = β = γ = δ = 0. Left: with zero diffusion
k1 = k2 = 0 there is one saddle steady state at the origin. Right: with diffusion
k1 = k2 = 2 there is an attracting node at the origin, now surrounded by two saddles.

For example, if we take β = δ = 0 with α > 0 and γ > 0, the
concentration steady states are given by (uij , vij) = (i

√
−γ, j

√
−α) with

i, j = −1, 0,+1. The states (±
√
−γ, 0) and (0,±

√
−α) are centres, therefore

surrounded by states of oscillatory concentrations, and these are stabilized
to the steady state by small diffusion k1, k2 > 0. If α and γ have opposing
signs, then only (0, 0) is a centre, again stabilized by small diffusion. These

8



are shown with small diffusion in fig. 3.
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Figure 3: Flow in the (u, v) plane, k1 = k2 = 0.2, β = 0, δ = −1, α = −3, and left
γ = −3, right γ = 1. Left: an initially balanced state (initial condition at the origin)
would evolve to the state with v dominant. Right: an initially balanced state would
remain close to balance, gaining a small u dominance. Solution from the balanced state
shown in red.

Clearly there are various other parameter regimes that must be consid-
ered, with different numbers and stabilities of the steady states, so for a
more complete picture we turn to their catastrophes.

First calculate the determinants Bi from definition 1.1 to the righthand
side of (9), i.e. taking

F = −( k1u+ β + αv + v3 , k2v + δ + γu+ u3 ) .

The calculations are straightforward, and the first four evaluate as

B1 =k1k2 − ac , (10)

B2 =6(k2ua− vc2) , (11)

B3 =6(18k2uvc− k22a− c3) , (12)

B4 =72k2(3uc
2 − 2k2vc− 9k2u

2v) , (13)

where a = α+ 3v2 , c = γ + 3u2 .

Where these vanish we will find sets of fold, cusp, swallowtail, and but-
terfly catastrophes, and one may solve to find their roots easily by computer.
Or, more usefully, we can analyze them using the kind of parameterizations
very beautifully expounded for the elementary catastrophes in [20]. We do
this by applying successive Br conditions to express the catastrophe sets in
the space of the coefficients (α, β, γ, δ), taking the variables (u, v) as param-
eters.
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First parameterize the family of steady states, where (9) vanishes, as

β(u, v) = −k1u− αv − v3 ,

δ(u, v) = −k2v − γu− u3 . (14)

One way to think of this is as a 4-dimensional manifold obtained by mapping
from (u, v;α, β, γ, δ) into (α, β, γ, δ).

Pairs of steady states will collide to form folds where B1 vanishes, which
we can parameterize as

0 = B1 = k1k2 − (α+ 3v2)(γ + 3u2)

⇒ α(u, v) = k1k2
γ+3u2 − 3v2 . (15)

These are a little easier to visualize, in the sense that they constitute a 3-
dimensional manifold in the space of (α, β, γ, δ), traced out by the functions
(14) and (15) as (u, v) and γ vary.

Different branches of folds will collide at cusps, given by

0 = B2 ∝
k1k22u
γ+3u2 − v(γ + 3u2)2

⇒ γ(u, v) = (k1k
2
2u/v)

1/3 − 3u2 , (16)

a 2-dimensional surface in the space of (α, β, γ, δ) defined by the functions
(14) to (16), parameterized by (u, v).

These collide to form swallowtails. To find these it is useful to work in
new variables p = v/u and q = uv, and take p as a parameter. Dropping
some multiplicative constants from our calculation of B3, we obtain

0 = B3 ∝ 18k2uv(k1k
2
2u/v)

1/3 − k1k32
(k1k22u/v)

1/3 − k1k
2
2u/v

⇒ q(p) = 1
18(k1k2)

1/3(k
1/3
2 p2/3 + k

1/3
1 p−2/3) , (17)

where we let

u = (q/p)1/2 , v = (pq)1/2 , p = v/u , q = uv . (18)

The set q(p) together with (14) to (16) gives us a curve of swallowtails in
the space of (α, β, γ, δ).

Finally these collide to form butterflies, given by

0 = B4 ∝ 3u(γ + 3u2)2 − 2k2v(γ + 3u2)− 9k2u
2v ,

⇒ 0 = −5k
2/3
1 k

1/3
2 p−2/3 + 5k

1/3
1 k

2/3
2 p2/3

⇒ p = (k1/k2)
1/4 , q = 1

9(k1k2)
1/2 . (19)
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Hence butterflies are found at isolated points in the space of (α, β, γ, δ)
where

u = ±1
3(k1k

3
2)

1/8 , β = ∓16
27(k

3
1k2)

3/8 , α = 2
3(k

3
1k2)

1/4 ,

v = ±1
3(k

3
1k2)

1/8 , δ = ∓16
27(k1k

3
2)

3/8 , γ = 2
3(k1k

3
2)

1/4 . (20)

In fig. 4 we plot the fold surface defined by (14)-(15) in the parameter
space (β, δ) for some example values of (α, γ).
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Figure 4: Stability in the (β, δ) plane, k1 = k2 = 1. Left: α = γ = 1/5. Right:
α = γ = 2/3. Numbers indicate how many steady states exist in each region, and
letters indicate typical behaviour from an initially balanced concentration u = v = 0:
‘s’ indicates the system evolves to a unique stable steady state with u or v in slight
dominance either side of β = δ = 1, ‘ss’ indicates the system will evolve to one of
two stable steady states where either u or v is dominant, ‘n’ indicates there is a stable
steady state that is not reachable from the origin so the concentrations diverge, and no
letter indicates no stable steady states so the concentrations diverge.

In fig. 5 we plot in the folds in the diffusion plane (k1, k2) for some
example values of (α, β, γ, δ). The folds form the boundaries between regions
that have different numbers of steady states as indicated, leading to different
stable configurations for the system as described in the captions.

These are just cursory examples to illustrate the concept. By giving ap-
propriate initial data and boundary conditions for the differential equations,
we could go on to simulate the mixing of the two-species in the (x, y) plane
at different times, or to study wave propagation through these concentra-
tions. In [1], for example, underlying catastrophes of homogeneous steady
states are used to determine the existence of heteroclinic connections that
represent ‘wave-pinning’ patterns in cell polarity formation in plants. A
number of other works have attempted to relate elementary catastrophes to
the behaviours of partial differential equations. In [6], the signature shapes

11



k2

k1

u

sn

n

ss

1

3

3

5

3
1.5

1.0

0.5

1.51.00.50

3

1

s

k1

k2

1.5

1.0

0.5

1.51.00.50

1 1

1

3n

3s

3n

5ss

β

δ

2

2

1

10

3s

1

β

δ

2

2

1

10

fold 
cusp 
butterfly

fold 
cusp 
butterfly

Figure 5: Stability in the (k1, k2) diffusion parameter plane, with labels similar to
fig. 4. Left: α = γ = 1/5, β = δ = 1, the steady states lie at low concentrations.
Right: α = γ = 2/3, β = δ = −16/27, the steady states lie at high concentrations.

of a swallowtail are seen in bifurcation diagrams of an oxidation reaction,
and in [21], butterfly sets are then shown in reaction diffusion by limiting to
a scalar one species problem, and a similar treatment places cusps in a crowd
density problem in [28]. A nice discussion of the problem of detecting high
codimension bifurcation points in PDEs can be found in [15], before scalar
catastrophe theory is used to develop numerical methods for the purpose.
An attempt is made to relate catastrophes to the phases of liquid crystals
in [8] by focussing on a scalar term like the free energy.

Typically in such studies it has been necessary to appeal to scalar func-
tions to investigate the occurrence of catastrophes. The example above takes
elements from these studies, and tries to show how catastrophes could be
applied to them without reducing to scalar quantities. Hopefully this merely
hints at the possible applications, and deeper study will require more de-
tailed and specialised analysis with particular applications in mind.

Finally, but importantly, when deriving the catastrophes above we should
have also calculated the non-degeneracy conditions G from (25) at each stage.
Though straightforward, these are more numerous than the B determinants,
and best done with a computer. The relevant conditions are G1 for the fold,
G2,1 and G2,2 for the cusp, four determinants G3,ij for the swallowtail and
eight determinants G4,ijk for the butterfly, where i, j, k take values 1 and 2
(because the dimension of the system is 2).

We will not give all of these calculations, but we find they are indeed
non-vanishing for nonzero k1, k2. At the butterfly for example we find

G4,ijk = 103680(−1)i+k(k1k2)
4(k1/k2)

3
4 (k+2j+3i−9) (21)

which is non-vanishing if and only if k1, k2 ̸= 0, i.e. with diffusion.
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The fact that these G conditions are non-zero means the system is ‘full’
according to definition 3.1, meaning firstly that we can solve the conditions
Bi = 0, and moreover that these solutions are unique, i.e. we could not
obtain different results by instead using the determinants from (24). Were
any of these Gs vanishing, the associated catastrophe would not be ‘full’,
and such cases require further case-specific study.

Not being full may imply that the point has some higher degeneracy, for
example we indeed find that G1 vanishes at the set where the folds collide and
become higher order catastrophes, i.e. the cusps, and the G2,1 = G2,2 = 0 at
the set where the cusps are degenerate and become swallowtails, etc.

Not being full need always not imply an actual degeneracy of the sys-
tem, however, as they may indicate the system has essentially become lower
dimensional, so we just need to adjust the dimension of our calculations. If
k1 and k2 vanish here then all of the G conditions will vanish, and we can
clearly see that the catastrophe calculations above all break down. What
has actually happened in this case is that the righthand side of (9) is now
divergence-free, and expressible as the derivative of a scalar potential, to
which we could apply elementary catastrophe theory instead.

3 Underlying catastrophes: the B-G conditions

The B-G determinants from definition 1.1 in section 1 are straightforward
to evaluate even for large n and r, so it is worth writing general expressions
for any codimension.

Strictly speaking our interest is only local, so we should refer to germs
rather than functions F or vector fields, but we are not really adding at all
to the rigorous theory of bifurcations or singularities here, only developing
practical methods to locate them, so we will introduce such technicalities
only as needed.

Recall that F : Rn × Rr → Rn is taken to be a smooth vector field with
components F = (f1, f2, ..., fn), and dependence written as F = F(x,α) for
a variable x ∈ Rn and parameter α ∈ Rr.

We can give more general formulae for the B-G determinants (4)-(6) as
follows.

Definition 3.1. For i = 1, 2, ... we first define

Bi =

∣∣∣∣∂(Bi−1, f2, ..., fn)

∂(x1, ..., xn)

∣∣∣∣ , (22)
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and for i = 0 define B0 ≡ f1. To generalize this to allow placing Bi1 in
the kth component of F = (f1, ..., fn), denote the vector F with its kth row
replaced by some scalar V by

(f1, ..., fn)\kV = (f1, ..., fk−1, V, fk+1, ..., fn) , (23)

then let

Bi,K(i−1) =

∣∣∣∣∣∂(f1, ..., fn)\ki−1Bi−1,K(i−2)

∂(x1, ..., xn)

∣∣∣∣∣ , (24)

where K(i) denotes an i-length string K(i) = k1...ki of symbols kj ∈ {1, ..., n},
for j = 1, ..., i. We define the case i = 1 as B1,K(0) = B1, and note that
Bi,1...1 ≡ Bi. Finally let

Gr,K(r−1) =

∣∣∣∣∂(f1, ..., fn,B1,B2,K(1), ...,Br,K(r−1))

∂(x1, ..., xn, α1, ..., αr)

∣∣∣∣ , (25)

defining the case r = 1 as G1,K(0) = G1 =
∣∣∣ ∂(f1,...,fn,B1)
∂(x1,...,xn,α1)

∣∣∣.
A crucial assumption was stated before definition 1.1, namely that any

set of n − 1 of the gradient vectors ∂fi
∂x are linearly independent. A useful

way to express this property is with the following.

Definition 3.2. Let the subrank of a function F = (f1, ..., fn) be the least
number of dimensions spanned by any n− 1 of the gradient vectors ∂f1

∂x , ...,
∂fn
∂x , or using the notation (23),

subrankF = min
(
rank

[
(∂f1∂x , ..., ∂fn∂x )\j0 , j = 1, ..., n

])
. (26)

Definition 1.1 then applies to a vector field on Rn for which

subrankF = n− 1 . (27)

The property of being full in definition 1.1 guarantees that the conditions
(22) are solvable to find (x∗,α∗) ∈ Rn × Rr, as we discuss in section 4.5.

If (27) is not satisfied then the determinants in (22) are not sufficient
to locate a catastrophe, and one must instead solve all 1−nr

1−n conditions
Bi,K(i−1) = 0, and there is no reason to expect these to be solveable in
general unless a system has this many parameters.

Even if (27) is not satisfied, it is sometimes possible to trivially reduce
the dimension n of the system until (27) is satisfied. We can illustrate this
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using the primary form of a catastrophe from (1). The vector field in (1) has
subrank n− 1 provided ki ̸= 0 for all i = 2, ..., n, such that at a singularity
we have ∂f1

∂x = (0, k2, ..., kn). If the subrank is less than n−1, however, then
we can remove redundant dimensions and apply definition 1.1 to the reduced
system. For example if ki = 0 for all i > 2 in (1), then subrankF(0) = 1
so we cannot use definition 1.1, but if we reduce it to a planar system
F = (f(x1,α) + k2x2, λ2x2) then definition 1.1 applies.

4 B-G determinants and Boardman symbols

The idea set out in [12] essentially makes three propositions, namely that
for a vector field F : Rn × Rr → Rn in variables (x1, ..., xn) and parameters
(α1, ..., αr):

(i) Any local bifurcation point of F, namely where F = 0 and its Jacobian
has less than full rank, has an underlying catastrophe.

(ii) An underlying catastrophe is a degenerate zero of F that bifurcates
under perturbation into a perturbation-dependent number of zeros. In
particular, a corank 1 underlying catastrophe of codimension r would
break up under perturbation into up to r + 1 zeroes of F.

(iii) For certain primary forms (f(x1, α1, ..., αr), x2, ..., xn) in terms of a
scalar polynomial f : R×Rr → R (eq.(1) in section 1), the conditions
defining an underlying catastrophe reduce to the familiar defining con-
ditions of Thom’s elementary catastrophes.

These properties are the motivation for the term ‘underlying catastrophes’,
and we will show here the sense and conditions under which they are indeed
true. The term ‘underlying’ comes from (i)-(ii), namely that we are iden-
tifying bifurcations only by looking for places where zeroes of F encounter
singularities, without any regard for the vectorial nature of F, so in a sense
we are looking only at the mapping ‘underlying F’ (ignoring that it maps to
a tangent space and this carries consequences for local stability). For cases
of corank 1, giving us what Arnold classifies as series Ar with “one zero
eigenvalue and (r − 1)-fold degeneracy in the nonlinear terms” [2], we will
show here that the singularity classification reduces precisely to the condi-
tions Bi = 0. The use of the term ‘catastrophe’ is then due to (iii), namely
that these conditions then reduce further to the identifying conditions of the
elementary catastrophes for the primary forms (1).
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René Thom introduced a general classification of singularities in [24] for
mappings F : Rm → Rn. They were defined through the transversality of
certain submanifolds defined by kernels of F and its derivatives. John Board-
man provided a more explicit construction in [4], developed on by Mather
and Morin [17, 19], which can be expressed as a sequence of extended Jaco-
bian matrices containing minors of successive derivatives of F, culminating
in a convenient set of Boardman symbols for Thom’s singularities.

The Thom-Boardman singularity classification is less well known than
perhaps it should be among mathematicians, and after half a century is still
far less well utilised in applications than it could be. So let us begin with a
slightly informal, methodological introduction to the Thom-Boardman pro-
cedure, before showing how the B-G conditions not only fit into the Thom-
Boardman theory, but vastly simplify it for a significant class of singulari-
ties. We will restrict our attention to F : Rn → Rn but the extension for
F : Rm → Rn with m ̸= n is straightforward. Where possible we leave the
more rigourous statements behind the theory to references.

4.1 Thom-Boardman singularities

The Thom-Boardman classification makes heavy use of ranks and minors of
certain Jacobian matrices. The k × k minors of a p × q matrix M are the
determinants of all k×k matrices taken from M by omitting any p−k rows
and q − k rows. A p× q matrix M has rank s if there exists an s× s minor
of M that is non-zero, but every larger minor is zero.

Let ∇ denote the derivative operator with respect to x = (x1, ..., xn).
We will be dealing with vectors and matrices of differing sizes below, so for
some F = (f1, ..., fn) and G = (g1, ..., gm), for any n,m, let us be able to
combine them as (F,G) = (f1, ..., fn, g1, ..., gm), with Jacobians ∇(F,G) =
(∇F,∇G) = (∇f1, ...,∇fn,∇g1, ...,∇gm). We refer to each component fi
or gi as occupying a row of (F,G), and similarly each ∇fi or ∇gi occupies
a row of ∇(F,G).

To define the Boardman symbol of a singularity we can define a sequence
of extended Jacobians of F.

Given F = (f1, ..., fn) : Rn → Rn, first define the symbol ∆1F =

(f1, ..., fn,det∇F), and also for i1 > 1 define ∆i1F =
(
F,mi1

1 ,m
i1
2 , ...,

)
,

where mi1
j , j = 1, ..., N1, are the (n− i1 + 1)× (n− i1 + 1) minors of ∇F.

Next define ∆i2∆i1F =
(
∆i1F,mi2

2,1,m
i2
2,2, ...

)
, where mi2

2,j are the (n −
i2+1)×(n−i2+1) minors of ∇(∆i1F), and proceed iteratively, next defining
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∆i3∆i2∆i1F =
(
∆i2∆i1F,mi3

3,1,m
i3
3,2, ...

)
, where mi3

3,j are the (n− i3 + 1)×
(n− i3 + 1) minors of ∇(∆i2∆i1F), and so on, giving generally

∆ij ...∆i1F =
(
∆ij−1 ...∆i1F,m

ij
j,1,m

ij
j,2, ...

)
, (28)

where m
ij
j,k for k = 1, ..., Nj , are the (n − ij + 1) × (n − ij + 1) minors of

∇(∆ij−1 ...∆i1F). We give a formula for the number Nj of minors in each
stage of these calculations in appendix A.

Definition 4.1. The Boardman symbol of F at x = 0 is the sequence τ =
τ1, ..., τr, such that each ∇∆τj−1 ...∆τ1F(0) has corank τj for j = 1, ..., r,
(including that ∇F(0) has corank τ1), and the symbol τ is taken to terminate
at r such that τr+1 = 0.

We call τj the jth Boardman symbol.
Note that the symbols τ1, ..., τr, form a non-increasing sequence τ1 ≥

τ2 ≥ ... ≥ τr. This means, for instance, that if the Jacobian of F has corank
one, then the Boardman symbol consists of a sequence of 1s only, and in
this case we show, in the next section, that the minors m

ij
j,k are reducible to

precisely the functions Bi,K(i−1) from definition 3.1.
The description above is usually made not in terms of functions Λτr ...Λτ1F,

or even their germs (loosely their ‘local representations’), but in terms of the
ideals (loosely ‘linear combinations’) generated by the components of those
germs, see e.g. [9, 18]. But the procedure is equivalent, and since the ranks
of ideals are actually defined by referring back to the ranks of the functions
∇Λir ...Λi1F, the above seems both more direct and less unnecessarily tech-
nical, at least for the purposes of describing the calculations involved. A
more technically complete presentation will be given in forthcoming work
[5].

4.2 The case τ = 1, ..., 1, and the B determinants

Let us consider more closely what these minors look like if ∇F has corank
one. In this case the Boardman symbols are just a sequence of symbols
τ1 = ... = τr = 1, τr+1 = 0, for some r ≥ 1. These are known as Σ1

singularities or Morin singularities [18, 19].
We will show below that, if we assume a codimension r Morin singularity

at some x = x0, we can locate it by either:
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(a) solving to find where the requisite minors m
τj
j,k associated with the

Boardman symbols τ1 = ... = τr = 1 all vanish at some x = x0. The
number of these minors grows super-factorially with r.

(b) solving the conditions B1 = B2,k1 = ... = Br,k1...kr−1 = 0 for all

k1, ..., kr−1 ∈ 1, ..., n, at x = x0. There are
∑r−1

m=0 n
m = 1−nr

1−n of
these conditions.

(c) restricting to vector fields with subrankF = n−1 (definition 3.2), and
solving the conditions B1 = ... = Br = 0 at x = x0. There are only
r of these conditions, and the G conditions (definition 1.1) guarantee
these have isolated roots.

In (a)-(b) the number of conditions can be expected to exceed the number
of available parameters in a typical physical model, so they do not typically
give a solveable system of equations. This in contrast to (c) which requires
solving r equations in r parameters, so while the B-G conditions cannot
detect all possible singularities, they restrict attention to those that can be
solved for in closed form.

To show this we have the following series of results, which we state, and
then give their proofs afterwards. Recall the definitions of the determinants
Bi and Bi,K(i−1) from (22)-(24). The statements “all K(i − 1)” or “all
Bi,K(i−1)” are shorthand for writing that the string K(r − 1) = k1...kr−1 or
function Bi,k1...ki−1

are taken for all kj = 1, ..., n and for j = 1, ..., r − 1.
Below we will want the dependence on the variable x ∈ Rn and parameter

α ∈ Rr to be explicit, so write

F = F(x;α) , and Bi = Bi(x;α) .

The results below assume, for F : Rn → Rn, that

F(0; 0) = 0 and subrankF(0; 0) = n− 1 . (29)

First we will need to show that if one choice of Bi vanishes, then all the
permutations Bi,K(i−1) vanish. This is given by the following.

Lemma 4.1 (Vanishing of Bi). If B1(0; 0) = 0 and B2,j(0; 0) = 0 for some
j, then ∇B2,k(0; 0) = 0 for all k = 1, ..., n.

Corollary 4.2. If B1(0; 0) = B2(0; 0) = ... = Br(0; 0) = 0, then B1(0; 0) =
B2,K(1)(0; 0) = .... = Br,K(r−1)(0; 0) = 0 for all K(1), ...,K(r − 1), hence we
can reduce each of the Bi,K(i−1) to one choice Bi for i = 1, ..., r.
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We will further need to show that the vanishing of Bi implies vanishing
of all of the minors involved in the ith Boardman symbol. To show this we
will make use of the following.

Lemma 4.3 (Vanishing minors). If B1(0; 0) = 0 and all Br,K(r−1)(0; 0) = 0
for some r > 1, then any of the n× n minors of any N × n matrix formed
from N > n rows of the form ∇Br−1,K(r−2)(0; 0) must vanish.

Corollary 4.4. If all B1(0; 0) = ... = Br,K(r−1)(0; 0) = 0, then any of the
n× n minors of any N × n matrix formed from N > n rows

∇Fj(0; 0), ∇B1(0; 0), ..., ∇Br−1,K(r−2)(0; 0) ,

must vanish.

Lastly we will need the converse of lemma 4.1, namely to say that Bi = 0
if and only if all Bi,K(i−1) = 0. We want to show this in the extended space
Rn × Rr.

Lemma 4.5 (Uniqueness of Bi). The condition Gr,K(r−1)(0; 0) ̸= 0 for all
K(r − 1) = k1...kr−1, with the assumption (29), implies that Bi(0; 0) = 0 if
and only if all Bi,K(i−1)(0; 0) = 0 for i = 1, ..., r.

These allow us to prove the main result.

Theorem 4.6 (Underlying catastrophes and Thom-Boardman symbols).
An underlying catastrophe of codimension r, given by definition 1.1 with
B1(0; 0) = ... = Br(0; 0) = 0, is equivalent to a Thom-Boardman singularity
with Boardman symbol τ = 1, ..., 1 (of length r).

4.3 Proof of the above

Denote the linear subspace spanned by the rows of ∇F(0; 0) as T ⊂ Rn.
First take the trivial case r = 0, so there is no Boardman symbol (or the

symbol is just 0), in particular the first Boardman symbol is trivially τ1 = 0.
So the rank of ∇F(0; 0) is n, i.e. B1(0; 0) = det∇F(0; 0) ̸= 0 and there is
no singularity at the origin, and hence the subspace T is n-dimensional.

Then let us start with two simple and generally known results that we
will use below.

Lemma 4.7 (Singularity). If B1(0; 0) = 0 and subrankF(0; 0) = n − 1,
the linear subspace spanned by the rows of F(0; 0) is an (n− 1)-dimensional
hyperplane T ⊂ Rn.
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Proof of lemma 4.7. If B1(0; 0) = det∇F(0; 0) = 0 and subrankF(0; 0) =
n− 1, then ∇F(0; 0) has corank 1 (and hence defines a singularity with first
Boardman symbol τ1 = 1), therefore the subspace T is (n− 1)-dimensional.

Lemma 4.8 (Equivalence of subspaces). Let M = ∇F and M̃j = ∇(F\jg) =
(∇f1, ...,∇fj−1,∇g,∇fj+1, ...,∇fn), where F = (f1, ..., fn) for smooth func-
tions fi : Rn → Rn and g : Rn → Rn. Let M(0; 0) and M̃j(0; 0) have corank
1 and let subrankF(0; 0) = n − 1. Then the rows of M(0; 0) and M̃(0; 0)
span the same (n− 1)-dimensional subspace T ⊂ Rn.

Proof of lemma 4.8. Since M(0; 0) and M̃j(0; 0) both have corank 1, their
rows span (n − 1)-dimensional subspaces, say T ⊂ Rn and T̃j ⊂ Rn, re-
spectively. By definition 3.2, subrankF(0; 0) = n − 1 means any n − 1 of
the gradient vectors ∇f1, ..., ∇fn, omitting ∇fj for some j ∈ {1, ..., n},
also span a subspace of exactly (n − 1) dimensions, so let us call this T ′

j .
Now the set T ′ spanned by any n− 1 of the gradient vectors ∇f1, ..., ∇fn,
must be a subset both of the set T spanned by M(0; 0), and the jth set T̃j
spanned by M̃j(0; 0), that is T ′ ⊆ T and T ′ ⊆ T̃j , but since each of these is
(n− 1)-dimensional this implies T ′ = T̃j = T for every j.

We use the dimensionality of T to prove the main lemmas. First is
to show that the vanishing of Bi implies the vanishing of all permutations
Bi,K(i−1). We begin with i = 1.

Proof of lemma 4.1. Since B2,k = F\kB1, then if B2,k(0; 0) = 0 for some k
this implies ∇B1(0; 0) spans an (n − 1)-dimensional linear subspace with
{∇f2, ...,∇fn}, and by lemma 4.8 this subspace must be T , i.e. the same
linear subspace spanned by the rows of ∇F(0; 0). Since lemma 4.1 also
assumes B1(0; 0) = 0, lemma 4.7 applies, hence ∇B2,k(0; 0) = 0 for all
k = 1, ..., n.

Then extend this to i > 1.

Proof of corollary 4.2. If B1(0; 0) = B2(0; 0) = ... = Br(0; 0) = 0, then ap-
plying lemma 4.1 at each order i = 2, ..., r, implies that B1(0; 0) = B2,K(1) =
... = Br,K(r−1)(0; 0) = 0 for every K(1) ∈ [1, n], ..., K(r − 1) ∈ [1, n]r−1.
Hence at each order we can reduce Bi,K(i−1) to one choice Bi for i =
1, ..., r.
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The next step is to relate this to the Boardman symbols by showing
that if Bi vanishes, then so do the numerous minors in the Thom-Boardman
calculations. Again we show this first for i = 1.

Proof of lemma 4.3. If Br,K(r−1)(0; 0) = 0 for all K(r − 1) ∈ [1, ..., n]r−1,

then since Br,k1...kr−2kr−1 = det(∇F\kr−1∇Br−1,k1...kr−2), this implies by
lemma 4.8 that we have∇Br−1,K(r−2)(0; 0) ∈ T for allK(r−2) = k1...kr−2 ∈
[1, n]r−2. Lemma 4.3 also assumes B1(0; 0) = 0, so lemma 4.7 applies, so
any N × n matrix formed from N > n rows ∇Br−1,K(r−2)(0; 0) has rank at
most n− 1, and any of its n× n minors vanish.

Then extend this to i > 1.

Proof of corollary 4.4. If all B1(0; 0) = ... = Br,K(r−1)(0; 0) = 0, then all
∇B1(0; 0) = ... = ∇Br−1,K(r−2)(0; 0) ∈ T , and moreover lemma 4.7 applies,
so any N × n matrix formed from N > n rows

∇Fj(0; 0),∇B1(0; 0), ...,∇Br−1,K(r−2)(0; 0),

has rank at most n− 1, and any of its n× n minors vanish.

It is slightly longer to prove the converse to lemma 4.1.

Proof of lemma 4.5. Denote the gradient derivative on Rn × Rr as □ =
(∇x,∇α). Say F(0; 0) = B1(0; 0) = 0 and det(□F(0; 0),□B1(0; 0)) ̸= 0, so,
by the inverse function theorem, the root (0, 0) is isolated.

Now say F(0; 0) = B1(0; 0) = ... = Br,1...1(0; 0) = 0, then lemma 4.1 im-
plies Bi,K(i−1)(0; 0) = 0 for all K(i−1) = k1...ki−1. Assume Gr,K(r−1)(0; 0) ̸=
0, i.e. det(□F(0; 0),□B1(0; 0),□B2,k1(0; 0), ...,□Br,k1...kr−1(0; 0)) ̸= 0 for all
k1, ..., kr−1, so, by the inverse function theorem, the root (0, 0) is isolated
in (x,α) space, and hence these roots must be the same or all k1, ..., kr−1,
hence Bi(0; 0) = 0 if and only if all Bi,K(i−1)(0; 0) = 0 for i = 1, ..., r, local
to the origin.

This brings us to the final proof of theorem 4.6, where we find precisely
how the conditions Bi = 0 appear (and are repeated many times over) in
the procedure to obtain the Boardman symbols. To make this explicit we
will proceed one codimension at a time through definition 4.1.
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4.4 Proof of theorem 4.6

First take the trivial case r = 0, so there is no Boardman symbol (or the
symbol is just 0), this means τ1 = 0, so the rank of ∇F(0; 0) is n, i.e.
B1(0; 0) = det∇F(0; 0) ̸= 0 and there is no singularity at the origin.

Now assume the first Boardman symbol is τ1 = 1. Then ∇F(0; 0) has
corank 1 and defines a singularity, and B1(0; 0) = det∇F(0; 0) = 0. If the
second Boardman symbol is τ2 = 0 so the complete symbol is just τ = 1, and
defines a fold, then the (n+1)×nmatrix∇∆1F(0; 0) = (∇F(0; 0),∇B1(0; 0))
has rank n, so at least one of its n×n minors must be nonzero; we will look
more closely at those minors in the next step.

Assume instead that τ1 = τ2 = 1. Then ∇F(0; 0) has corank 1, and
moreover ∇∆1F(0; 0) has corank 1, so all of the n×n minors of ∇∆1F(0; 0)
are zero. Those minors (with the exception of the minor ∇F(0; 0) which
we already know vanishes) are precisely the functions we define as B2,k for
k = 1, ..., n. Let

m1
2,k = B2,k(0; 0) for k = 1, ..., n, and m1

2,n+1 = B1(0; 0) . (30)

Hence if τ1 = τ2 = 1 then B1(0; 0) = B2,k(0; 0) = 0 for all k = 1, ..., n.
Conversely, if B1(0; 0) = B2(0; 0) = 0, then by (22) we have B2,k(0; 0) = 0
for all k = 1, ..., n, implying τ1 = τ2 = 1.

Now if τ3 = 0 we are done and the singularity is a cusp, then the 2(n+1)×
n matrix ∇∆1∆1F = {∇F,∇B1,∇B2,1, ...,∇B2,n,∇B1} must have rank n,
implying that at least one of the n×n minors of ∇

(
∆1∆1F(0; 0)

)
is nonzero;

again we will look more closely at these in the next step.
Assume instead that τ1 = τ2 = τ3 = 1. Now ∇F(0; 0), ∇∆1F(0; 0), and

∇∆1∆1F(0; 0) all have corank 1, so all of the n×n minors of ∇∆1∆1F(0; 0)
are zero. Recalling

∇(∆1∆1F) = (∇F,∇B1,∇B2,1, ...,∇B2,n,∇B1) ,

these minors number (2(n+1))!
n!(n+2)! (the binomial coefficient for choosing n rows

from 2(n + 1)). One of these is B1 = det∇F, another 2n of them are
the functions B2,1, ...,B2,n+1 repeated twice (because B1 is repeated twice in
∇∆1∆1F). Another n2 are the determinants of Jacobian matrices in which
some kth2 row of ∇F is swapped for one row ∇m1

2,k1
, with k1, k2 = 1, ..., n,
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and these are precisely the functions B3,k1k2 , for k1, k2 = 1, ..., n. Let

m1
3,l(k1,k2)

= B3,k1k2(0; 0) for k1, k2 = 1, ..., n,

with l(k1, k2) = k1 + n(k2 − 1) , (31a)

m1
3,j = B2,j(0; 0) for j = n2 + 1, ..., n2 + n , (31b)

m1
3,j = B2,j(0; 0) for j = n2 + n+ 1, ..., n2 + 2n , (31c)

m1
3,j = B1(0; 0) for j = n2 + 2n+ 1, ..., n2 + 2n+ 2 , (31d)

m1
3,j = 0 for j = n2 + n+ 3, ..., (2(n+1))!

n!(n+2)! . (31e)

We have claimed in the last line that the remaining m1
3,j for j = n2 +

n + 3, ..., (2(n+1))!
n!(n+2)! vanish. These are the determinants of Jacobian matri-

ces formed from 0 ≤ d ≤ n − 2 rows of ∇F and 2 ≤ d′ ≤ n rows from
(∇B1,∇B2,1, ...,∇B2,n,∇B1), but by lemma 4.3 this has rank n − 1, so
all its n × n minors vanish. So B3,k1k2(0; 0) = 0 for all k1, k2 = 1, ..., n
(as well as B1(0; 0) = B2,k1(0; 0) = 0 for all k1 = 1, ..., n). Hence if
τ1 = τ2 = τ3 = 1 then B1(0; 0) = B2,k1(0; 0) = B3,k1k2(0; 0) = 0 for all
k1, k2 = 1, ..., n. Conversely, if B1(0; 0) = B2(0; 0) = B3(0; 0) = 0, then by
corollary 4.2, B2,k1(0; 0) = B3,k1k2(0; 0) = 0 for all k1, k2 = 1, ..., n, implying
τ1 = τ2 = τ3 = 1.

Now if τ4 = 0 the singularity is a swallowtail, and the (2(n+ 1) + χ)×n
matrix

∇∆1∆1∆1F =
{
∇F,∇B1,∇m1

2,1, ...,m
1
2,n+1,∇m1

3,1, ...,∇m1
3,χ

}
where χ = (2(n+1))!

n!(n+2)! , must have rank n since τ3 = 0, so at least one of its
n × n minors must be nonzero; as usual, inspection of these is left to the
next step.

And so on. At each successive symbol of length r, the vanishing of minors
is equivalent to the vanishing of all of the quantities F(0; 0), B1(0; 0), ...
Br,k1...kr−1 . At the next order, assuming τ1 = τ2 = τ3 = τ4 = 1, for example,
the minors include the functions B4,k1k2k3 , and we can define

m1
4,l(k1,k2,k3)

= B4,k1k2k3 for k1, k2, k3 = 1, ..., n,

where l(k1, k2, k3) = k1 + n(k2 − 1) + n2(k3 − 1) , (32)

while the remaining m1
4,j for j = n3 + 1, ..., (2(n+1)+χ)!

n!((2(n+1)+χ)−n)! , consist of the
functions B1, B2,k1 , B3,k1k2 , for k1, k2 = 1, ..., n, as well as determinants of
Jacobian matrices formed from 0 ≤ d ≤ n−2 rows of∇F and 2 ≤ d′ ≤ n rows
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from
(
∇B1,∇m1

2,1, ...,∇m1
2,n+1,∇m1

3,1, ...,∇m1
3,χ

)
, whose minors vanish by

corollary 4.4. At each successive codimension, applying corollary 4.2 shows
equivalence between the symbols τ1 = ... = τr = 0 and the conditions
B1(0; 0) = ... = Br(0; 0) = 0.

□

This does not mean that the ‘underlying catastrophes’ defined in [12]
are equivalent to the Thom-Boardman singularities, indeed they are not.
But they are consistent in that a codimension r underlying catastrophe
(where F(0; 0) = B1(0; 0) = ... = Br(0; 0) = 0) is a codimension r Morin
singularity, i.e. the conditions are sufficient to define a zero of F lying at
such a singularity of F viewed as a mapping.

Importantly in definition 1.1 we place a further restriction of ‘fullness’,
which ultimately is not necessary to define a singularity in the sense of F
as a mapping, but ensures that F is determined such that the conditions
F(0; 0) = B1(0; 0) = ... = Br(0; 0) = 0 are solveable. We complete this
section by showing how this follows from the Gr,K(r−1) conditions.

4.5 The G conditions for being ‘full’

The only place we have needed to make reference to the parameter depen-
dence of F above is in the proof of lemma 4.5. Taking F : Rn × Rr → Rn,
denote again the gradient operator as □ = (∇x,∇α). The conditions
Gr,K(r−1)(0; 0) ̸= 0 simply state that the extended Jacobian

Gr =
∂(F,B1, ...,Br)

∂(x, α1, ..., αr)
(33)

has full rank n + r at (x,α) = (0, 0), as do its variants Gr,k1...kr−1 for
the alternative permutations of the Bi,k1...kr−1 . At this point, the gradi-
ent vectors □F1, ..., □Fn, □B1, ..., □Br, span an (n+ r)-dimensional linear
subspace Tx,α ⊂ Rn × Rr, which implies by the implicit function theorem
that the problem F = B1 = ... = Br = 0 is solvable at isolated points
(x,α) = (x∗, α1∗, ..., αr∗).

We can illustrate this using the primary form of a codimension r singu-
larity given in (1), namely

F =
(
f(x1,α) + τ · x , λ2x2 , ... , λnxn

)
where f(x1) = xr+1

1 +

r∑
i=1

αix
i−1
1 ,
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with τ ·x = τ2x2+ ...+τnxn, and where the τi and λi are non-zero constants.
Calculating Br from (22), and the function Gr from (33), we have

Br = (λ2...λn)
rf (r)(x1) ,

Gr = c1(λ2...λn)
r+1f (r+1)(x1) , (34)

and calculating Br,k1...kr−1 from (24) and Gr,k1...kr−1 from (25), we have

Br,k1...kr−1 = c2λ
p2
2 λpn

n τ q22 ...τ qnn Br ,

Gr,k1...kr−1 = c3λ
s2
2 ...λsn

n τ t22 ...τ tnn Gr . (35)

The actual values of the various numerical constants c1, c2, c3 and −r ≤
pi, qi ≤ 0 and −r − 1 ≤ si, ti ≤ 0 are not important, and depend quite
complicatedly on the values of r and the kis. The point is that we need all
λi and τi to be non-vanishing for the G determinants to be non-vanishing,
and thereby ensure that the B determinants are non-trivial and have well-
defined roots coinciding with those of the functions f (r). In a following paper
[5] we intend to prove that the underlying catastrophes of definition 1.1 are in
fact transformable, as mappings though not as vector fields, to the functions
(1).

5 Closing remarks

The results above justify the methodology laid out in [12] and connect it with
the theory of Thom-Boardman singularities. The hope is that these ideas
make the application of Thom’s ideas to vector fields and spatiotemporal
systems much more practical, by providing new ways to find and characterize
high codimension bifurcation points.

A number of examples were given in [12] to illustrate the importance of
being full. A non-trivial example illustrating the importance of satisfying
(27), even when (3) holds, is given by F = (x1+x22, x

2
1+α1x1+α2+x22+kx1).

If k1 = 0 then subrankF(0; 0) = 0 and we find B1(0; 0) = B21(0; 0) = 0 ̸=
B22(0; 0), violating lemma 4.1, while the fullness conditions G2,1(0; 0) ̸= 0
and G2,2(0; 0) ̸= 0 are still satisfied. If k1 ̸= 0 then (27) holds. One then
finds that there is a fold at the origin as α2 passes through zero, while the
event that unfolds with α1 is degenerate (not full), and there is no higher
codimension catastrophe since B21(0; 0),B22(0; 0) ̸= 0.

We have claimed that any bifurcation has an underlying catastrophe,
and established the validity of the conjecture with a suitable definition that
relates to zeros of vector field encountering certain corank 1 singularities. As

25



already noted in [12], underlying catastrophes are not equivalence classes,
and each one may represent several classes of bifurcations with different sta-
bility properties. The idea is that the concept of an underlying catastrophe
is used to find a bifurcation point in a vector field, after which standard
bifurcation analysis can be carried out to properly classify it, if required.

Here we have described more the relation of underlying catastrophes to
singularities (rather than bifurcations), and this proves to be rather differ-
ent, in that there appear to be singularities within Thom’s classification
that cannot be identified with any underlying catastrophe, because they re-
quire too many conditions to identify them. This perhaps rules out some
singularities as unfindable by the solution of implicit conditions, but what
singularities this applies to, and what this means for their role in applica-
tions, remains to be studied.

At present this analysis only applies to corank 1 cases. For these, the
B-G conditions reduce the number of minors needed to calculate the Board-
man symbols, which increases factorially with the codimension r, to just
B1, ...,Br. For what other singularities or bifurcations is this possible? It
seems obvious, for example, that corank 2 singularities should be related to
umbilic catastrophes, and the first steps towards extending the B-G condi-
tions for these has been taken in [13].

Appendix

A Counting minors

The number of minors involved in calculating the Thom-Boardman symbols
in section 4.1 grows ‘superfactorially’, that is, faster than factorially in the
codimension r. To see this let us calculate the number, Nj , of new mi-
nors that must be calculated to find each successive jth Boardman symbol,
following exactly the procedure in section 4.1.

To find the first Boardman symbol τ1, one must calculate the (n− i1 +
1)× (n− i1 +1) minors of ∇F = (∇f1, ...,∇fn), which we call mi1

1 , ...,m
i1
N1

.
Each minor is formed by choosing (n − i1 + 1) rows and columns from an
n× n matrix, and so

N1 =
(

n
n− i1 + 1

)
·
(

n
n− i1 + 1

)
where

(
n
m

)
denotes the binomial coefficient. In finding the second Board-

man symbol τ2, one then calculates the (n − i2 + 1) × (n − i2 + 1) minors
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of ∇∆i1F = (∇f1, ...,∇fn,m
i1
1 , ...,m

i1
N1

), which we call mi2
1 , ...,m

i2
N2

, where
each minor is formed by choosing (n − i2 + 1) rows and columns from an
n× (n+N1) matrix, and so

N2 =
(

n
n− i2 + 1

)
·
(

n+N1

n− i2 + 1

)
. (36)

Continuing iteratively is easy to see that

N3 =
(

n
n− i3 + 1

)
·
(

n+N1 +N2

n− i3 + 1

)
and so on.

That is, to calculate the Boardman symbol for a codimension r singu-
larity we must evaluate N minors, the number

N (r) =
r∑

j=1

Nj (37)

where

Nj =
(

n
n− ij + 1

)
·
( ∑j−1

k=0 Nk

n− ij + 1

)
, N0 = n . (38)

and the brackets denote the binomial coefficient(
n
m

)
= n!

m!(n−m)! , (39)

Table 1 shows N (r) for the first few codimensions r for corank 1 (when all
ij = 1), in systems of different dimension n, and the number of B determi-
nants this reduces to for an underlying catastrophe.
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