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Abstract

A class of four-component reaction-di↵usion systems are studied in

one spatial dimension, with one of four specific reaction kinetics. Models

of this type seek to capture the interaction between active and inactive

forms of two G-proteins, known as ROPs in plants, thought to underly

cellular polarity formation. The systems conserve total concentration of

each ROP, which enables reduction to simple canonical forms when one

seeks conditions for homogeneous equilibria or heteroclinic connections

between them. Transitions between di↵erent multiplicities of such states

are classified using a novel application of catastrophe theory. For the

time-dependent problem, the heteroclinic connections represent so-called

wave-pinned states that separate regions of the domain with di↵erent ROP

concentrations. It is shown numerically how the form of wave-pinning

reached can be predicted as a function of the domain size and initial total

ROP concentrations. This leads to state diagrams of di↵erent polarity

forms as a function of total concentrations and system parameters.

pattern formation, heteroclinic orbits, catastrophe theory, wave pinning, cell
polarity.

35K57, 92C15, 34C37

1 Introduction

Polarity formation is a fundamental and essential aspect of the development
of just about every eukaryotic cell. This is the process by which a cell gains
its initial asymmetry in order to develop its specific structure [28]. This, in
turn, enables patterning and di↵erentiation at the level of tissue and organ [37].
Cell polarisation mechanisms are regulated by signalling GTPases, which are
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a form of small G-proteins, often called rho-proteins. These proteins freely
di↵use both in inactive form within the cell body and in active forms, which
are bound to the cell membrane. The process of activation is thought to be
autocatalytic mediated guanine exchange factors (GEFs), whereas de-activation
is more passive, occurring through (the confusingly named) GTPase-activating
proteins, or GAPs [4, 27].

Pioneering work by Mori et al. [25] distills a simple mathematical model of
the dynamics of G-proteins in a 1D domain (which we can think of as repre-
senting the longitudinal co-ordinate of a long cell that captures the essence of
the biology of more complex reaction-kinetic models. The model in [25] takes
the form of a pair of reaction-di↵usion equations for concentrations u(x, t) and
v(x, t) for active and inactive forms of a single G-protein species:
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Here the di↵usion ratio � ⌧ 1, reflects the property that the inactive form is
free to di↵use in the cytosol whereas the active form is membrane-bound and
therefore di↵uses more slowly. The positive dimensionless parameters � and
⌘ represent relative importance of the passive and autocatalytic elements of
the GEF-mediated activation of G-protein compared with their GAP-mediated
deactivation.

Note that the di↵usion-free kinetics of (1.1a) and (1.1b) are equal and oppo-
site. As a consequence of this, natural zero-flux (Neumann) boundary conditions
ensure that the total concentration

CT =

Z

D
(u+ v)dx

of the G-protein is conserved, and is only a function of the initial conditions.
It also means that there is a single nullcline in phase space and there are a
continuum of di↵erent possible homogeneous equilibria.

The results in [25, 26] highlight a phenomenon for models of the form (1.1)
that the authors call wave pinning; see [15] for a review. This occurs if pa-
rameters and initial total concentration are set within the region of bistability
between high and low active species concentrations, then a robust back-and-
front polarisation will emerge as the unique (up to reflection symmetry) attract-
ing steady state. Such states represent spatial heteroclinic orbits between the
bistable homogeneous equilibria, which are saddle points in the phase space of
the so called spatial dynamics problem where x is treated as a time-like variable.
When posed on a finite domain with Neumann boundary conditions, the precise
parameter value at which the spontaneous symmetry-breaking occurs, and the
position of the sharp transition point within the domain is determined by the
total concentration CT . This process has been shown to be robust, to a certain
extent for models of the form eq:Mori [16, 26, 39, 40], provided an equivalent of
CT is conserved.
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One drawback of the simple model (1.1) is that it models a single G-protein.
Yet, in animals and uni-cellular organisms, the mechanism typically involves the
cross-talk between three (or more) mutually inhibitive G-protein species known
as rho, rac and cdc42. [16,31,43,44]. The homologue in plants are called ROP,
which literally stands for rho of plants; and since cells cannot travel through
tissue, ROP-based polarity mechanisms are crucial to tissue organisation, both
through directing growth [12,42] and through control of the hormone, auxin [13,
21,22,32]. Canonical plant polarity processes that are widely studied include the
positioning of the growth of hair-like protuberances in the root trophoblast [5,6,
33,38] and the jigsaw-piece shapes formed by leaf pavement cells [10,34]. While
polarity mechanisms in plants can occur without cross-talk, for the pavement
cells it is thought that at least two families of G-protein are required; ROP2
and ROP6, with the former localising at lobes and the latter at indentations.

Several authors have proposed extensions to models of the form eq:Mori to
consider the cross-talk between two or more G-proteins; see e.g. [1, 16, 18, 45].
The purpose of the present paper is to extend the notion of spontaneous polarity
formation through wave pinning in such models. Simulation results have shown
these models to feature a richer array of polarised patterns, and our aim is to
provide some mathematical explanation to what has been observed in models
for the interaction of two G-proteins which leads to a system of four reaction-
di↵usion equations; see sec:models below for the form of these equations.

Our approach will be to extend the methodology developed in [26,39] to deal
with the higher-dimensionality of the state space. This involves, first, the use
of spatial dynamics to determine parameter regions in which there is bistabil-
ity between equilibria and where heteroclinic orbits exist. We shall find that
the phase space can be reduced because of two invariants, which parameterise
di↵erent families of equilibria and heteroclinic orbits between them, and we
characterise these families using catastrophe theory. Second, we turn to the
full PDE dynamics on a long finite domain, and show how two consideration
of two conserved quantities analogous to CT leads to a characterisation of the
di↵erent types of wave-pinning seen for di↵erent overall concentrations of the
two G-proteins.

To characterize the equilibria of the PDE we adapt the concept of elementary

catastrophes for use with vector fields. While dynamical systems theory provides
a classification of bifurcations of equilibria of vector fields, see e.g. [3], it does
not provide explicit methods with which to find such events in general (i.e.
for general numbers of variables and parameters). Instead, we describe here
how to use Thom’s simpler notion of elementary catastrophes [30, 36] to find
such bifurcation points, and use it to develop a general method that has been
outlined more completely in [20]. In the present problem we use this to show
that a butterfly catastrophe creates up to 5 equilibria. Catastrophes up to
codimension 6, a star catastrophe, can be found in the system, but as we show,
the star occurs at biologically irrelevant parameters.

The rest of the paper is outlined as follows. sec:models sets out the general
four-dimensional system of reaction-di↵usion equations to be studied, includ-
ing di↵erent possible forms for the kinetic terms. stedstat contains the main
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results of the paper by studying steady-state solutions of the models in ques-
tion. After rescaling of variables, the steady-state problem can be posed as a
reversible dynamical system in an appropriate phase space, which preserves two
first integrals. Bifurcation diagrams of di↵erent spatially homogeneous states as
values of these integrals change can be established analytically, and families of
heteroclinic equilibria between these states can be computed numerically. It is
then shown how the bifurcation diagrams can be understood using catastrophe
theory, and we describe how this idea can be applied to vector fields in general.
trnhete then shows how the defining equations derived from the catastrophe
theory can explain how the computed bifurcation diagrams transform as system
parameters are varied. This leads to the eventual destruction of all nontrivial
steady states upon increasing the di↵usion ratio �. overalldynamic then consid-
ers solutions to the initial-value problem using numerical methods, and shows
how di↵erent kinds of wave-pinned solutions arise for di↵erent values of the to-
tal concentrations of each ROP species. All the computations in stedstat–5 are
performed for one particular form of kinetic terms, although the methodology
is general. othemodel then briefly presents equivalent results for three di↵erent
kinetic forms considered in the literature. Finally, conhete draws conclusions
and suggests avenues for future work.

2 Cell polarity models

We start by describing the general form of a simple model of intracellular pat-
terning [1,16] based on the di↵usion of two types of interacting molecular com-
ponents (A and B). In reality, each component may represent classes of several
types of ROP, but for simplicity, each component is treated as a single entity.
The two components can each occur in two forms: active and membrane-bound,
denoted by using an asterisk; and inactive and unbound, denoted without aster-
isk. The inactive components are assumed to have a higher di↵usion constant
as they are free to move within the cytosol. The kinetics of activation and de-
activation of each component is supposed to be similar to that of (1.1), with
the addition of cross inhibition; specifically that A

⇤ reinforces deactivation of
B

⇤, and vice versa. The reaction-di↵usion dynamics of such a system can thus
be expressed by the following system of partial di↵erential equations (PDEs):
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⇤
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where functions F and G describe the activation and inhibition dynamics of two
ROP species A and B. See equations (2.5)–(2.8) below for di↵erent possible
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forms of F and G. Owing to the assumptions about di↵usion described above,
in what follows we suppose DA⇤ , DB⇤ ⌧ DA, DB , and more specifically that

DA⇤ = DB⇤ = � ⌧ 1 and DA = DB = 1.

Since the active and inactive components cannot leave or enter the cell, we
enforce the Neumann boundary conditions on a finite domain x 2 (�`, `):

Ux(±`) = 0, where U = (A,A
⇤
, B,B

⇤).

The model presumes that for each ROP species there is inter-conversion be-
tween active and inactive forms, yet each ROP is neither created nor destroyed.
Therefore, we find two conservation laws. Specifically, adding (2.2a) and (2.2b)
and integrating over the domain we have

Z l

�l

d

dt
Âdx =

Z l

�l
[DA⇤A

⇤
xx +DAAxx] dx, (2.3)

where Â = A
⇤+A. Under Neumann boundary conditions at x = ±l, the integral

on the right-hand side of (2.3) vanishes. Thus, we have

d

dt

Z
Â = 0 or equivalently

Z
Â = constant := AT , (2.4)

and similarly for B.
Based on di↵erent choices for F and G, one can obtain di↵erent GTPase

models that illustrate the intracellular partitioning dynamics. Several such mod-
els have been described in the literature, which we delineate as follows.

Model I: intracellular partitioning model for tissue cell polarity in plants and
animals presented by Abley et al [1]:

F = (⌘A⇤ + ⇢)A� (↵B
⇤ + µ)A⇤ (2.5a)

G = (⌘B⇤ + ⇢)B � (↵A
⇤ + µ)B⇤

. (2.5b)

Here ↵ is the cross-inhibition rate between the membrane-bound polarity
component, ⌘ is the auto-activation rate, µ is the membrane unbinding
rate, and ⇢ describes the membrane binding rate.

Model II: a modification of the model in [1], proposed in [2]:

F =
⇣
⌘A

⇤2 + ⇢

⌘
A� (↵B

⇤ + µ)A⇤ (2.6a)

G =
⇣
⌘B

⇤2 + ⇢

⌘
B � (↵A

⇤ + µ)B⇤
, (2.6b)

where the parameters ↵, ⌘, µ and ⇢ have the same meaning as in (2.5).
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Model III: intracellular partitioning model for “juicy fruit” by Grieneisen et

al. [16]:

F =

 
� + ⌘ ↵µ

2
A

⇤2
✓
µ
2 +A

⇤2 +B
⇤2 +

↵

ca

◆�1
!
A� ⇢A

⇤
, (2.7a)

G =

 
� + ⌘ ↵µ

2
B

⇤2
✓
µ
2 +A

⇤2 +B
⇤2 +

↵

ca

◆�1
!
B � ⇢B

⇤
. (2.7b)

Here ↵ denotes homogeneous auxin level, � captures the rate of auxin-
independent basal activation rate, ⌘ gives the auto-activation strength, µ is
the saturation constant in ROP auto-activation and cross-inhibition, ca is
a saturation constant in activation by auxin, and ⇢ defines the deactivation
rate .

Model IV: a mutual inhibition model introduced by Holmes et al. [18]:

F =

✓
b+

↵

1 +B⇤n

◆
A� dA

⇤
, (2.8a)

G =

✓
b+

↵

1 +A⇤n

◆
B � dB

⇤
. (2.8b)

Here the parameters ↵ and b represent the strength of feedback and basal
activation, respectively, and d is the rate of GTPase inactivation.

Verschueren et al [39, 40] applied the Maxwell equal energy principle to the
time-independent version of the simple wave-pinning model (1.1) to produce
a condition for front selection. Their method reduces the coupled system to
a single second-order ordinary di↵erential equation (ODE) which can be anal-
ysed in a phase plane. We shall now attempt to apply the same theory to the
two-species model (2.2). Consequently, we look for steady-state solutions by
introducing new variables as follows:

S(x) = �A
⇤(x) +A, u(x) = �A

⇤(x)�A, (2.9a)

E(x) = �B
⇤(x) +B, v(x) = �B

⇤(x)�B. (2.9b)

Then substituting (2.9) into the time-independent version of (2.2), we obtain
the following system of second-order ODEs in space:

@
2
S

@x2
= 0, (2.10a)

@
2
u

@x2
= �2F (u, S, v, E), (2.10b)

@
2
E

@x2
= 0, (2.10c)

@
2
v

@x2
= �2G(u, S, v, E). (2.10d)
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Due to the boundary conditions, the only allowable solutions to (2.10a) and
(2.10c) are constant. Thus S and E e↵ectively become independent parameters
and (2.10) is reduced to two second-order equations in variables u(x) and v(x).

In general we will consider each of the specific forms of the function F and
G given by equations (2.5)-(2.8). However, for the development of the theory
in paper we exclusively study model II as our worked example. Related results
for the other models are treated briefly in othemodel.

3 Steady states and their heteroclinic connec-

tion

To characterise the wave-pinned solutions of (2.2) and (2.6), it is useful to
pose the spatial system (2.10) on an infinite domain, and look for heteroclinic
connections between the homogeneous steady states. We find that up to nine
steady states can exist in the model, and we shall first find regions of parameter
space where they exist, and study their stability, before determining which may
be connected by heteroclinic orbits. The outcome is summarized in the example
bifurcation diagram in Hetesolution, showing bifurcation sets of steady states
(black curves), and existence sets of heteroclinic orbits (coloured curves, with
examples of heteroclinic illustrated in the graphs (a)-(e)). We also show how to
formalise the conditions for di↵erent kinds of equilibria to exist using catastrophe
theory.

To find the steady states, let us first re-write the model more conveniently.
For the kinetics abley2, the time-independent model spatialsys can be written
in the form

u
00 = �2F = 2⇢(u� S) +

✓
2µ

�
+

⌘

2�2
(u2 � S

2) +
↵

�2
(v + E)

◆
(u+ S) ,

v
00 = �2G = 2⇢(v � E) +

✓
2µ

�
+

⌘

2�2
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2) +
↵

�2
(u+ S)

◆
(v + E) .

(3.11)

Note that (3.11) has six independent parameters S,E,
µ
� ,

⌘
2�2 ,

↵
�2 , ⇢. Letting

u = x� 1
3S and v = y � 1

3E eliminates the u
2 and v

2 terms to give the simpler
expressions

x
00 =

⌘

2�2
f̂ , f̂ = x

3 + kxy + ax+ ry + b ,

y
00 =

⌘

2�2
ĝ , ĝ = y

3 + kxy + cy + sx+ d , (3.12)

e↵ectively scaling the parameter ⌘
2�2 out of the following analysis, and giving us
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Figure 1: Bifurcation diagram in E and S of the reduced system (2.10) for (2.6).
System parameter values used are ⌘ = 2, µ = 0.05, ⇢ = 0.06, ↵ = 0.005 and
� = 0.08. Here black lines represent curves of fold bifurcations and coloured
lines show curves on which di↵erent kinds of heteroclinic connection exist. A
full explanation of this bifurcation diagram is the main purpose of stedstat.

a new set of parameters
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⌘
, r =
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3⌘
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4
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�
,

c =
4

⌘

⇢
↵S � ⌘E

2

3
+ �(µ+ �⇢)

�
,

b =
8S

3⌘

⇢
1

3
(↵E � 2

3
⌘S

2) + �(µ� 2⇢�)

�
,
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8E

3⌘

⇢
1

3
(↵S � 2

3
⌘E

2) + �(µ� 2⇢�)

�
. (3.13)

Note that k, r, s, a, b, c, d, constitute only 5 independent parameters, because
they satisfy

a� c = s� r +
3⌘2

4↵2
(s2 � r

2) ,

b

r
� d

s
=

⌘

2↵
(s� r) +

⌘
3

4↵3
(s2 � r

2) .

The system is invariant under the change (x, y, r, s) ! (y, x, s, r) (or (u, v, E, S) !
(v, u, S,E) in the original coordinates). To exploit this let us change coordinates
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one more time to

X = x+ y , Y = x� y . (3.14)

Then the second-order system redueAbly becomes (X 00
, Y

00) = ⌘
2�2 (F̂ , Ĝ), where

F̂ =
1

4
X(X2 + 3Y 2) +

1

2
k(X2 � Y

2) +
1

2
(a+ c+ r + s)X

+
1

2
(a� c� r + s)Y + b+ d ,

Ĝ =
1

4
Y (3X2 + Y

2) +
1

2
(a� c+ r � s)X +

1

2
(a+ c� r � s)Y

+ b� d . (3.15)

Finally, we can write this as a first order 4-dimensional system by letting
(X 0

, Y
0) = ⌘

2�2 (Z,W ), giving

(X 0
, Z

0
, Y

0
,W

0) =
⇣

⌘

2�2
Z, F̂ ,

⌘

2�2
W, Ĝ

⌘
. (3.16)

We will show in the following two subsections that this four-dimensional
system has up to nine equilibria, and we identify these with the following labels.
There are three equilibria that we label

(XI , YI) , (XII , YII) , (XIII , YIII) , (3.17)

such that XI  XII  XIII ,, and when S = E these lie on Y = 0 where Ĝ = 0.
The remaining six equilibria form three pairs of points that we label as

(X±
1 , Y

±
1 ) , (X±

2 , Y
±
2 ) , (X±

3 , Y
±
3 ) , (3.18)

such that X1  X2  X3, and Y
�
i  0  Y

+
i , and when S = E we will show

that these lie on an ellipse defined by the condition Ĝ = 0 6= Y .
Examples of these equilibria are illustrated in spatiEgen for the case E = S.

For S 6= E we label the equilibria by continuation from S = E, and an example
is shown in spatiEgen2. The equilibria are shown as lying at the intersection of
the nullclines F̂ = 0 (red curves) and Ĝ = 0 (purple curves). Shown inset in
these figures is the stability of the equilibria, within this ODE system, which
we derive in sec:eigenvalues below. The nature of these equilibria will enable
us to infer the existence of heteroclinic orbits. When S = E the system is
symmetric about Y = 0, and a heteroclinic solution (cyan curve) can then exist
connecting the ‘1+’ and ‘1�’ equilibria, as shown in spatiEgen. The symmetry
is broken when S 6= E, and a heteroclinic connection (cyan curve) can then
exist connecting the ‘1+’ and ‘I’ equilibria, as shown in spatiEgen2. Note the
heteroclinic solution does not pass through the ‘2+’ equilibrium in the full four-
dimensional space of (X,X

0
, Y, Y

0).
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Figure 2: Nine equilibria lie at the intersections of the nullclines F̂ = 0 (red)
and Ĝ = 0 (purple). The heteroclinic solution (cyan) connects the ‘1+’ and
‘1�’ equilibria. Insets show the (spatial) eigenvalues of each equilibrium, in the
complex plane with location of eigenvalues denoted by bold dots. Parameters
chosen are ⌘ = 2, µ = 0.05, ⇢ = 0.06, ↵ = 0.005 and � = 0.08, and S = E =
0.0878.

Figure 3: A perturbation of spatiEgen for ⌘ = 2, µ = 0.05, ⇢ = 0.06, ↵ = 0.005
and � = 0.08, E = 0.0881606 and S = 0.0872160. The heteroclinic solutions
now connects the ‘1+’ and ‘I’ equilibria. Other curves are as in spatiEgen.
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3.1 Locating the equilibria

When S = E the model simplifies such that its 9 equilibria can be found explic-
itly. Taking trans with S = E gives r = s, a = c, b = d, and substituting these
into XYgen1 gives

F̂ =
1

4
X(X2 + 3Y 2) +

1

2
k(X2 � Y

2) + (a+ r)X + 2b ,

Ĝ = Y

⇢
1

4
(3X2 + Y

2) + (a� r)

�
. (3.19)

Like the general system this has up to 9 equilibria, but here they can be
decoupled into two groups of equilibria where Ĝ = 0, namely 3 equilibria
on the surface Y = 0 labelled by XIII1, and six equilibria on the surface
1
4 (3X

2 + Y
2) + (a� r) = 0 labelled by X121, as we will now define.

On Y = 0 the system XY2 is given by

X
0 =

⌘

2�2
Z , Y

00 = Y
0 = 0 ,

Z
0 =

1

4
X

3 +
1

2
kX

2 + (a+ r)X + 2b . (3.20)

(This means the system is invariant on Y = 0, but this property will not be of
further use here). The zeroes of this subsystem give us the 3 equilibria which
we denote by XIII1, where XI , XII , XIII , are the real roots of

1

4
X

3
i +

1

2
kX

2
i + (a+ r)Xi + 2b = 0 , i = I, II, III . (3.21)

For S 6= E these equilibria no longer necessarily lie on Y = 0, but we use this
same labeling by continuation away from S = E.

The elliptical surface 3X2+Y
2 = 4(r�a) gives a second (albeit not invariant)

subsystem of XY2, where it becomes

X
0 =

⌘

2�2
Z , Z

0 = 0 , 3X2 + Y
2 = 4(r � a) ,

1

2
Z

0 = �X
3 + k(X2 + (a� r)) + (2r � a)X + b . (3.22)

The zeroes of this provide the six equilibria which we denote by X121. They
satisfy X

+
i = X

�
i := Xi, where Xi are the roots of

�X
3
i + k(X2

i + (a� r)) + (2r � a)Xi + b = 0 , i = 1, 2, 3 . (3.23)

and Y
±
i = ±{4(r � a) � 3X2

i }. Again, when S 6= E we use this same labeling
for the equilibria by continuation away from S = E.

These equilibria are shown in spatiEgen for S = E. We see the three equilib-
ria (X1, Y1), (X2, Y2), (X2, Y2), lying on the line Y = 0, while the six equilibria
(X±

I , Y
±
I ), (X±

II , Y
±
II ), (X

±
III , Y

±
III), lie on the ellipse 3X2 + Y

2 = 4(r � a), as
described by the subsystems in invsys1 and ellipsys1, respectively.
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These equilibria are shown in spatiEgen for S = E. We see the three equilib-
ria (X1, Y1), (X2, Y2), (X2, Y2), lying on the line Y = 0, while the six equilibria
(X±

I , Y
±
I ), (X±

II , Y
±
II ), (X

±
III , Y

±
III), lie on the ellipse 3X2 + Y

2 = 4(r � a), as
described by the subsystems in (3.20) and (3.22), respectively. In spatiEgen2
the system no longer decouples exactly into these subsystems, but we see that
the equilibria persist.

As the parameters in the model change, these nullclines deform, causing the
equilibria to move and annihilate in a variety of bifurcations. Between spatiEgen
and spatiEgen2, for example, the two equilibria (XI , YI) and (X�

2 , Y
�
2 ) have

approached each other and are about to annihilate via a fold bifurcation.
We will identify the bifurcations that occur below. First, let us take a look

at the stability of the equilibria found above, to identify which can be connected
by heteroclinic orbits.

3.2 Local stability

Only some of the nine equilibria can be involved in heteroclinic orbits generically,
namely those with at least a two-dimensional stable or unstable manifold. Let
us determine which of the equilibria found in sec:eqs this applies to.

The Jacobian of the system (3.19) in (X,X
0
, Y, Y

0) space is

J =

0

BBBBBB@

0 1 0 0

3X2

4 +
3Y 2

4 + kX + a+ r 0
3XY

2 � kY 0

0 0 0 1

3XY
2 0

3X2

4 +
3Y 2

4 + a� r 0

1

CCCCCCA
. (3.24)

For the invariant subsystem on Y = 0 given by (3.20) this simplifies to

J =

0

BBBBBB@

0 1 0 0

3X2

4 + kX + a+ r 0 0 0

0 0 0 1

0 0
3X2

4 + a� r 0

1

CCCCCCA
, (3.25)

with eigenvalues

�1 = ��2 =
1

2

p
3X2 + 4 a� 4 r and

�3 = ��4 =
1

2

p
3X2 + 4 kX + 4 a+ 4 r . (3.26)

For the invariant subsystem on the ellipse given by (3.22) the Jacobian sim-
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plifies to

J =

0

BBBBBB@

0 1 0 0

Y 2

2 + kX + 2r 0
Y (3X�2 k)

2 0

0 0 0 1

3XY
2 0

Y 2

2 0

1

CCCCCCA
, (3.27)

with eigenvalues

�1 = ��2 =
1

2

q
M + 2

p
L and

�3 = ��4 =
1

2

q
M � 2

p
L (3.28)

where L =
�
9Y 2 + k

2
�
X

2 � 6 k
�
Y

2 � 2
3r
�
X + 4 r2 and M = 3X2 + 2 kX +

3Y 2 + 4 a.
By evaluating each of these eigenvalue expressions at the respective equilibria

of the two subsystems, the resulting eigenvalues are shown as insets in spatiEgen
and spatiEgen2 for each of the 9 equilibria. These show that the ‘II’ equilibrium
cannot form heteroclinics because it is a center, while ‘2’ and ‘3’ are saddle-
centers with only one-dimensional stable and unstable manifolds, so they do
not generically form heteroclinic orbits.

So the equilibria ‘I’, ‘III’, and ‘1±’, which are each saddle-nodes with two-
dimensional stable and unstable manifolds, are the source of heteroclinic con-
nections. In spatiEgen we see a heteroclinic orbit (cyan curve) that connects the
‘1+’ and ‘1�’ equilibria; this corresponds to the heteroclinic orbit that exists
on the green curve in the (S,E)-plane shown in Hetesolution. In spatiEgen2 we
see a heteroclinic orbit (cyan curve) that connects the ‘1+’ and ‘I’ equilibria;
this corresponds to the heteroclinic orbit that exists on the blue curve in the
(S,E)-plane shown in Hetesolution.

It is not easy to directly find expressions for parameter values at which these
di↵erent heteroclinic connections exist. It is, however, easy to give bounds for
their existence by finding the parameters at which these equilibria are destroyed
in bifurcations. The next subsection describes how we compute the heteroclinic
orbits computationally, then sec:bif describes how we compute their regions of
existence from bifurcations of the equilibria.

3.3 Bifurcations

Hetesolution showed a typical bifurcation diagram for the system in the (S,E)-
plane. The black curves show the locations of fold bifurcations. (The coloured
curves show the existence of heteroclinic orbits to be discussed later). At each
point labelled (a), (b), (c), (d), (e), (f), the equilibria and nullclines are shown in
(X,Y ) space in fig:clinics, similarly to spatiEgen-spatiEgen2.

We will first identify bifurcations in the S = E system. We shall see that the
highest order bifurcations occur when S = E, and these turn out to be the most
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Figure 4: The phase plane for (X,Y) in (3.15) with fixed ⌘ = 2, µ = 0.05,
⇢ = 0.06, ↵ = 0.005 and � = 0.08, showing the nullclines F̂ = 0 (red) and Ĝ = 0
(purple); the 9 equilibria lie at their intersections. The heteroclinic solution
that exists in each case is shown.

significant, as well as having the advantage that we can find them explicitly. We
will then give conditions that can be used to find bifurcations more generally
when S 6= E.

We study the 3 equilibria of the subsystem invsys1 simply by looking at the
3 roots of cubicI. Thus fold bifurcations occur where

(27b+ 2k3 � 9k(a+ r))2 = 4(k2 � 3(a+ r))3 (3.29)

and a cusp occurs at

b =
1

27
k
3
, a =

1

3
k
2 � r . (3.30)

At these parameters, with S = E, the system therefore undergoes fold and cusp
bifurcations. For S 6= E the folds continue outward into parameter space to
form some of the fold curves as seen in Hetesolution.

The six equilibria of the subsystem in ellipsys1 are studied by considering the
3 roots of cubic1 (with each root corresponding to a pair of equilibria (X±

i , Y
±
i )).

Thus there are 6 equilibria when

k
2
> 3a� 6r and (3.31)

4(k2 + 6r � 3a)3 > (54b+ 2k3 + 18ak � 9rk)2 ,

and only 2 equilibria otherwise, with folds occurring at

4(k2 + 6r � 3a)3 = (27b+ 2k3 + 18ak � 9rk)2 (3.32)
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and a cusp occurring at

b = � 8

27
k
3 � rk , a =

1

3
k
2 + 2r . (3.33)

At these parameters, with S = E, the system therefore undergoes simultaneous
fold and cusp bifurcations at symmetric values (given by the ‘±’ labels) of Y .
Again, for S 6= E the folds continue outward into parameter space to form some
of the fold curves as seen in Hetesolution.

The two families of bifurcations found above occur within each of the two sub-
sets of equilibria identified in sec:eqs. There is one further family of bifurcations
that occurs between the two subsets, at the point (X,Y ) = (±2

p
(r � a)/3, 0)

shared by both of the subsystems Y = 0 and 3X2 + Y
2 = 4(r � a). These

turn out to be of the greatest interest as they terminate the lines of heteroclinic
solutions at the points (e) and (f) in Hetesolution.

To find these bifurcations we need only look for mutual solutions of both
cubic equations cubicI and cubic1, therefore lying at X

2 = 4
3 (r � a) and Y =

0. One equilibrium from the subsystem invsys1 and two from the subsystem
ellipsys1 coincide when

b =
1

3

✓
k(a� r)⌥ 2p

3
(2r + a)

p
r � a

◆

This therefore defines a cusp bifurcation. Three such cusp points can be seen
in Fig. 1.

It can also happen that four equilibria from the ellipse subsystem collide
with one from the Y = 0 subsystem. This is found by solving for a fold point
of cubic1 coinciding with an equilibrium of cubicI, resulting in

a =
2

27

⇣
9r � 4k2 ± 2k

p
4k2 + 9r

⌘
,

b =
1

27

⇣
k(9r � 18a� 2k2 ⌥ 2(k2 + 6r � 3a)3/2)

⌘
. (3.34)

This higher-codimension bifurcation is an example of a butterfly catastrophe
(see CataTheo, below). For example, if we take ⌘ = 2, µ = 0.05, ⇢ = 0.06,
↵ = 0.005, we find numerically that two such degenerate bifurcations occur; at
S = E ⇡ 0.0972536, � ⇡ 0.110666 and at S = E ⇡ 0.0983051, � = 0.112176.
These two points are, respectively, on the black and grey curves in the (⌘, �)-
plane represented in butterfly below.

In principle other bifurcations are also possible, but they do not play a role
here. For example, folds or cusps can occur within the subsystem Y = 0 alone.
A higher-order bifurcation can also occur in which all six of the equilibria of the
ellipse subsystem annihilate, along with an equilibrium of the Y = 0 subsystem,
constituting a so-called star singularity (with codimension 6), but this is found
to occur only for r < 0 and therefore it is not physically relevant here.

All of the analysis above applies only for the simplified case with S = E,
for which r = s, a = c, and b = d. We have also referred to the bifurcations
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found as ‘folds’, ‘cusps’, and ‘butterflies’, without showing that they satisfy the
necessary genericity conditions for such a classification from the perspective of
singularity theory. To do this, and to extend this analysis to S 6= E, requires
an understanding of the catastrophe theory.

3.4 Catastrophe theory for vector fields

For the special case of parameters S = E we were able to simplify the system
above to show that it undergoes fold, cusp, and butterfly bifurcations. For more
general parameters, and to find any other bifurcations (the system can also
undergo swallowtails, wigwams, and stars), we require a more general approach
amenable to numerical continuation.

Unfortunately, for an ODE system with dimension n > 1, there do not
appear to exist general criteria in the literature to identify bifurcations beyond
codimension one or two (the fold or cusp), like the codimension-four butterfly
bifurcation found above.

The classification of such bifurcations is known to extend to vector fields of
any dimension, for example in [3] they are referred to as class Aµ, singularities
involving “one zero eigenvalue and a (µ � 1)-fold degeneracy in the nonlinear
terms”, which are topologically equivalent to “principal families” of the form
ẋ = ±x

µ+1+Pµ(x, ✏) where Pµ is an order µ�1 monomial in x. This, however,
does not provide a practical means to locate such bifurcations in a general n-
dimensional system.

To address this problem, a set of conditions have been derived which are
reported in a separate paper [20]. To our knowledge these conditions have not
been given previously. We give a brief account of them here, having applied
them in the present paper to produce the bifurcation curves in Hetesolution, 5,
6, 7, 12.

The problem is to obtain a set of conditions to locate local bifurcation points
of a system of the form

ẋ = F(x;µ),

with variables x 2 Rn and parameters µ 2 Rm. In our particular system
of interest n = 4, with x = (X,Z, Y,W ), where F is the right-hand side of
(3.16), and µ is a vector consisting of some m of the independent parameters
(k, r, s, a, b). Our interest is limited in scope to locating bifurcations where
several zeros of F coincide, often known as catastrophes in dynamical systems.
The method described below does not identify bifurcations involving multiple
vanishing eigenvalues, or detect stability changes associated with pure imaginary
eigenvalues.

We propose that the following conditions define an elementary catastrophe
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underlying a bifurcation, or simply (from [20]), an underlying catastrophe:

0 = F , [equilibrium,m = 0] (3.35a)

0 = F = B1 6= {G1}, [fold,m = 1], (3.35b)

0 = F = B1 = B2 6= {G2}, [cusp,m = 2], (3.35c)

0 = F = B1 = B2 = B3 6= {G3}, [swallowtail,m = 3], (3.35d)

0 = F = B1 = B2 = B3 = B4 6= {G4}, [butterfly,m = 4], (3.35e)

and so on for bifurcations of higher codimension m > 4. The functions B1,...,Bm

and {Gm} are given below. The functions Bj are a generalization of the deriva-
tives that identify such catastrophes in one dimension, while each {Gm} denotes
a set of derivatives used to establish non-degeneracy. These various functions
are defined as follows in the case n = 4 that applies to (3.16); for the general
expressions and further explanation see [20].

Let x = (X,Z, Y,W ) and F = (F1, F2, F3, F4). A catastrophe occurs where
the gradient vectors at a point @F1

@x , @F2
@x , @F3

@x , @F4
@x , are linearly dependent. Assum-

ing generically that any three of these gradient vectors are linearly independent,
then we can define the functions Bj as

B1 = det

����
@(F1, F2, F3, F4)

@(X,Z, Y,W )

���� and

Bj = det

����
@(Bj�1, F2, F3, F4)

@(X,Z, Y,W )

���� , (3.36)

for j > 1. Solving 0 = F = B1 = ... = Bm then allows one to locate a catas-
trophe of codimension r in the space of (X,Z, Y,W ) and some m parameters
(µ1, ..., µm).

The non-degeneracy conditions {Gm} that ensure this system of equations is
solvable are more complicated, but essential. In Thom’s general theory deriving
from [36], the number of conditions needed to define a given catastrophe grows
faster-than-factorially with the codimension m, and is not typically solvable to
find where any given catastrophe might occur. Under the conditions {Gm} 6= 0
these reduce to a solvable system of just the r conditions 0 = B1 = ... = Bm.
The non-degeneracy conditions consist of a set of functions {Gm} = {Gk1...km�1

m }
taken over all kj = 1, ..., 4, for j = 1, ...,m� 1, (hence there are 4m�1 of them),
which themselves are simply determinants,

Gk1...km�1
m = det

�����
@(F1, F2, F3, F4,B1,Bk1

2 ...,Bk1...km�2

m�1 )

@(X,Z, Y,W, µ1, ..., µm)

����� , (3.37)

and one need only evaluate these to check they are non-zero.
The Bk1...kj�1

j are more general forms of each Bj . Observe that when defining
Bj in bifs, we have chosen to replace the first component of F with Bj�1, but
we could have chosen to replace the second, third, or fourth component of F
instead. The functions Bk1...kj�1

j are all of the alternative definitions of the Bj .
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To express these let F\kQ denote F with its k
th component replaced by the

scalar Q, so

F1\Q = (Q,F2, F3, F4) , F2\Q = (F1, Q, F3, F4) ,

F3\Q = (F1, F2, Q, F4) , F4\Q = (F1, F2, F3, Q) . (3.38)

Then we define a sequence of Jacobian determinants Bk1...kj�1

j in which we

replace the k
th
j�1 component of F by the previous function Bk1...kj�2

j�1 , and the
superscript k1...kj keeps track of these k’s,

Bk1...kj�1

j = det

�����
@(F\kj�1Bk1...kj�2

j�1 )

@(X,Z, Y,W )

����� , (3.39)

for j = 1, ...,m, and ki = 1, 2, 3, 4. Note j = 1 just gives the function B1, and
bifs means we define Bj := B1...1

j .
A more complete derivation of the above conditions is given in [20], with

example calculations, along with more explicit forms of these B and G functions
for low codimension cases, and with the geometrical explanation of where these
conditions come from.

Using the above conditions, we obtain the same set of fold, cusp, and but-
terfly catastrophe conditions as found in sec:bif. Moreover, we can show that
the bifurcations are non-degenerate; that is, the appropriate Gr conditions de-
fined above are non-vanishing. The butterfly bifurcation is found to only occur
when S = E. One obtains implicit equations for folds and cusps for S 6= E;
we omit the full, rather lengthy, equations here. One also finds that the high-
est codimension bifurcation that occurs in the system is a codimension-6 star
catastrophe, in which seven equilibria coincide. This occurs when a = � 1

2k
2,

b = 13
108k

3, r = � 5
12k

2, but since r is negative this is not relevant to the biological
application.

3.5 Computation of steady-state solutions

The final matter to explain in Hetesolution is how we compute the coloured
curves, which represent heteroclinic orbits. We have used a several-stage pro-
cess. First, we use direct numerical integration of (2.2), in appropriate regions of
parameter and initial condition space, to converge to a wave-pinned solution (see
overalldynamic). Such steady states correspond to heteroclinic orbits in space.
We can then transform such solutions into the (u,E, v, S) coordinates using for-
mula (2.9). Finally, we continue these heteroclinic solutions as parameters vary,
using the continuation software AUTO [14]. Specifically, we implement asymp-
totic boundary conditions which demand that the boundary points should lie in
the appropriate stable or unstable eigenspace of the linearisation at each of the
two distinct equilibria. This is based on the method implemented by HomCont
within AUTO, see in particular the demo she [14].

tracs shows in more detail how the heteroclinic solutions relate to these
di↵erent equilibria and their bifurcations. On the symmetry line S = E, a
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heteroclinic solution connects the equilibria we labelled (X±
1 , Y

±
1 ), shown for

a typical parameter value by (a). At (b) a global bifurcation occurs in which
this heteroclinic solution connects (X±

1 , Y
±
1 ) both to (XI , YI). At this point

this curve of heteroclinic solutions intersects two other curves, on which we take
the points (e) and (f) as typical examples, on which lie heteroclinic solutions
connecting (XI , YI) to either (X+

1 , Y
+
1 ) (as at (f)) or (X�

1 , Y
�
1 ) (as at (e)).

These curves of heteroclinic solutions terminate at fold curves at (c) and (d),
at which the heteroclinic orbit connects (X+

1 , Y
+
1 ) to (XI , YI) as it undergoes

a fold with (X�
2 , Y

�
2 ) (at (c)), or the heteroclinic orbit connects (X�

1 , Y
�
1 ) to

(XI , YI) as it undergoes a fold with (X+
2 , Y

+
2 ) (at (c)).

Figure 5: Left panel: bifurcation diagram for (3.12) with ⌘ = 2, µ = 0.05,
⇢ = 0.06, ↵ = 0.005 and � = 0.10995. Graphs of heteroclinic orbits are shown
inset, for the profiles a-e) from Hetesolution. The middle and right panels show
the same orbits in the state space of (x, x0) and (X,Y ).

All of the dynamics we have computed is found to be destroyed in a butter-
fly catastrophe, as we shall explain in the next section. In fact there are two
butterflies. In this situation the butterfly catastrophe can be considered to be
of codimension three; that is, it would occur along a curve in the four-dimension
(E,S, ⌘, �)-space. Each butterfly destroys pairs of symmetric cusps in this sys-
tem and the corresponding heteroclinic connections between the equilibria in-
volved. Note that the butterfly bifurcation which according to our classification
above would ordinarily be of codimension four, is e↵ectively of codimension
three in this system if the cusps occur along the line E = S. There are thus two
butterfly catastrophes, destroying each of the two pairs of cusps (see Numeri-
calAbley2 below). The values of � against ⌘ for which butterfly catastrophes
occur are plotted in butterfly.
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Figure 6: The bifurcation diagram for both curves of butterfly catastrophes in
the (⌘, �)-plane. The remaining parameter values are as in Hetesolution.

4 Transitions of homogeneous and heteroclinic

solutions

We now discuss what happens under variation of the system parameters. As
a primary bifurcation parameter we choose the di↵usion ratio �. We seek to
understand the transition of the number of steady-state solutions, from the
diagram in Hetesolution, to the situation that occurs in the upper portion of
butterfly beyond both butterfly catastrophe curves, in which there is a single
steady state and no longer any heteroclinic connections. NumericalAbley2 shows
a series of snapshots of the steady-state and the heteroclinic bifurcation diagram
in (E,S)-plane, for increasing set values of �, for fixed ⌘. All computations have
been carried out in AUTO. We find that a similar sequence of transition can
be found to occur for any value of ⌘ ! 0 as we increase � towards and beyond
the red curve on which the butterfly catastrophe occurs in the (⌘, �)-plane in
butterfly.

We shall start from NumericalAbley2(a), which is identical to Hetesolution.
For these parameter values, we have nine separate homogeneous steady-state
solutions. Also, there are five di↵erent kinds of heteroclinic solutions, which lie
on the di↵erent coloured curves in the diagram. Profiles of each kind of solution
was given in Hetesolution. Also notice the two special points that are labelled
with an asterisk. Here is where a codimension-two heteroclinic cycle exists
between a pair of steady states, resulting in ‘front and back’ type solutions.

Increasing � from 0.08 beyond 0.1 results in a change of topology of the
fold and cusp curves, leading to there being a maximum of five steady states
(see NumericalAbley2(b)–(d)). Through these changes though, the number of
heteroclinic solutions that occur does not change.

Further increasing the � value destroys two heteroclinic solution branches
through the first butterfly catastrophe (see NumericalAbley2(d) and (e)), as ex-
plained in comut. NumericalAbley2(f) shows the situation after the second but-
terfly catastrophe takes place; it is clear that two further heteroclinic branches
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Figure 7: Bifurcation diagram of (3.11) showing the transition of homogeneous
steady states as we vary the three parameter E, S and �, with fixed ⌘ = 2,
µ = 0.05, ⇢ = 0.06, ↵ = 0.005.

have been destroyed.
Finally, we are left with a thin region bounded by a pair of fold curves that

meet at cusps and contain a single heteroclinic connection NumericalAbley2(f).
We find that for � ⇡ 0.1122 these two cusps annihilate each-other and there are
no heteroclinic solutions at all for higher �-values.

5 Polarity formation: solution to the initial-value

problem

Note that E and S are not invariants of the PDE system, instead they can be
consider as constants that parameterise di↵erent families of steady-state solu-
tions. However, for a given domain size 2`, each di↵erent value of E and S along
a family of heteroclinic or homogeneous solutions will typically have di↵erent
value of AT and BT , which are invariants of the full time-dependent PDEs. On
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such a finite domain, translation of a heteroclinic solution in space will typically
lead to di↵erent values of AT and BT . Thus we can ask the question for a given
value of AT and BT , is there a unique steady state that the solution evolves
to, or is the final obtained state a sensitive function of the initial data? This
solution would then represent the wave-pinned final state of the system for the
given initial values of AT and BT .

All results presented here are for the fixed domain size ` = 100 and for the
same parameter values as in Hetesolution. We have also performed simulations
with both smaller and larger domain sizes. In each case the results are found
to be qualitatively the same as presented below in polaryFig, but the overall
values of AT and BT vary with domain size. Remarkably, we have found no
evidence of multi-stability. That is, for each choice of values of AT and BT , for
a given set of system parameters there appears to be a unique final steady state
that is reached by the initial-value problem, irrespective of what initial data we
take.

We simulate the full PDE system (2.2) at a fixed set of ⌘, µ, ⇢,↵ and �. All
simulations were carried out in Matlab. For all initial conditions, we find that
the dynamics always settles to steady state. Note that the S and E values
of the final steady state are emergent properties that are found to be always
a unique function of the values of AT and BT , for every initial run we tried.
atbt summarises the results for the same parameter values in Hetesolution. In
each coloured region we run multiple simulation from pseudo random initial
conditions containing Heaviside-style jumps. In each case the simulations re-
vealed qualitatively the same behaviour in each coloured region. We obtain the
boundaries between the coloured regions by choosing the values of E and S to
lie on the appropriate coloured curves in Hetesolution to represent the partic-
ular heteroclinic connection in (2.6). Then we shift the solution phase, that is
the location in x of the heteroclinic jump, from the rightmost (x = `) to the
leftmost (x = �`) point in the domain.

The simulation results for the parameter set in Hetesolution reveal eight
distinct regions, see polaryFig. The white regions represent the un-polarised
area in which homogeneous steady states are obtained (see the solution profile
(h)). The yellow and cyan regions are associated with the heteroclinic connec-
tion that has large di↵erences between the polarised and depolarised A

⇤, and
more negligible di↵erences between the polarised and depolarised B

⇤. The two
regions di↵er in their overall concentration of B⇤. In the yellow region, B⇤ is
always in large excess of inactive B and close to the polarised amount of A⇤.
Whereas in the cyan region, the overall concentration of B⇤ is much lower and
commensurate with the depolarised amount of A⇤ (see the solution profiles (a)
and (c) in atbt). In contrast, the green and the orange regions show heteroclinic
orbits that have a larger di↵erence between the polarised and depolarised B

⇤,
and smaller di↵erence between the polarised and depolarised A

⇤. In the green
region, the value of A⇤ is nearby the polarised amount of the B

⇤ and far from
the inactive A. In contrast, in the orange region A

⇤ is closer to the depolarised
amount of B⇤ (see the solution profiles (b) and (d) in atbt). The pink region
corresponds to an intermediate polarity solution where A⇤ and B

⇤ have the same
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Figure 8: Summary in the (AT , BT )-space of initial conditions of the di↵erent
form of steady state solutions reached via solution of the initial value problem
for the model (2.6), with parameter values as in Hetesolution and domain length
` = 100. Here, white regions correspond to where homogeneous steady states
are reached, and each di↵erent color shading represents a di↵erent qualitative
type of wave-pinned state. To illustrate the di↵erent forms of wave-pinning,
labeled points (a)–(h) indicate the parameter of the corresponding panel in atbt
in which the solution profile is given. Zooms showing the morphology of the
solution profiles within the cyan and brown regions are given in zoomcyan and
zoomGregion.

height but di↵erent directions (see the solution profile (e) in atbt). Finally, the
brown and the grey regions are related to a particular polarity state that joins
the dominant polarity state to the intermediate state. The di↵erence between
the two regions is that, for the solution in the brown region, the intermediate
state has high concentration, whereas in the grey region the intermediate state
has low concentration (see the solution profiles (f) and (j) in atbt).

In zoomcyan, we zoom in on the cyan region in polaryFig to show that there
is a distinct polarised solution, with di↵erent phase shifts representing di↵erent
values of E and S along the red curve labelled C in Hetesolution. Specifically,
the profiles (a), (b) and (c) shown in zoomcyan represent solutions for varying
values of E and S along the red curve in Hetesolution, while the profiles (b),
(d), and (e) exhibit solutions for the similar values of E and S but with various
phase shifts. In zoomGregion we zoom in on the brown region of polaryFig, to
demonstrate that the behaviours we obtain in zoomcyan are representative of
all the regions presented in polaryFig. The solutions in the brown region have
the same value of E and S represented by an asterisk in Figure 1. Now, to

24



Figure 9: Example of the stable polarized steady state from each di↵erent region
in polaryFig.

shift to a di↵erent solution within this region, we can vary two distinct phase
shifts representing the two heteroclinic connections making up the profile at this
special point in the (E,S)-plane.

6 Other Models

So far we have only considered results for model II. We have performed the same
analysis for each of models I-IV, whose kinetic functional forms were given in
(2.5)-(2.8). The analysis in each case is similar, and we shall omit most of the
details for simplicity. In some cases, the bifurcation diagrams are considerably
simpler, owing to there being fewer possible homogeneous equilibria. Thus, the
analysis we have so far found is representative of the most complex results that
we have so far found in systems of this type. We restrict our result in this
section just to presentation of the analogous final results for models I,III and
IV.

abley exhibits the bifurcation diagram for Model I, with kinetics (2.6). The
black curve shows the pairwise annihilation among the steady states, and the
green curve denotes the symmetric line of the system with E = S. This system
has only one type of heteroclinic solution which is on the symmetry line where
E = S. This is the intermediate polarised state as in atbt E. Furthermore, this
heteroclinic solution is destroyed at a single cusp bifurcation.

RacRoH displays the bifurcation diagram for Model IV, which captures mu-
tual inhibition (2.8). In general, the bifurcation diagram is similar to Model II,
except that there is a rather simpler termination of heteroclinic solutions at two
cusp bifurcations.
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Figure 10: Zoom in the cyan region in polaryFig, showing the morphology of
the wave-pinned steady state within the region.

jucy expresses the bifurcation diagram for model III, (2.7). The bifurcation
diagram is qualitatively analogous to Hetesolution.

To conclude this section, we provide another numerical example to support
the observations that for each value of E and S in SEbifurcation, thereisadistinctpolarisedsolutionwithdifferentphaseshifts.WeconsiderModelIII, (2.8), asasecondexample.RhoRacMdisplaysthepolarityregionforallvaluesofEandSinRacRoH.Also, thefigureshowsexamplesofpolarisedsolutionsthatareselectedfromdifferentpartsofthepolarityregion.ItisworthnotingthattheseresultsagreewiththosepresentedbyHolmesetal .

1001[18].

7 Conclusion

This paper has provided a framework for understanding how asymmetric mor-
phologies arise within simple four-species activator-inhibitor models of the form
(2.2), representing the inactive and active forms of two G-proteins. We give
some answers to why certain heteroclinic connections exist in certain parts of
parameters space. The key property of the model that makes this analysis pos-
sible is that the overall concentration of each protein-type (A+A

⇤ and B+B
⇤)

is conserved. This conservation principle leads to two special properties of the
dynamics. First, the steady-state system is degenerate, and can be written in
the form (2.10) in which E and S are first integrals that, owing to the Neumann
boundary conditions, are constant in space for steady-state solutions. Second,
for the initial-value problem, the initial amounts of A-species and B-species pa-
rameterise which steady state or heteroclinic connection the dynamics relaxes
to, and where, within a fixed computational domain, the sharp “wave-pinned”
transition should settle. The results we have obtained confirm the experimental
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Figure 11: Zoom in the brown region in polaryFig, showing the morphology of
the wave-pinned steady state within the region .

(a) (b)
(c)

Figure 12: Bifurcation diagram in the (E,S)-plane of the models (2.5) , (2.8)
and (2.7), respectively. (a) Parameter values: ↵ = 0.005, � = 0.03, ⌘ = 0.119,
µ = 0.05 and ⇢ = 0.06. (b) Parameter values: ↵ = 0.66, b = 0.1, d = 1 and
� = 0.5. (c) Parameter values: ↵ = 80, � = 0.12, ca = 20, � = 0.08, ⌘ = 1,
µ = 0.5 and ⇢ = 0.2.
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(10.4985, 10.4985)

Figure 13: The equivalent of polaryFig and atbt but for the system (2.8) which
has simpler behavior. Parameter values ↵ = 0.66, b = 0.1, d = 1 and � = 0.5,
with domain length ` = 100.

results in [1, 16] and some of the numerical observations in [18, 19,25,45].
An interesting feature of the results is that the nature of the nonlinearity

does not seem particularly crucial. Most of the results have been presented
for what we call Model II, an adaptation to that derived by Abley et al. [1].
Nevertheless we have shown in Sec. 6 how di↵erent kinetic terms considered
in the literature lead to similar results, albeit with some models having less
multiplicity of homogeneous and steady-state patterns within the regions of
parameter space considered. Another interesting feature is that much of the
behaviour found is dependent on there being a small di↵usion ration between
the activator and inhibitor species, a relation that might make a mathematical
biologist think of Turing instability, but which is not observed in these species-
conserving models (although, see the discussion in [11] for connections between
di↵erent forms of pattern-formation instability mechanisms when viewed within
a larger parameter space).

It should be stressed that the analysis in this paper represents only a first step
to understand how wave-pinning theory may explain polarity formation observed
in biology Buttenschön et al have recently considered several extensions of the
simple 1D models of the form (1.1) or (2.2) to include mechanical feedback from
the active G-proteins dynamics to cell shape and motion, see [7, 8]. There they
explain how the fronts of active G-proteins allow for di↵erential growth, leading
to polarity formation that can account for the motion of animal cells. Inspired
instead by the case of plant cells, an extension to models of the form (1.1) was
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considered in [39,40], where small source and loss terms were added to both the
active and inactive forms. Such perturbations break the conservation law and,
in an appropriate region of parameter space, lead to localised patterns rather
than fronts (homoclinic rather than heteroclinic orbits). Lui et al [23] showed
that this model on a 2D domain is capable of reproducing spot-like patterns, a
conclusion which is echoed by Breña-Medina et al. [6]. for a model of auxin-
mediated G-protein dynamics in root-hair cells.

Future work [2] shall consider what happens to the patterns formed by mod-
els of the form (1.1) with two or more ROP species, under the addition of small
source and loss terms. The key mathematical question is to try to understand,
as was the case in [39], how open parameter regions of heteroclinic front-like
motions transform into homoclinic connections. This may shed light on how, in
the context of plant biology, localised lobes and indentations may form in the
so-called jigsaw-instability of leaf pavement cells [9].

Other ongoing work will consider more realistic models of G-protein dynam-
ics where active components are bound to the cell membrane, which naturally
leads to bulk-surface partial di↵erential systems as in [24, 29]. There are many
further aspects to cell polarity for which mathematical models can shed light,
notably the downstream implications of the G-protein pattern. For example,
the work of Dawes and collaborators, e.g. [35,41] considers mathematical mod-
els for the e↵ects of G-protein patterns on patterns of PAR proteins and on
microtubule networks, which are thought to be responsible for delivering the
proteins necessary for di↵erential growth.

A key role here has been played by a novel application of classical catastro-
phe theory to vector fields. The details of that theory will appear elsewhere [20].
This has enabled us to classify and explain the di↵erent bifurcations in homoge-
neous steady-states and their heteroclinic connections that can occur for spatial
dynamical systems of the form (2.10), in which either system parameters or first
integrals S and E are varied. There are likely other problems in pattern forma-
tion theory in the presence of conserved quantities that may benefit from this
approach. See for example the work of Holl et al. [17] on models for phase-field
crystals.
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