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1. Introduction

Piecewise smooth systems – systems for which the dynamics is defined by different

smooth dynamical systems in different parts of the phase space – arise naturally in the

study of models of mechanics with collisions, control theory and computer science, where

they are examples of more general hybrid systems, and biology, where gene switches and

neuronal firing thresholds can be modeled as piecewise smooth functions [4].

One approach to the study of piecewise smooth systems is to consider continuous

approximations to these systems. This is often called regularization. There are at

least two motivations for regularization. First, there is a very rich theory of smooth

dynamical systems which can be applied to smooth approximations. Even in the case

of continuous approximations, results such as Sharkovskii’s Theorem hold (see section 3

and [7, 21]). Second, some piecewise smooth models, for example those involving many

neurons with thresholds, can have a very large number of different piecewise smooth
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components, and it may be numerically easier to study the dynamics based on a single

smooth function rather than determine which of the many components the solution is in

at each time step. There may also be drawbacks: the dynamics of the regularization may

have features that the underlying system does not have (e.g. stable periodic orbits), and

typical families of smooth systems can have very different properties to their piecewise

smooth counterparts (e.g. robust chaos [3, 9, 29]).

For flows it is possible to ‘blow up’ the region between the different smooth

components of a piecewise smooth system in a way that respects the dynamics on

either side of the discontinuity surface dividing the different regions on which smooth

dynamics is defined [15]. This generalizes Filippov’s ideas [8] and leads to ‘hidden

dynamics’ in the blow-up regions. The dynamics defined in this way is not unique, and

this lack of uniqueness can be used to refine the modelling process [15]. In continuous

time only the discontinuity threshold itself is blown up, not its pre-images in the flow

as we do in the discrete time case below. An alternative is to smooth the system by

introducing a continuous transition function across the discontinuity, as in Sotomayor-

Teixeira regularisation [28, 30], or as in practical (e.g. electronic) models via a saturation

curve [27]. While there is no one unique way to regularize a discontinuity, in [23] it was

shown that in most cases of interest at least, blow-up and smoothing yield equivalent

regularized systems, and ‘hidden terms’ can be used to capture the difference between

alternative regularisations [23, 15]. Whether regularizing by smoothing or blow-up, the

methods of blow-up are inevitably used eventually in studies like these to resolve the

singular perturbation problems that result (due to the small parameter controlling the

blow-up or smoothing), so blow-up methods for such systems are essential, and they

continue to be been used to resolve the key singularities in continuous time system (e.g.

[5, 11, 14, 19, 20]).

Piecewise smooth maps, dynamical systems in discrete time, are equally important

and theoretical results can be found in [1, 10, 12] with applications in [2, 17]. In these

discrete time systems, while studies have been made which smooth a discontinuity (e.g.

[24]), there has been less systematic study of regularization, particularly using blow-up

methods.

In this paper we define a hidden dynamics approach to piecewise smooth one-

dimensional maps. It turns out that in order to define a consistent blow-up method

which yields continuous maps, it is necessary not just to blow up the discontinuity

surface, but all its preimages. This leads to a construction very similar to the classic

approach to the Denjoy counterexample in circle maps [7], with hidden dynamics defined

on these blown up intervals. If the extension of the maps to these intervals is as simple

as possible we show that some properties of the hidden dynamics are independent of

the details of the maps used to regularize the system. This shows that there is a level of

robustness in the resulting continuous hidden dynamics. Moreover, in these examples all

the new dynamics required to be compatible with a continuous model of the piecewise

continuous map are restricted to the blown up intervals – these act as a sort of boundary

layer containing the hidden dynamics in a well-controlled manner.
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We begin with two key classes of piecewise smooth maps: degree one circle maps

(section 2) and maps of the interval with a single point discontinuity (section 3). In both

cases we define a class of continuous model equations and describe how the dynamics of

simple examples (minimal models) have common properties, emphasising the systematic

nature of the construction. These sections provide the main results of the paper. Two

illustrative examples are given in sections 4 and 5. The results of section two are

essentially a reworking of classic results on maps of the circle (see e.g. [7, 22, 25]) and

we use these to introduce the ideas and notation used in later sections. The results of

sections three onwards and the context in which they are derived are new, although the

techniques used have a long history [6].

2. Circle maps

Degree one maps of the circle can be defined by their lifts, F : R → R where

F (x + 1) = F (x) + 1 and the circle map is obtained by taking F modulo unity, or

more accurately by defining f(e2πix) = e2πiF (x). We will consider the case when F is

strictly increasing and F is continuous except at c ∈ [0, 1) (and hence at c + m for all

m ∈ Z) which is a point of discontinuity. With the notation

lim
y↑x

F (y) = F (x−), lim
y↓x

F (y) = F (x+),

this implies that F (c−) < F (c+). These were one of the first classes of piecewise

smooth maps to be considered and important results are due to Keener [18] and Rhodes

and Thompson [25, 26]. Our approach here is different, evoking more the techniques

developed to describe the Denjoy counterexample [6, 7, 21] and expanding Lorenz maps

[13]. In this approach the circle is mapped to another circle where the image of one

set of points is a set of intervals (the blow-ups), but the dynamics away from these

intervals is precisely the dynamics inherited from the original map. We are able to use

this construction to create a hidden dynamics on these blown up intervals in such a way

that the resulting map is continuous. Although the context and interpretation is new,

the results of this section can be found in, for example, [22, 25].

Let f : T1 → T1 denote the discontinuous map of the circle with lift F having the

properties described above, and (with a slight abuse of notation) let c ∈ T1 denote the

point of discontinuity. By a rotation of coordinates we may choose c ∈ (0, 1) without

loss of generality. Let

cn = {x | fn(x) = c, n > 0, fk(x) 6= c, 0 ≤ k < n}, (1)

and note that since F is strictly increasing cn is either a singleton or empty, and if cm
is empty then ck is empty for all k > m. Let N (possibly ∞) denote the number of

non-trivial points cn, with c0 = c, and let `n, n = 0, . . . , N , be a sequence of strictly

positive numbers such that

N∑
0

`n = L <∞. (2)
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Figure 1. Schematic view of a circle map f(x) = F (x) mod 1 and an associated

hidden dynamics model g(x) = G(x) mod 1.

We aim to ‘open up’ a small neighbourhood around c and each point cn to define the

lift G of a continuous circle map as shown schematically in Figure 1. This countable set

of blown up intervals have lengths (`n/(1 + L)). By multiplying each of the `n by ε the

total length εL goes to zero as ε → 0 and the system ‘tends’ to the original piecewise

smooth system.

Let

p(x) =
∑

0≤cn<x

`n, P (x) =
∑

0≤cn≤x

`n, (3)

and

α(x) =
1

1 + L
(x+ p(x)), β(x) =

1

1 + L
(x+ P (x)), (4)

with p(0) = 0. Extend p and P to functions of R using p(x+m) = mL+p(x) for m ∈ Z
and similarly for P , so α(x+ 1) = α(x) + 1. Now define In = [αn, βn] where αn = α(cn)

and βn = β(cn), so

βn = αn +
`n

1 + L
.
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Note that the intervals In occur in the same order as the points cn in the interval [0, 1)

and that they are disjoint. If x is not equal to cn for some n we define our modified

function G(x) for x ∈ [0, 1) by

G(α(x)) = α(F (x)) =
1

1 + L
(F (x) + p(F (x))). (5)

Define G on In by

G(y) = hn(y), (6)

where hn : In → R is a continuous function satisfying the continuity conditions

hn(αn) = αn−1 and hn(βn) = βn−1 where we have extended the definition at the index

n = 0 using α−1 = F (c−) and β−1 = F (c+).

This defines the map G on the interval [0, 1) and this can be extended to a map of

the real line by defining G(x+ 1) = G(x) + 1.

Lemma 1 Let F be the lift of a degree one circle map and suppose that F is strictly

increasing and has a single discontinuity in [0, 1). Let G and N be as defined above. If

N <∞ then G : R→ R is the lift of a continuous degree one circle map g and there is

a continuous monotonic map H : R→ R with H(x+ 1) = H(x) + 1 such that

H(G(y)) = F (H(y)), y /∈ I0. (7)

If N ≤ ∞ and hk, k = 0, . . . , N , are homeomorphisms then g is a continuous, monotonic

degree one circle map.

Proof: As noted earlier we may assume that 0 is not a preimage of c, so

G(0) = α(F (0)) and

lim
y↑1

G(y) = α(F (1)) = α(F (0) + 1) = α(F (0)) + 1 = G(0) + 1,

i.e. G is continuous at 1 and hence at all integers. The definitions of G in (5) involves

G(y) with y = α(x). To invert this relation, and to extend it to y ∈ In, define H on

[0, 1) by

H([α(x), β(x)]) = x, (8)

and extend H to a function of R using H(x+ 1) = H(x) + 1. It is not hard to see that

H is continuous and monotonic (cf. [22] section 15B).

If N < ∞ then the number of intervals In in [0, 1] is finite and by interpolating

between the boundary values at αn and βn, G has the required properties by a similar

but simpler argument to the case N =∞ described below.

To prove G is continuous if N =∞ and the hk, k = 0, 1, 2, . . ., are homeomorphisms,

first note that if y ∈ int(In) then G is continuous by the definition of hn. If y /∈ int(In)

then either y = αn, or y = βn, or y /∈ In. We will prove that G is left continuous at y

in these cases and then that it is right continuous, hence that it is continuous.

If y = βn for some n then G is left continuous at y since hn is continuous on In.

Now suppose that y = αn for some n or y /∈ In. Fix ε > 0. We need a couple of

preliminaries.
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(i) By (2), for all r > 0 there exists M(r) > 0 such that

1

1 + L

∞∑
M(r)

`n < r. (9)

Moreover, for all y ∈ (0, 1) with x = H(y) there exist positive constants δ1, δ2 and δ3
depending on y such that

(ii) if 0 < x−x1 < δ1 then 0 < F (x−)−F (x1) <
1
2
ε(1 +L), from the monotonicity and

continuity of the branches of F ;

(iii) if 0 < x − x1 < δ2 and cn ∈ [x1, x) then n > M(1
2
ε) + 1, since the cn with

n < M(1
2
ε) + 1 form a finite set; and

(iv) if 0 < y− y1 < δ3 then 0 < H(y)−H(y1) < min(δ1, δ2), from the monotonicity and

continuity of H.

So if 0 < y − y1 < δ3 then

0 ≤ G(y)−G(y1)

≤ 1
1+L

(F (H(y))− F (H(y1)) + (p(F (H(y)))− p(F (H(y1)))))

and by (ii) and (iv), 0 < 1
1+L

(F (H(y)) − F (H(y1))) < 1
2
ε, and by (i)-(iv) 0 ≤

1
1+L

(p(F (H(y)))− p(F (H(y1)))) <
1
2
ε. Hence 0 ≤ G(y)−G(y1) < ε.

Hence G is left continuous at y. Since G(y)−G(y1) ≥ 0 g is increasing from below.

The proof thatG is right continuous and increasing from above is entirely analogous.

Equation (7) and the properties of g now follow immediately from the definition of

H and G, and only the proof of (7) for the case y /∈ In will be given here.

Working on the interval [0, 1), if y /∈ In then there exists x which is not a preimage

of the discontinuities such that y = α(x) = β(x), i.e. H(y) = x. Moreover F (x) is also

not a preimage of the discontinuities. By (5), G(α(x)) = α(F (x)). So

H(G(y)) = H(G(α(x))) = H(α(F (x))) = F (x),

using (8) and the fact that F (x) is not a preimage of the dicontinuities and so

α(F (x)) = β(F (x)).

�
Note that if N = ∞ and the hk are not homeomorphisms then G need not be

continuous. For example, choose hk such that for all k, hk(u) = 1 for some u ∈ int(Ik).

Consider y = αn with G(αn) 6= 1 and such that cn is an accumulation point of (ck).

Then there is an infinite sequence uk → y such that G(uk) = 1, but G(y) 6= 1.

The next result follows from the classic theorem of Poincaré for the existence of

rotation numbers,

ρ(G) = lim
n→∞

1

n
(Gn(x)− x)

for lifts of continuous, increasing degree one circle maps [7].

Theorem 2 If F and G are defined as above and the (hn) are homeomorphisms then

the rotation number of the corresponding circle map g exists and is independent of (hn).
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Proof: First note that if the maps (hn) are homeomorphisms then αn < βn implies

that G is strictly increasing and continuous and hence has a well-defined rotation

number. By construction, ∪N0 In 6= [0, 1) and so if there is a point x ∈ [0, 1) such that

the corresponding circle map gn(x) never falls into one of these intervals the rotation

number obtained using this point is independent of the choice of homeomorphisms

(hn) as required. If not, g(I0) ∩ In 6= ∅ for some n, in which case by construction

cn ∈ [F (c−), F (c+)] (or one of its translates) and so In ⊆ g(I0) for all choices of the

homeomorphism h0. Hence I0 ⊆ gn+1(I0) for every choice of the homeomorphisms (hn)

and the order of the points is the same, so every map g has the same (rational) rotation

number.

�
Rhodes and Thompson [26] prove results about the continuity of the rotation

number for continuous (appropriately defined) families of discontinuous maps of the

circle which could also be approached using our techniques, but we will not develop this

extension here.

3. Maps of the interval with a single discontinuity

The same idea can be used for piecewise smooth maps of the interval with a single

discontinuity and which are monotonic on each continuous branch. Here there is

an added complication because the continuous branches may be either increasing or

decreasing, whereas in the circle map case both are increasing.

Definition 1 A monotonic single discontinuity map (MSDM) is a map f : [0, 1]→ [0, 1]

with discontinuity c ∈ (0, 1) such that

f(x) =

{
f0(x) if 0 ≤ x < c

f1(x) if c < x ≤ 1,

where f0 and f1 are continuous monotonic functions and f0(c) 6= f1(c).

Let

Cn = {x | fn(x) = c, fk(x) 6= c, 0 ≤ k < n}.

Note that if Cn is non-empty then Cn = {cn,1, . . . , cn,rn} with rn ≤ 2n. Define N such

that Cn is non-empty if n ≤ N ≤ ∞. To include the discontinuity itself let c = c0,1.

Define as before lengths `n,r chosen so that

N∑
n=0

rn∑
1

`n,r = L <∞.

Given x, let

d(x) = {(n, r) | cn,r < x}, D(x) = {(n, r) | cn,r ≤ x},

with

(1 + L)a(x) = x+
∑

(n,r)∈d(x)

`n,r, (1 + L)b(x) = x+
∑

(n,r)∈D(x)

`n,r.
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If n ≥ 0 let In,r = [an,r, bn,r] where an,r = a(cn,r) and

bn,r = b(cn,r) = an,r +
`n,r

1 + L
.

By definition f(cn,r) = cn−1,r′ if n > 0, some r′ ∈ {1, . . . , rn−1}. Now define maps

hn,r : In,r → R such that end-points map to the end points of In−1,r′ in a way which

ensures continuity: hn,r(an,r) = an−1,r′ and hn,r(bn,r) = bn−1,r′ if either cn,r < c and f0 is

increasing or cn,r > c and f1 is increasing, and hn,r(an,r) = bn−1,r′ and hn,r(bn,r) = an−1,r′

if either cn,r < c and f0 is decreasing or cn,r > c and f1 is decreasing.

Finally, we need to define the map hn,0 for x ∈ I0,1. This is more complicated than

in the circle map case because the conditions for continuity and spanning the appropriate

union of In,r do not coincide. Define U1 and U2 with U1 < U2 by

U1 =

{
a(f0(c)) if f0(c) < f1(c)

a(f1(c)) if f0(c) > f1(c)
, (10)

and

U2 =

{
b(f0(c)) if f0(c) > f1(c)

b(f1(c)) if f0(c) < f1(c)
. (11)

Let h0,1 : I0,1 → R be a map which sends the end points of I0,1 to a(f0(c)) and b(f1(c))

preserving continuity, i.e. h0,1(a(c0,1)) = a(f0(c)) and h0,1(b(c0,1)) = b(f1(c)), and which

also maps two points u1, u2 ∈ I0,1 to U1 and U2 so that h0,1(ui) = Ui, i = 1, 2.

We are now in a position to define the hidden dynamics maps associated with f .

Theorem 3 Let f be a MSDM and define g : [0, 1]→ [0, 1] by

g(y) =

{
a(f(x)) if y = a(x), x 6= cn,r,

hn,r(y) if y ∈ In,r.
(12)

If the maps (hn,r) are homeomorphisms for n ≥ 1 then g is a continuous map of

the interval and there exists a monotonic surjection h : [0, 1] → [0, 1] such that

h(g(y)) = f(h(y)) if y /∈ I0,1.

The proof follows the proof of Lemma 1 closely and is omitted. The condition on

the (ui) is to ensure that if an end-point a(c) or b(c) maps to an end-point of one of

the sets In,r under hn,r, then the whole of that set In,r is contained in the image of I0,1
under h0,1. This is automatic if left end-points are mapped to left end-points and vice

versa (i.e. if U1 = a(f0(c)) and U2 = b(f1(c)) as in the circle map case), but is an extra

condition in general. The examples of sections 4 and 5 provide further explanation for

this complication.

Definition 2 If the maps (hn,r) are homeomorphisms for n ≥ 1 and the map h0,1 :

I0,1 → [U1, U2] is a surjection with the fewest possible number of critical points consistent

with its definition then we will say that the resulting map g is a minimal model of f .
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Note that minimal models are not unique: the lengths `n,r, the maps hn,r and the points

u1 and u2 can all be varied. However, we will show the minimal models of a given map

share some important properties.

A kneading invariant can be associated with a map consisting of a finite number

of monotonic continuous branches. For continuous maps the kneading invariant is

effectively the symbolic description of the dynamics of each critical (turning) point,

i.e. it describes the sequence of monotonic branches that the orbit passes through, see

[21] for details. Two continuous maps of the interval with the same kneading invariants

have effectively the same dynamics up to issues such as the stability of periodic orbits,

the existence of homtervals and the existence of some period-doubled orbits [21], p. 103.

Note that the minimal maps g defined above are bimodal (two turning points) if f0 and

f1 have the same orientation, whilst they are unimodal if the two branches have different

orientations.

Theorem 4 Let f be a MSDM and suppose that g1 and g2 are two minimal models of

f . Then g1 and g2 have the same kneading invariants.

Proof:

Case (i): f0 is increasing and f1 is decreasing (the case f0 decreasing and f1
increasing is equivalent after reversing the direction of x, i.e. x→ 1− x).

If f0(c) > f1(c) then from (10) and (11), U1 = a(f1(c)) and U2 = b(f0(c)). If

a(f0(c)) = b(f0(c)), i.e. if f0(c) is not a preimage of c, then I0,1 = [a(c), b(c)] = [u2, u1]

and the minimal h0,1 is a continuous strictly decreasing surjection and g is a unimodal

map with critical point a(c). Since f0(c) is not a preimage of c, gn(a(c)) does not fall in

any of the blown up intervals and the combinatorial position of the iterates is the same

regardless of the choice of minimal h0,1.

If f0(c) is a preimage of c then g(a(c)) 6= U2 and we choose u2 ∈ (a(c), b(c)) and

define g(u2) = U2 with h0,1 increasing on (a(c), u2) and decreasing on (u2, b(c)) so g has

a critical point at u2 and g(a(c)) = a(f0(c)). Now, g(u2) is the right hand end point of

In,r for some (n, r) and so gn+1(u2) is an end-point of I0,1. By assumption g(a(c)) is the

left end point of In,r and so if gn+1(u2) = a(c) then the orbit of u2 is eventually periodic

with an order determined by the orbit of the relevant In,r, which is independent of the

choice of minimal map.

If gn+1(u2) = b(c) then either b(c) is also an end point of a set Im,s and we can

argue similarly, or it is not, in which case the order is determined by the iterates of f1(c)

which is not a preimage of c. In either case the order of the points in the orbit of u2 are

determined independent of the choice of minimal map.

If f0(c) < f1(c) then U1 = a(f0(c)) and U2 = b(f1(c)). The argument is now as

before: the case in which f1(c) is not a preimage of c is easy as a(f1(c)) = b(f1(c)), whilst

otherwise we can choose u2 ∈ (a(c), b(c)) and define g(u2) = U2 with h0,1 increasing on

(a(c), u2) and decreasing on (u2, b(c)) and g(b(c)) = a(g1(c)). Then g is a unimodal map

with critical point at u2. The argument is now similar to the argument above.
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Case (ii): If f0 and f1 are increasing, then for non-trivial dynamics f0(c) > f1(c)

and h0,1 is decreasing on I0,1. The maps g hence have two critical points, the smaller,

a(c), being a maximum and the larger, b(c), a minimum. There is a pair of critical orbits,

but the arguments of the first case still hold to show that the kneading invariants are

independent of the choice of homeomorphisms (hn,r).

Case (iv): If f0 and f1 are decreasing, then for non-trivial dynamics f0(c) < f1(c)

and h0,1 is increasing on I0,1. The maps g hence have two critical points, the smaller

being a minimum and the larger a maximum. As in the previous case there is a pair of

critical orbits, but the arguments of the first case still hold to show that the kneading

invariants are independent of the choice of the maps (hn,r).

�
Recall that the Sharkovskii order of the positive integers is

1 ≺ 2 ≺ 22 ≺ . . . 2n ≺ . . .

. . . 2k+1.9 ≺ 2k+1.7 ≺ 2k+1.5 ≺ 2k+1.3 ≺ . . .

. . . 2k.9 ≺ 2k.7 ≺ 2k.5 ≺ 2k.3 ≺ . . .

. . . 9 ≺ 7 ≺ 5 ≺ 3.

Sharkovskii’s Theorem states that if f is a continuous map and f has an orbit of period

q then it has an orbit of period p for all p ≺ q in the Sharkovskii order [21].

Corollary 5 If f is a MSDM with minimal model g, then either the set of periods of g

is a finite set {1, 2, 4, . . . 2m} and for every minimal model of f , m is either k or k + 1

for some k ≥ 0, or every minimal model g has the same set of periods.

Proof: Since g is continuous Sharkovskii’s Theorem holds for g. The set of periods

that exist for the maps g are determined by their kneading invariants. Note that in the

one case of ambiguity for the kneading invariant, where the (smooth) map may have an

attractor of period p or 2p for some p. Then if the attractor has period 2p then it is an

orbit obtained by period-doubling of an orbit of period p which also exists for the map.

If p is not a power of two then 2p is to the left of p in the Sharkovskii order and a (non

period-doubled) orbit of period 2p exists, otherwise the kneading invariant defines the

set of periods up to the ambiguity noted before.

�

4. Example: Lorenz maps

Consider the map f : [0, 1]→ [0, 1] defined by

f(x) =

{
x+ 1

2
if 0 ≤ x < 1

2

x− 1
2

if 1
2
< x ≤ 1,

(13)

with the value of f(x) at x = 1
2

left ambiguous. This can be seen as a continuous circle

map with rotation number 1
2

by taking f(1
2
) = 0 and restricting to [0, 1), but as a Lorenz

map (an MSDM with c = 1
2
, f0(x) = c+ 1

2
and f1(x) = x− 1

2
) it has trivial dynamics:
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Figure 2. Schematic diagrams of (a) the Lorenz map f defined by (13); and (b) an

associated minimal map with intervals labelled as in (15).

all points apart from C = {0, 1
2
, 1} are periodic with period two, and the fate of this set

depends on how the value of the map at the discontinuity is assigned.

To construct a minimal model, note that the discontinuity is at c = 1
2
; this has two

preimages: c1,1 = 0 and c1,2 = 1, and these points have no further preimages apart from

possibility of the discontinuity itself, which is not included by definition. The original

map and the minimal map constructed below are shown in Figure 2 which makes the

images derived below clearer from a geometric point of view.

We start by blowing up these intervals. To emphasise that there is no need for

symmetry in this process we will choose

`0,1 = 1
2
, `1,1 = 1

6
, `1,2 = 1

3
,

so L = 1, the scaling factor 1+L = 2 and so we expect I0,1 to have length 1
4
, I1,1 to have

length 1
12

and I1,2 to have length 1
6
. These are chosen to make the calculations simple,

but there are infinitely many other choices which would create a consistent minimal

model. Moreover, f0(c) = 1 > f1(c) = 0 so

a(f0(c)) = 1
2
(1 + 1

6
+ 1

2
) = 5

6
, b(f0(c)) = 1,

a(f1(c)) = 0, b(f1(c)) = 1
2
(0 + 1

6
) = 1

12
.

Since f0(c) > f1(c), U1 = 0 and U2 = 1.

Now from (12), if 0 < x < 1
2

then y = a(x) = 1
2
(x + 1

6
) (as only c1,1 is to the left

of x) and g(y) = 1
2

(
(x+ 1

2
) + `0,1 + `1,1

)
as x + 1

2
> 1

2
. Hence x = 2y − 1

6
and x > 0

implies that y > 1
12

, x < 1
2

implies that y < 1
3

and so

g(y) = 1
2
(2y − 1

6
+ 7

6
) = y + 1

2
, if 1

12
< y < 1

3
.

Similarly, if 1
2
< x < 1 then y = a(x) = 1

2
(x+ 2

3
) and g(y) = 1

2
(x− 1

2
+ 1

6
) so

g(y) = y − 1
2
, if 7

12
< y < 5

6
.
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For continuity at the boundaries we will need the values of g at the ends of the intervals

on which it is defined here, i.e.

g( 1
12

) = 7
12
, g(1

3
) = 5

6
, g( 7

12
) = 1

12
, g(5

6
) = 1

3
.

Thus the intervals ( 1
12
, 1
3
) and ( 7

12
, 5
6
) are permuted by the map. Now

I1,1 = [0, 1
12

], I0,1 = [1
3
, 7
12

], I1,2 = [5
6
, 1],

and so h1,k k = 1, 2 may be chosen to be an affine map from I1,k to I0,1. The final

map used to define g is h0,1 : [1
3
, 7
12

] → [0, 1] which satisfies the continuity conditions

h0,1(
1
3
) = 5

6
and h0,1(

7
12

) = 1
12

and which, to be a minimal model must have a minimum

value of 0 at u1 and a maximum of 1 at u2; for the smallest possible number of turning

points u2 < u1 and so we will choose

u2 = 5
12
, u1 = 1

2
.

Putting these together with a piecewise linear map we obtain g : [0, 1] → [0, 1] defined

by

g(y) =



3y + 1
3

if 0 ≤ y ≤ 1
12

y + 1
2

if 1
12
≤ y ≤ 1

3

2y + 1
6

if 1
3
≤ y ≤ 5

12

−12y + 6 if 5
12
≤ y ≤ 1

2

y − 1
2

if 1
2
≤ y ≤ 7

12

y − 1
2

if 7
12
≤ y ≤ 5

6

3
2
y − 11

12
if 5

6
≤ y ≤ 1 .

(14)

The two occurrences of y − 1
2

are included to emphasise that in one case the definition

is in I0,1 and the other is in the gap between I0,1 and I1,2.

As expected from the proof of Theorem 4 the dynamics (independent of the

particular functions chosen for the minimal map) is defined by a Markov partition of

the seven intervals on which the map has been defined. If we label these I1 = [0, 1
12

],

J1 = [ 1
12
, 1
3
], I2 = [1

3
, 5
12

], I3 = [ 5
12
, 1
2
], I4 = [1

2
, 7
12

], J2 = [ 7
12
, 5
6
], I5 = [5

6
, 1], so

I0,1 = I2 ∪ I3 ∪ I4, then we can read off from (14) or Figure 2

g(J1) = J2, g(J2) = J1,

g(I1) = I2 ∪ I3 ∪ I4, g(I2) = I5,

g(I5) = I2 ∪ I3 ∪ I4, g(I4) = I1,

g(I3) = J1 ∪ J2 ∪ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5.

(15)

From this, using standard techniques, we can read off the periodic orbits of the map.

The only periodic orbits in J1 ∪ J2 have period two (due to the degeneracy of the

equations all points here have period two), and these correspond to the orbits of the

original Lorenz map which do not involve the discontinuity. All other recurrent orbits

are in the complement of these, and we can read off immediately that there are two

period three orbits (I23I5 and I23I1) and so there are orbits of all periods. The much

richer information in (15) will be true of all minimal models of f . Note how all this
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0 d c 1

f

f

I J I J I I J I

g

u

2 1 1 2 01 02 3 3

(b)(a)

2

Figure 3. (a) The piecewise smooth map f ; (b) a minimal model of f .

dynamics lies in the boundary layer opened up by the regularization construction (the

intervals labelled Ik).

Finally, we can see that the orbits of the critical points u2 < u1 are

u2 = 5
12
→ 1→ 7

12
→ 1

12
→ 7

12
→ . . .

and

u1 = 1
2
→ 0→ 1

3
→ 5

6
→ 1

3
→ . . .

and all minimal models will have the same asymptotically periodic structure.

Minimal models of more general Lorenz maps will have the same bimodal structure.

5. Example: unimodal maps

Again we will use an example for which the dynamics of the piecewise smooth map is

simple; if a map has positive entropy then the number of preimages of the discontinuity is

infinite which makes it harder to do more than describe the dynamics implicitly. In this

case however we will not specify the maps precisely, but only indicate the constructions.

Consider the map f : [0, 1]→ [0, 1] as shown in Figure 3a. This has a discontinuity

at c and is formed of a monotonic increasing branch f0 in x < c and a monotonic

decreasing branch f1 in x > c. There is a point d ∈ (0, c) such that

f(0) = d, f(d) = c, f0(c) = 1, f1(c) = d, and f(1) = 0. (16)

Let K1 = (0, d), K2 = (d, c) and K3 = (c, 1), then f(K1) = K2, f(K2) = K3 and

f(K3) = K1 so either there is a period three orbit in the Kk or the dynamics limits on

a period 3 orbit on the continuous extension of the maps. Note that in some sense

f1(c) has ‘period’ three: f1(c) → d → c → f1(c), whilst f0(c) has ‘period’ four:

f0(c) = 1→ 0→ d→ c→ f0(c).
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2 3

02

012 31

Figure 4. Markov graph associated with (17).

The discontinuity has only three preimages: 0, d and 1, so we begin the construction

of the model map by specifying lengths `0, `1, `2 and `3 with total length L. Then define

I2 = [0, `2/(1 + L)], I1 = [(d+ `2)/(1 + L), (d+ `1 + `2)/(1 + L)],

I0 = [(c+ `1 + `2)/(1 + L), (c+ `0 + `1 + `2)/(1 + L)],

I3 = [(1 + `0 + `1 + `2)/(1 + L), 1].

The model map has g(I3) = I2, g(I2) = I1 and g(I1) = I0, with g a continuous strictly

increasing surjection on each interval.

On I0, f0(c) > f1(c) implies that U1 = a(f1(c)) and U2 = b(f0(c)) with the notation

of section 3. Hence U1 = a(d) and we need to define u2 ∈ (a(c), b(c)) such that

g(u2) = b(f0(c)) = 1. Then take g : I0 → [a(c), 1] to be unimodal with g(a(c)) =

a(f1(c)) = (d+ `2)/(1+L), g(u1) = 1 and g(b(c)) = a(f0(c)) = (1+ `0 + `1 + `2)/(1+L).

On the intervals J1 = [`2/(1 +L), (d+ `2)/(1 +L)], J2 = [(d+ `1 + `2/(1 +L), (c+

`1 + `2)/(1 + L)] and J3 = [(c + `0 + `1 + `2)/(1 + L), (1 + `0 + `1 + `2)/(1 + L)], g is

defined via (12) and the maps restricted to J1 is a continuous monotonic surjection onto

J2, and similarly from J2 to J3 and J3 to J1.

The resulting Markov graph is shown in Figure 4 reflecting the dynamics obtained

by dividing I0 into two intervals: I0,1 = [a(c), u2] and I0,2 = [u2, b(c)]:

g(J1) = J2, g(J2) = J3, g(J3) = J1,

g(I2) = I1, g(I1) = I0, g(I3) = I2,

g(I0,1) = I3, g(I0,2) = I0,1 ∪ I0,2 ∪ I1 ∪ J2 ∪ J3 ∪ I3.
(17)

This shows immediately that there is a periodic orbit of period three in J1∪J2∪J3 and

no other recurrent dynamics – this is the ‘period three’ we noted for f . However, since

g is continuous Sharkovskii’s theorem implies the existence of periodic orbits of every

period, and these exist in I0 ∪ I1. Hence the additional orbits exist in the boundary

layer created by the blow-up process.
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The critical point of g is u2 and this has orbit

u2 → 1→ 0→ (d+ `2)/(1 + L)→ a(c)

→ (1 + `0 + `1 + `2)/(1 + L)→ `2/(1 + L)

→ (d+ `1 + `2)/(1 + L)→ b(c)→ (d+ `2)/(1 + L)→ a(c) . . .

i.e. the critical point itself has asymptotic period six, although the kneading invariant

(coding by C for u2, R for iterates above u2 and L for iterates below u2) is CRL(LRL)∞,

and this will be replicated in any minimal model of f .

6. Conclusion

The technique described here could be extended to piecewise continuous maps with a

countable set of discontinuities, since the preimages are a countable set of countable

sets, hence countable and the lengths of the blown up intervals can still be chosen to

have a finite sum.

The process of opening up intervals of discontinuity as described above requires a

countable set of alterations to the maps (but can be done on length ε which can then tend

to zero). The effect is to define a hidden dynamics which, if the functions are as simple

as consistent with continuity, restricts the extra dynamics needed to create continuous

models in a boundary layer structure. If the maps on the blown up preimages are

homeomorphisms then our construction gives a continuous model, but any continuous

map on the blow up of the point of discontinuity which respects the boundary conditions

can be used. This seems to correspond to the freedom noted in the hidden dynamics

of piecewise smooth flows [15], and we have introduced minimal models to describe the

simplest hidden dynamics.

There are many directions in which these ideas could be taken. Clearly one would

like to develop a theory of how the hidden dynamics varies for parametrized families

of piecewise smooth maps. From a theoretical point of view the differentiability of the

minimal models is also interesting, and this may become important when considering

families of maps. This is straightforward if the number of blown up intervals is finite as in

the examples of sections 4 and 5. Extensions to higher dimensional maps are complicated

by the possible geometry of the intersections of the discontinuity surfaces and their

preimages. A consistent formulation in this case would be interesting. Ultimately, this

only becomes useful if it can be applied to examples, and the examples presented here

have been chosen to bring out the theory rather than the potential applications.
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