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Abstract. One-dimensional maps with discontinuities are known to exhibit bifurcations

somewhat different to those of continuous maps. Freed from the constraints of continuity,

and hence from the balance of stability that is maintained through fold, flip, and other

standard bifurcations, the attractors of discontinuous maps can appear as if from nowhere,

and change period or stability almost arbitrarily. But in fact this is misleading, and if

one includes states inside the discontinuity in the map, highly unstable “hidden orbits” are

created that have iterates on the discontinuity. These populate the bifurcation diagrams of

discontinuous maps with just the necessary unstable branches to make them resemble those

of continuous maps, namely fold, flip, and other familiar bifurcations. Here we analyse such

bifurcations in detail, focussing first on folds and flips, then on bifurcations characterized by

creating infinities of orbits, chaotic repellers, and infinite accumulations of sub-bifurcations.

We show the role that hidden orbits play, and how they capture the topological structures of

continuous maps with steep branches. This suggests both that a more universal dynamical

systems theory marrying continuous and discontinuous systems is possible, and shows how

discontinuities can be used to approximate steep jumps in continuous systems without losing

any of their topological structure.
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1. Motivation

Discontinuous maps play a widespread and important role in dynamical systems. If two states

of a system are able to lie arbitrary close, but subsequently evolve along significantly different



trajectories, then a map that integrates along those trajectories is necessarily discontinuous.

The source of such divergence is typically the straddling of some separatrix. One example

is a stable manifold that determines whether trajectories pass to one side or another of a

saddle equilibrium, in a differentiable system such as the Lorenz or Cherry flows [1, 2, 3, 4].

Another key example is a grazing orbit that determines whether trajectories hit or miss a

control surface at which a discontinuous action is triggered, commonly found in electronic

control relays triggered by a reference signal [5, 6, 7], homeostatic models where sleeping or

waking are triggered at distinct hormone thresholds [30], and other switching processes that

occur on a faster time scale than the system they affect, such as cell mitosis [9].

Although derivable from continuous systems, the dynamics of discontinuous maps differ

fundamentally from those of continuous maps. Freed from the constraints of continuity,

they are seemingly able to exhibit counterintuitive behaviours. Attractors can appear or

disappear, and change stability or periodicity, in almost arbitrary ways that are not possible

in continuous maps; see e.g. [10, 11, 12]. A fixed point or periodic orbit coming into contact

with a discontinuity can create global bifurcations, involving orbital structures reaching far

from the site of the bifurcation, such as broad band chaotic attractors [15].

In [16], however, it was suggested that one could sensibly define trajectories that posses

one or more iterates inside the discontinuity — dubbed hidden orbits — whose existence

would render the behaviours of discontinuous maps commensurate with their continuous

cousins. The purpose of [16] was merely to show the existence of hidden orbits and their

significance in a typical discontinuity-induced bifurcation sequence. In the present paper,

we begin the systematic study of bifurcations that involve hidden orbits. By doing so, we

begin to understand the connection between the behaviours of discontinuous and continuous

maps, and see that a unified theory of their bifurcations may in fact be possible. This

shows moreover that nonlinear systems can be approximated by discontinuous maps without

changing the topology of the bifurcations they exhibit, something that is not possible without

hidden orbits, as we shall see.

When dealing with discontinuous maps, the question arises as to how the map is to

be defined at the point of discontinuity. Historically this question has not been considered

deeply, mostly because this definition does not affect the location of bifurcations in the map

or the structures of orbits that surround the discontinuity. It has therefore been common to

assign a specific value to the function at the point of discontinuity, motivated by convenience

or modeling application, and specific to the system under consideration. For example, in

maps derived from homoclinic connections in flows, it is natural to define the map as having

a unique unstable fixed point at the discontinuity. In a system with a relay control, it

is reasonable to define the map at the discontinuity by the limiting value of the function

corresponding to the switching. In classification studies, it has been common to choose

either the limiting value from one side of the discontinuity, or the mid-value (the half-sum of

the limiting values), or else to omit the discontinuity altogether and leave the map undefined
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there.

In [17], for example, particular values of the map are permitted (namely fL(0), fR(0),

and their midpoint), that yield unstable orbits with points on the discontinuity, contributing

to a ‘period doubling without flip’ bifurcation. In [18], so-called ‘discontinuous crossings’

are identified in an impact system, and it is noted that these are “not periodic solutions

or equilibria” of the system of interest. All such solutions are precisely what we elevate

and generalize here to precisely the status of periodic solutions or equilibria, albeit highly

unstable, but nonetheless important to a dynamical understanding of the system.

All of these different ways of defining a map at a discontinuity are valid to address

specific problems, but none of them is general or definitive. In fact none of these approaches

is satisfactory in the sense that they neglect the highly unstable influence of having a steep

— indeed vertical — branch in the map. Particularly in applications where the discontinuous

map is meant to approximate a continuous system, neglecting the discontinuity changes the

topology of the state space by removing an entire set of states that generates unstable cycles.

In [16] it was suggested that much would be gained by defining the map at the

discontinuity to be set-valued. In this way, the function remains discontinuous, but becomes

connected in the sense that there exist a continuum of states connecting the branches of the

map across the discontinuity. Although the map is then multi-valued at the discontinuity,

by treating iterates of the map that lie on this set naively like any other, one obtains hidden

orbits that have iterates inside the discontinuity. It was suggested in [16] that these hidden

orbits were precisely the unstable orbits needed to restore the bifurcation structures that

would be observed in an approximating continuous map. A specific example was given

showing how a previously familiar period incrementing sequence becomes populated by

unstable hidden cycles, and these reveal the border collision bifurcations — in which branches

of attractors are born as if from nowhere — to be nothing but standard nonsmooth flip and

fold bifurcations.

Rather than consider an extensive list of the many possible bifurcations in discontinuous

maps, we distinguish three key ‘orders’ of bifurcation, namely those that involve only finitely

many periodic orbits, those in which infinitely many branches of periodic orbits issue from the

bifurcation point, and those in which the primary bifurcation point is just the accumulation

point of infinitely many bifurcation sub-sequences. For each of these we show how they are

re-interpreted in familiar standard concepts when hidden orbits are taken into account, and

thereby show how nonlinear systems can be approximated by discontinuous maps in a more

complete way than it is commonly done. These steps also provide the foundations for a

more extensive re-consideration of the bifurcations of discontinuous maps in the presence of

hidden orbits.

To help interpret hidden orbits and their role in approximating nonlinear maps, we

will distinguish four different approximations of the same system: a discontinuous map

whose graph has a jump between its left and right branches at x = 0, a connected map
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which duplicates the discontinuous map for x 6= 0 but connects its two branches with a

vertical branch at x = 0, a continuous map that approximates the vertical branch by a

steep but finite gradient, and a smooth map that approximates all of these by an infinitely

differentiable map.

In summary, for connected maps we show:

(i) in bifurcations that involve finite number of periodic orbits only, hidden orbits provide

unstable branches necessary to recognise discontinuity-induced bifurcations as familiar

bifurcations such as a flip or fold,

(ii) in bifurcations that involve infinite numbers of periodic orbits, concatenations of hidden

orbits provide the wide patterns of repelling periodic and aperiodic orbits to unify them

with bifurcations known in continuous maps,

(iii) in bifurcations that occur at accumulation points of infinitely crowded sequences of

bifurcations, hidden orbits restore the complete sequences found in period adding

sequences in continuous maps, and provide an easy way to calculate their unstable

orbits.

We also relate these to the equivalent bifurcations in discontinuous, continuous, and smooth

maps, to see the unstable dynamics within them corresponding to hidden orbits.

In section 4, section 5, and section 6, in turn, we will study specific examples of the

three bifurcation scenarios (i)-(iii). In this respect, our purpose in this paper is modest,

not to construct a general theory of hidden orbits, since the concept was only introduced

recently in [16], rather our purpose is to provide prototypes and a basic understanding that

can be made more general and rigorous in future work. For this purpose it is useful to base

the study around a piecewise linear map, whose orbits can be found explicitly and whose

bifurcations have been extensively studied. For the same purpose we focus on bifurcations

as a single parameter is varied, in this case the size of the discontinuity, rather than attempt

to classify all bifurcations of these maps. While it is tempting to immediately seek more

general results, they will necessarily be more abstract and topological in nature, and more

complex, as the range of different map classes and types of bifurcation phenomena is far

greater in nonsmooth maps than in smooth maps (though our work here suggests that this

is a distinction that could be narrowed in the future). continuous maps the bifurcations

exhibited bear a complex relationship to map classes defined by their slopes and modality.

It is precisely to gain insight despite these complexities, that we focus on the three scenarios

(i)-(iii) here.

The remainder of this paper is organized as follows. In section 2, we define four

prototypes we will use to study discontinuous maps and related continuous or smooth maps.

Hidden orbits, which can be used to study discontinuous maps, are defined in section 3. The

main results of the paper follow in sections 4 to 7, setting out the role of hidden orbits in

bifurcation scenarios giving examples of types (i)-(iii) above.

In section 4, we look at two successive border collision bifurcations in a monotonic map,
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which are revealed to to be just familiar nonsmooth fold and flip bifurcations once hidden

orbits are included. In section 5, we look at a bifurcation that produces infinitely many

hidden periodic orbits in a unimodal map. In section 6, we show the role played by hidden

orbits in a period adding sequence in a bimodal map. We draw together these results in

section 7 and discuss their significance for both the study of discontinuous maps, and the

approximation of smooth maps with steep transitions, ending with some forward looking

remarks in section 8.

2. Definition of the map

In each part of the paper below, we will take a prototype discontinuous map, then consider a

connected map, continuous map, and smooth map, derived from it (see Fig. 1). We use these

to study the role of hidden orbits (in the connected map) and their unstable counterparts

(in the continuous and smooth maps). Let us begin by defining these four map types below.

2.1. The discontinuous map

Consider the one-dimensional map defined by

xn+1 = f(xn) =

{
fL(xn) = aLxn + µL if xn < 0

fR(xn) = aRxn + µR if xn > 0
(1)

for some parameters aL, aR, µL, µR, where in general fL(0) 6= fR(0), i.e. µL 6= µR. An

example is given in Fig. 1(a).

We refer to this as the discontinuous map, noting that its value is undefined at x = 0.

Such maps have been extensively investigated in [11, 10, 12]. A unique value may be assigned

at xn = 0, for example the right or left limiting values f(0) = fR(0) or f(0) = fL(0), or the

midpoint f(0) = [fR(0) + fL(0)]/2, without substantially altering our analysis below.

2.2. The connected map

We define the connected map as the augmented version of (1) given by

xn+1 = f(xn) =

{
fL(xn) = aLxn + µL

fR(xn) = aRxn + µR

xn+1 ∈ J = [min{fR(0), fL(0)},max{fR(0), fL(0)}]

if xn < 0 ,

if xn > 0 ,

if xn = 0 ,

(2)

see Fig. 1(b). For convenience the vertical branch of the function f is denoted by fC, taking

a range of values fC(0) ∈ J , where obviously

f−1C (x) = 0 ∀x ∈ J.

We should emphasize that the map (2) is discontinuous, like the map (1), but now the

branches fL and fR are connected across the discontinuity via a vertical branch fC..
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By definition, the map (2) is set-valued at the discontinuity. Set-valued maps have

been studied by many authors, see e.g. [13, 14], but to our knowledge they have never been

applied within the scope of bifurcation analysis of discontinuous maps. As we will see, they

can successfully be applied for this purpose, as their dynamics is at once richer and yet more

standard than that of discontinuous maps similar to map (1).

2.3. The continuous map

We define the continuous map by the piecewise linear function

xn+1 = f(xn) =


fL(x) = aLx+ µL if x 6 dL,

fM(x) = aMx+ µM if dL 6 x 6 dR,

fR(x) = aRx+ µR if x > dR,

(3)

as shown in Fig. 1(c), which coincides with (2) everywhere except for a sufficiently small

interval (dL, dR) with dL < 0 < dR. To ensure the continuity of (3) at the border points

x = dL, dR, we impose the additional condition

aM =
µR − µL + aRdR − aLdL

dR − dL
, µM =

(aL − aR) dLdR + µLdR − µRdL

dR − dL

For an overview of the bifurcation structures in map (3) we direct the reader to [19, 20].

2.4. The smooth map

Lastly we consider a map that smoothly
:::::::::::
transitions between the functions fL and fR from

(1), in the form

xn+1 = fL(x) · (1− g(x)) + fR(x) · g(x) (4)

which we refer to as the smooth map, where the function g is some smooth sigmoid

transitioning between g = 0 and 1 as x changes sign, which we take as

g(x) =
1

1 + e−
x
ε2

for small ε (see Fig. 1(d)).

2.5. The different maps compared

The four maps defined above clearly all possess similarities in their dynamics, but it is the

subtle differences associated with their differing continuity or differentiability that interests

us. By construction, any orbits that exist in (1) will exist also in (2), so they are topologically

semi-conjugate, but by including the vertical branch in (2) we introduce additional orbits

that map onto the vertical branch at the point xn = 0. Similarly, any orbits of (1) will exist

also in (3) provided they lie outside the interval (dL, dR). As (dR − dL) → 0 the map (3)
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tends to (2), and likewise as ε → 0 the map (4) tends to (2), so the vertical branch of (2)

can be expected to play a similar role in the dynamics as the steep branches of (3) and (4).

Of course we could derive more general maps that (1) is semi-conjugate to, to obtain

a more complete classification of their bifurcations. However, as discussed in section 1, our

purpose here is to study the hitherto unknown role of hidden orbits in already well understood

bifurcation sequences, and such sequences are provided by the specific maps (1)-(4).

To study bifurcations of maps (1)-(4) we will mainly vary the offset µR while keeping all

other parameters fixed. Changing the height of the graphs of f by varying µR provides rich

bifurcation sequences, with equivalent variations of µL obtained by the mapping x 7→ −x.

Even for a piecewise linear map a complete classification of the possible bifurcations is

not simple. Different signs of the quantities aR, aL, and µL − µR, produce a number of

different geometrical classes of the map, and we remark on these classes and the more

general classification problem in Appendix A. Our scope here is simply to examine examples

of typical bifurcation structures, showing the different ways that hidden orbits populate the

bifurcation diagrams of discontinuous maps, introducing unstable branches in just the right

way that they become consistent with the more standard sequences in continuous or smooth

maps.

2.6. Symbolic notation

To denote periodic orbits of maps (1) and (2), we will use the letters L and R to label points

in x < 0 and x > 0, respectively. Additionally, for map (2), we use the letter C to label

the point x = 0. Similarly, for map (3), the letters L, C, and R are used for the partitions

x < dL, dL < x < dR, and x > dR, respectively. For the smooth map (4), as there are

no distinct branches, the cycles are identified by referring to the symbolic sequences of the

corresponding cycles of the maps (1)-(3). A periodic orbit is denoted by O with a subscript

given by the symbolic sequence labeling the regions visited by iterates. So for example, OC

refers to a fixed point on the vertical branch at x = 0 in maps (1), (2), and to a fixed point

on the steep branch close to x = 0 in maps (3), (4). Similarly, OLR is a 2-cycle with one

point on the left and one point on the right.

For unambiguity of the notation, we number the points of a cycle according to the

associated symbolic sequence, so, for example, the points xLR
0 , xLR

1 of a cycle OLR are some

xLR
0 6 0 and xLR

1 > 0.

3. Hidden orbits

Let us briefly describe hidden orbits, introduced recently in [16], including how to calculate

them. We will define these only for the map (2).
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(a) (b)

(c) (d)

Figure 1. Plots of the four maps: (a) discontinuous map (1); (b) connected map (2);

(c) continuous map (3); (d) smooth map (4). Illustrated for parameter values aL = 0.5,

aR = 1.3, µL = 1, µR = −1, ε = 0.1, dL = −0.1, dR = 0.1.

3.1. Definitions

As introduced in [16], a hidden orbit is a solution of a dynamical system which includes at

least one point lying inside a discontinuity.

In the case of the map (2), an orbit with iterates {x0, x1, x2, ...} is hidden if at least one

iterate lies at xn = 0, let us say x0 = 0. The first image of x0 = 0 is a point x1 = f(0) ∈ J . For

a given point x1 ∈ J the subsequent iterates xk = fk−1(x1) with k > 0 are then single-valued.

Each neighbouring point x1 ∈ J generates a distinct orbit {0, x1, f(x1), f
2(x1), ...)}, which

are standard in every respect except they share the common iterate x0 = 0. They behave

like any regular orbit, converging to an attractor if one exists, and otherwise diverging.

There are uncountably many of these orbits (the set of all images of the discontinuity),

however, if a hidden orbit returns to the same discontinuity then it forms a hidden periodic

orbit, which we can define as follows.

If a pre-image p of x0 = 0 exists such that fk(p) = 0, and if p ∈ J , then the sequence of
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points

x0 = 0,

x1 = f(0) = p,

x2 = f 2(0) = f(p),
...

xk = fk(p) = 0

(5)

forms a cycle of period k > 1, termed a hidden periodic orbit or hidden cycle in [16]. By

definition, a symbolic sequence associated with a hidden cycle contains at least one letter C.
The simplest hidden cycle of map (2) is the hidden fixed point OC located on the vertical

branch. Clearly, OC exists if fL(0) and fR(0) have opposite signs. Further examples of hidden

cycles can be found throughout this paper, e.g., in Figs. 4(b), 5(b), and 8(b).

Evidently, every hidden cycle is unstable, as it contains a point at a vertical branch of

the function. In a continuous map of the form (3) or (4), that approximates the connected

map (2) sufficiently closely, any hidden orbit is replaced by a regular orbit with an iterate

on a portion of the map that is very steep, and any hidden cycle is replaced by a repelling

cycle.

3.2. Calculation and pre-images

The pre-images of x0 = 0 are points x−k such that fk(x−k) = 0, for k > 0, and as with

any other point, their existence and uniqueness depends the existence and uniqueness of the

inverse f−1.

To calculate the points of a hidden orbit by iterating forward from x = 0 one must

confront the set-valuedness of f(0). This can be avoided by instead iterating backwards

from x = 0, using the inverse functions f−1L and f−1R . For example, to find a hidden k-cycle

it is sufficient to assume xk = 0 for some k, and then iterate backwards until finding x1 ∈ J
and hence x0 = 0. Accordingly, each hidden cycle is given by a sequence of pre-images of

zero. In this way, the existence of hidden cycles is closely related to the existence of rank-one

pre-images of zero: If there are no such pre-images or if the pre-images exist but are not

reachable from the interval J , no hidden cycles can exist.

In addition, this provides us with an immediate clue about border collision bifurcations

of hidden orbits. A hidden cycle disappears if its first point x1 = f(0) ∈ J collides with a

boundary of its definition interval J , i.e., either with fL(0) or with fR(0).

3.3. Concatenations

By definition, if the interval J contains more than one pre-image of zero, the map (2) has

more than one hidden cycle. In fact, the existence of two distinct pre-images p1, p2 ∈ J

implies the existence of infinitely many hidden cycles as follows. Suppose that there exists
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a hidden cycle Oσ with xσ0 = 0, xσ1 = p1 and a hidden cycle O% with x%0 = 0, x%1 = p2.

Then the cycle Oσ% formed by their concatenation also exists, as does every irreducible (i.e.,

corresponding to a prime period of the cycle) concatenation of σ and %, each corresponding

to a different cycle.

So the existence of two hidden cycles OCL and OCR implies the existence of every

possibly concatenated cycle OCLCR, O(CL)2CR, O(CL)2(CR)3 , and so on. Clearly, only irreducible

concatenations correspond to distinct hidden cycles (so for example CLCL corresponds to

the same hidden 2-cycle as CL). The family of all finite concatenations of σ and % has a

one-to-one mapping to the rational numbers, while all infinite non-repeating concatenations

of σ and % have a one-to-one mapping to the irrational numbers, hence the existence of two

distinct hidden cycles implies the existence of a countable number of further hidden cycles

and an uncountable number of aperiodic hidden orbits.

4. Bifurcations involving finitely many periodic orbits

The simplest bifurcations consist of connections between finitely many branches of attractors

or repellers. In a discontinuous map like (1), a single branch can terminate ‘in mid air’, i.e.

without connecting to another branch. This cannot happen in continuous maps like (3)

and (4). As we shall see, by rendering a discontinuous map connected as in (2), we obtain

the missing connecting branches necessary to interpret such events as standard bifurcations

such as, in the example we give below, simple nonsmooth fold and flip bifurcations.

To illustrate this with a general bifurcation scenario, consider the maps (1), (2), (3),

and (4) with −1 < aL, aR < 0. The corresponding bifurcation diagrams under variation of

the offset µR are shown in Fig. 2, and we shall describe what happens in these diagrams

from right to left, as µR decreases.

4.1. The discontinuous map

At the parameter value labelled ‘A’ in Fig. 2(a), the discontinuous map (1) has the stable

fixed point

OR =
µR

1− aR
(6)

(see Fig. 3(a)). At µR = 0 this fixed point collides with the border point x = 0 and disappears

in a border collision bifurcation marked in Fig. 2(a) by ξR. Prior to that, a stable 2-cycle

OLR = {xLR
0 , xLR

1 } with xLR
0 =

aLµR + µL

1− aLaR
, xLR

1 =
aRµL + µR

1− aLaR
(7)

appears via a border collision bifurcation occurring at the parameter value marked by ξLR

in Fig. 2(a). This parameter value can easily be calculated from the condition

fR ◦ fL(0) = 0 (8)
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which correspond to xLR
0 = 0. Accordingly, in the parameter interval between the border

collision bifurcations ξR and ξLR, the map (1) has two coexisting attractors, namely the fixed

point OR and the 2-cycle OLR (see Fig. 3(b)). After OR disappears in a border collision

bifurcation at ξR, the 2-cycle OLR remains the only attractor (see Fig. 3(c)).

Such sequences of bifurcations are quite standard for discontinuous maps, but two

distinctions from continuous maps are worth noting. First, the only orbits involved in

the border collision bifurcation are the fixed point and the 2-cycle, and so these appear

or disappear without connecting to other fixed points or cycles. This is in contradiction to

continuous maps where such bifurcations must involve collisions of at least two such fixed

points or cycles. Second, neither the eigenvalue of the fixed point λ(OR) = aR < 0 nor the

eigenvalue of the 2-cycle λ(OLR) = aLaR > 0 plays any role in determining the course of the

bifurcations. This is contrary to smooth maps, where a negative eigenvalue is associated with

a flip bifurcation, and a positive eigenvalue to a fold, pitchfork, or transcritical bifurcation

(this is also contrary to piecewise smooth continuous maps, although for such maps the

necessary ‘eigenvalues’ are harder to define due to lack of differentiability, see e.g. [10]).

4.2. The connected map

The connected map (2) has all of the same orbits as the discontinuous map (1), plus a

number of hidden orbits in addition, that fundamentally alter the bifurcation’s appearance

and interpretation.

Take first the bifurcation at µR = ϕLR in Fig. 4(b). Not only does the stable 2-cycle

OLR appear, but also an unstable hidden 2-cycle

OCR = {xCR
0 , xCR

1 } with xCR
0 = 0, xCR

1 = f−1R (0) = −µR

aR
. (9)

It can be easily be seen that these cycles coincide at the bifurcation, since the border

collision condition xLR
0 = 0 implies at µR = ϕLR that xLR

0 = xCR
0 , while condition (8) implies

fL(0) = f−1R (0), so that xLR
1 = xCR

1 . As µR decreases away from the bifurcation value, the

iterates of the cycles move apart as seen in Fig. 2(b), consistent with a fold border collision

bifurcation occurring in the connected map (2) at ϕLR.

At the bifurcation where µR = ψR, one can clearly see in Fig. 2(b) that as µR approaches

ψR from the right, the point xCR
1 tends to zero, i.e., to the point xCR

0 , so that the hidden cycle

OCR shrinks in size around the fixed point OR and at the bifurcation they coincide (since

the bifurcation occurs at µR = 0 where xCR
1 = f−1R (0) = 0 = xCR

0 ). Moreover, for µR < 0

the hidden fixed point Or appears. Therefore, the bifurcation occurring in the connected

map (2) at ψR is a subcritical flip border collision bifurcation.
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(a) (b)

(c) (d)

Figure 2. Corresponding bifurcations shown in the: (a) discontinuous map (1); (b)

connected map (2); (c) continuous map (3); (d) smooth map (4). Shown for parameter

values aL = −0.6, aR = −0.4, µL = 1, ε = 0.15, dL = −0.1, dR = 0.1.

4.3. The continuous and the smooth maps

In the continuous map (3), the bifurcation at ϕLR is a fold border collision bifurcation

occurring at the border point x = dL, and leading to the appearance of the stable cycle OLR

and the unstable cycle OCR. At ψR the map undergoes a subcritical flip border collision

bifurcation occurring at the border point x = dR at which the stable cycle OLR collides with

the unstable cycle OCR and disappears, and the unstable fixed point OC appears. As we

let dL − dR → 0, Figs. 2(b) and (c) therefore become indistinguishable. In fact, the only

difference between the bifurcation structures in maps (2) and (3) (shown in Figs. 2(b) and

(c), respectively), is that in map (3) the location of the points OC and xCR
0 inside the middle
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(a) (b) (c)

Figure 3. Orbits of the discontinuous map (1) at different places in the bifurcation diagram

from Fig. 2(a). In (a) before the border collision bifurcation ξLR, the fixed point OR is the

only attractor. In (b) between the border collision bifurcations ξR andξLR, the map has

two coexisting attractors, namely the fixed point OR and the 2-cycle OLR. In (c) after the

border collision bifurcation ξR, the 2-cycle OLR is the only attractor. Shown for parameter

values aL = −0.6, aR = −0.4, µL = 1, µR = 0.8.

(a) (b) (c)

Figure 4. Orbits of the connected map (2) at different places in the bifurcation diagram

from Fig. 2(b). In (a) before the border collision bifurcation ξLR, the fixed point OR is the

only attractor. In (b) between the border collision bifurcations ξR and ξLR, the map has

two coexisting attractors, namely the fixed point OR and the 2-cycle OLR. In (c) after the

border collision bifurcation ξR, the 2-cycle OLR is the only attractor. Shown for the same

parameter values as in Fig. 3.

partition [dL, dR] depends on µR, while in map (2) these points are located at the border

point x = 0, so that OC and OCR are hidden orbits.

As is easily seen in Fig. 2(d), in map (4) the bifurcation sequence is similar to the

continuous map except that, being smooth, the map exhibits standard fold and subcritical

flip bifurcations instead of the corresponding border collision bifurcations. As noted in
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section 2.6, the symbolic notation for the cycles used in Fig. 2(d) is merely an echo of the

discontinuous maps (2) and (3), as there is no definitive way to partition the smooth map

into right, left, and centre regions.

4.4. The different maps compared

Although it now seems trivial for this simple example, we can see that these fold and flip

border collision bifurcations in the connected map (2) correspond to, and in fact approximate,

fold and flip border collision bifurcations in the continuous map (3), and standard fold and

flip bifurcations in the smooth map (4).

However we analyze these maps or describe them symbolically, the structures shown in

Figs. 2(b), (c) and (d) are clearly topologically identical, but none is equivalent to Figs. 2(a)

where the unstable orbits are ‘missing’. For the two simple bifurcations here this distinction

is obvious, for more complicated scenarios it will be less so.

Note also that the connected map (2) preserves the relation between the signs of the

eigenvalues of the cycles and the bifurcations these cycles undergo in the smooth map (4).

Indeed, the fixed point OR with a negative eigenvalue undergoes a flip bifurcation in map (4),

and so it does in map (2). Similarly, the 2-cycles undergoing fold bifurcations in both maps

have positive eigenvalues.

One more feature that the connected map (2) captures and the disconnected map (1)

does not is clearly visible in the interval of bistability. In map (1), the basins of attraction of

the fixed point B(OR) and of the 2-cycle B(OLR) are separated from each other by the point

of discontinuity and its rank-one pre-image (see Fig. 2(a)). This is a standard situation for

discontinuous maps, as described, for example, in [11], where it is stated that in continuous

1D maps, the immediate basin of an attracting fixed point can be confined by two repelling

fixed points, by a repelling fixed point and its rank-one pre-image, or by the points of

a repelling 2-cycle, and in discontinuous 1D maps it can also be confined by a point on

a discontinuity and its pre-image or by two points on a discontinuity. While the latter

condition is obviously necessary for discontinuous maps, we see it can be completely avoided

by adding a connecting vertical branch to the definition of the map (even if this branch does

not exist in the modeled system) and by taking into account the hidden orbits appearing by

this extension.

Moreover, proceeding in this way one can obtain some additional information. Indeed,

it is clear that in a map with two discontinuities the points discontinuity may form the basin

boundary but need not do. The conditions under which this happens are not mentioned

in [11], but it is now quite obvious that this happens if the corresponding connected map

has two hidden fixed points at the corresponding discontinuities. Similarly, the basin in

a discontinuous map is confined by a point on a discontinuity and its pre-image if the

corresponding connected map has a hidden 2-cycle at the basin boundary.
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It can be easily seen in Fig. 2(b) that in map (2) the basins of attraction B(OR) and

B(OLR) are separated from each other by the points of the hidden 2-cycle OCR (which are,

in fact, given by the point of discontinuity and its rank-one pre-image). Therefore, the

connected map shows the same behaviour as the continuous maps (3) and (4) (see Figs. 2(c)

and (d), respectively) for which the basins are also separated by a repelling 2-cycle OCR as

well.

5. Bifurcations involving infinitely many periodic orbits

In the example discussed above, a just a few branches were missing in the bifurcations

occurring in the discontinuous map (1) compared with the bifurcations in the continuous

maps (3) and (4). As we have shown, these branches are restored in the connected map (2).

In other situations, the difference between the bifurcations in the discontinuous map (1) and

the continuous maps (3)-(4) is even stronger, given by an infinite number of orbits, periodic

and aperiodic. As we shall see, the connected map (2) is able to restore these orbits as well.

Consider the map (1) with 0 < aL < 1, aR < −1, µL < 0, and µR increasing through

zero. As in the previous section we discuss the resulting bifurcations in the maps (1), (2),

(3), (4), in turn.

5.1. The discontinuous map

The bifurcation occurring in the discontinuous map (1) as µR increases is simple. For all

values of µR, the map has an attracting fixed point OL = µL/(1−aL) in the left partition. For

negative values of µR, this fixed point is globally attracting, the map has no other invariant

sets. As µR increases through zero, the fixed point

OR =
µR

1− aR
(10)

appears in the right partition, however, as aR < −1, it is repelling and so every orbit except

for this fixed point still converges to OL (see Fig. 6(a)). The oddity of this bifurcation is that

OR appears at µR = 0 with no other fixed points appearing or disappearing to accompany it.

5.2. The connected map

In the connected map (2), the bifurcation is more rich and more standard at the same time.

It is immediately clear from Fig. 5(a) that the fixed point OR appears simultaneously with

the hidden fixed point OC, as would be expected of a fold bifurcation in a continuous map.

However, an infinite number of repelling cycles also appear. For µR > 0 there exists the rank-

one pre-image of zero, f−1R (0), and since aR < −1, there also exists the infinite sequence of

further pre-images f−kR (0), k > 2 (see Fig. 5(b)) given by

f−kR (0) =
µR

1− aR
· a

k
R − 1

akR
. (11)
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It follows from (10) and (11) that that all these pre-images belong to the interval (0, µR) ⊂ J ,

and in backward time the sequence of pre-images converges towards the repelling fixed point

OR. Accordingly, for each k > 1 there exists the hidden (k + 1)-cycle

ORkC =
{
f−kR (0), f−k+1

R (0), . . . , f−1R (0), 0
}
, (12)

as illustrated in Fig. 6(b) (see also a few examples in Fig. 5(b)). Together with the hidden

fixed point OC, the union of these cycles forms the family

FRkC = {Oσ | σ ∈ ΣRkC} , ΣRkC =
{
σk = RkC | k > 0

}
, (13)

It is worth noting that at the bifurcation occurring at µR = 0, not only do the cycles

belonging to the family FRkC appear, but also their concatenations, both finite and infinite,

as discussed below.

5.3. The continuous and smooth maps

In the continuous map (3), the bifurcation occurs at the value of µR defined by the condition

fR(dR) = dR, i.e., µR = dR(1 − aR) (that means, at µR = 0.25 in the example shown

in Fig. 6(c)). It can be easily shown that in map (3) not only the repelling fixed point

OR appears in the right partitions (coinciding with the corresponding fixed points of the

discontinuous maps (2) and (1)), but also the repelling fixed point

OC =
dLdR(aL − aR) + µLdR − µRdL

µL − µR − dR(aR − 1) + dL(aL − 1)
(14)

belonging to the middle partition. As expected, for both dL and dR tending to zero, the

fixed point OC of map (3) tends to zero as well, and hence to the hidden fixed point OC of

map (2). As the map (3) is continuous, this bifurcation is a standard fold border collision

bifurcation of the saddle-saddle type, leading to the appearance of two repelling fixed points

and a set on which the map is chaotic (a chaotic attractor if there is an invariant absorbing

interval after the bifurcation or a chaotic repeller otherwise). Since the values of aL, aR and

µL satisfy the condition f 2
R(dR) < Oc, the bifurcation does not lead to the appearance of an

invariant absorbing interval, so that the map after the bifurcation has a chaotic repeller.

In the smooth map (4), the bifurcation occurs when the function becomes tangent to the

diagonal. This is a standard fold (saddle-node) bifurcation leading to the appearance of the

attracting fixed point OR and the repelling fixed point OC (tending for ε→ 0 to the hidden

fixed point of the connected map (2)). Then, for increasing µR the attracting fixed point OR

becomes repelling, the map undergoes the standard period-doubling cascade, followed by the

appearance of chaotic attractors (see Fig. 6(d)). At the parameter value where the invariant

absorbing interval of the map touches the repelling fixed point OC, a final bifurcation occurs

(indicated by χ in Fig. 6(d)), turning the chaotic attractor into a chaotic repeller.
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(a) (b)

Figure 5. Orbits of the connected map (2). (a) The fold bifurcation creates the pair of fixed

points, OR and OC, plus an infinite number of further hidden orbits (cycles and aperiodic

orbits). (b) Magnification of the rectangle marked in (a), the rank-1, -2 and -3 pre-images

of zero are indicated. Additionally, hidden cycles OCRk , k = 1, . . . , 4 are shown. aL = 0.5,

aR = −1.5, µL = −1, µR = 0.5.

5.4. The different maps compared

As one can see for both the continuous and smooth maps, the bifurcations lead eventually

to the appearance of chaotic repellers (immediately after the saddle-saddle bifurcation in

map (3) or after all the flip and fold bifurcations following the initial saddle-node bifurcation

in map (4)). As the connected map (2) represents a limiting case for maps (3) and (4),

for dL, dR → 0 the fold bifurcation value ψ in map (3) tends do zero, and for ε → 0 both

bifurcation values ψ and χ tend to zero as well. However, a chaotic repeller forms a Cantor

set and consists of a countable number of repelling cycles as well as an uncountable number of

repelling aperiodic orbits. As the connected map (2) represents a limiting case for maps (3)

and (4) and can be seen as an approximation for these maps, it is a natural question how

this approximation maintains these orbits. In fact, this question is quite natural since the

family FRkC we have identified so far is countable.

Perhaps the most non-trivial property of hidden orbits is that they can be concatenated

so that the existence of two distinct hidden orbits OCσ and OCρ implies the the existence

of the hidden orbit OCσCρ. The validity and interpretation of such concatenations is not

immediately obvious, but as we shall see all concatenations should be considered as valid

orbits, as they are needed to make the results for map (2) matching the corresponding results

for maps (3) and (4).

As already mentioned, the fixed points OR and OC of maps (3) and (4) are preserved in

their approximation by the connected map (2), the former one as a regular fixed point and

the latter one as a hidden fixed point. The 2-cycle OCR belongs to the family FRkC, as well

as one of the 3-cycles, namely OCR2 . However, the other 3-cycle, i.e., OC2R, does not belong

to FRkC (in map (4) both cycles appear via a smooth fold bifurcation at the beginning
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(a) (b)

(c) (d)

Figure 6. Corresponding bifurcations shown in the: (a) discontinuous map (1); (b)

connected map ((2)); (c) continuous map (3); (d) smooth map (4). In (a) the only orbit

that appears in the border collision bifurcation ξR is the repelling fixed point OR. In (b)

at the fold border collision bifurcation ψ, the usual fixed point OR appears (identical with

the fixed point OR in (a)), as well as the hidden fixed point OC, a countable number of

hidden cycles and an uncountable number of hidden aperiodic orbits. All hidden orbits

consist of the point zero and its pre-images f−k
R (marked for k = 1, . . . , 6). In (c) at the

fold border collision bifurcation ψ, a chaotic repeller appears, whose points are in a 1 to

1 correspondence with the points of the orbits (hidden or not) appearing in (b). In (d) at

the fold border collision bifurcation ψ, a pair of fixed points appear, the stable OR and the

unstable OC. The stable fixed point becomes unstable in the usual logistic map scenario, and

the eventually appearing chaotic attractor turn into chaotic repeller at the final bifurcation

marked by χ. After the final bifurcation, there is a 1 to 1 correspondence between the orbits

of maps with the points of orbits (hidden or not) appearing in (b). Stable fixed points and

cycles are shown in red, unstable in blue for periods p = 1, 2, 3, 4 and in gray for p = 5, 6, 7, 8.

Shown for parameter aL = 0.6, aR = −1.6, µL = −1, ε = 0.1, dL = −0.1, dR = 0.1.
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of the period-3 window, while in map (3) they appear at the same fold border collision

bifurcation as the fixed points OR and Oc). Instead, the associated symbolic sequence is

a concatenation of two sequences belonging to ΣRkC, namely σ0 and σ1. In this sense,

one can say that the hidden 3-cycle OC2R ≡ Oσ0σ1 appearing at the fold bifurcation in

map (2) can be seen as a concatenation of OC and OCR. Similarly, among the hidden

4-cycles appearing at this bifurcation, the cycle OCR3 belongs to the family FRkC, and

two other 4-cycles OC2R2 and OC3R result from the corresponding concatenations, namely

OC2R2 ≡ Oσ0σ2 and OC3R ≡ Oσ0σ0σ1 , respectively. Proceeding in this way, one can easily

show that for each repelling cycle belonging to the chaotic repeller in maps (3) and (4) the

corresponding symbolic sequence either belongs to the family ΣRkC or can be obtained by a

finite concatenation of the sequences belonging to this family. Moreover, there is a one-to-

one correspondence between the set of these cycles and the set of hidden cycles of map (2).

As for the uncountable set of repelling aperiodic orbits belonging to the chaotic repeller in

maps (3) and (4), the corresponding hidden aperiodic orbits in map (2) result from infinite

concatenations of hidden cycles belonging to the family FRkC.

To summarize, this example shows how a fold bifurcation in the connected map (2)

bridges the gap between maps (1) and (3)-(4) by capturing the unstable orbits of Figs. 5(c-

d) that are missing from (a) as hidden orbits, resulting in topologically standard structure.

6. Bifurcations at accumulation points

Finally we consider accumulation points, where a cascade of bifurcation curves accumulate

towards a particular parameter value. Here the hidden orbits play a role in the organisation

of the whole cascade, and not just a single bifurcation event. Such points were perhaps first

observed in [22] and various examples can be found in [11]. In section 4 and 5, hidden orbits

provided a link between the discontinuous map and well understood bifurcation structures in

continuous or smooth maps. In this section, the corresponding cascades in the continuous or

smooth maps have not previously been studied to our knowledge, and hidden orbits not only

add structure to the bifurcations of the discontinuous map, but provide an approximation

of similar bifurcations in the continuous or smooth maps.

As before let us take the map (1), now with 0 < aL, aR < 1, µL > 0, and again,

considering µR increasing through zero, let us consider the bifurcations exhibited by the

discontinuous, connected, continuous, and smooth maps in turn.

We will focus on the important phenomenon of period adding sequences in the

discontinuous map. The discontinuous map (1) in this case shows the well-known period-

adding structure, and we will show that hidden orbits play a role in this structure not only

at the bifurcation at µR = 0, but throughout the period adding sequence.

In order to present this structure in its complete form, below we discuss dynamics of

maps (1)-(4) under a simultaneous variation of µR and µL, fixing µL = µR +2 without loss of
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(a) (b)

(c) (d)

Figure 7. Corresponding bifurcations shown in the: (a) discontinuous map (1); (b)

connected map (2); (c) continuous map (3); (d) smooth map (4). Stable cycles are shown

in red, hidden ones in blue, chaotic attractors in green. The insets show magnifications of

the rectangular regions indicated. Shown for parameter values aL = aR = 0.9, µL = µR + 2,

ε = 0.1, dL = −0.025, dR = 0.025.

generality. (This particular coupling of parameters µL and µR makes the system for aL = aR

identical with the Σ − ∆ modulator model introduced in [23] and investigated extensively

in [15, 11].) Note that this choice of parameters does not change the bifurcation occurring

at µR = 0 (since for parameter values close to this bifurcation, it holds that µR � µL) but

does conveniently provide a complete bifurcation sequence, being sandwiched between the

stability domain of two stable fixed points.

20



6.1. The discontinuous map: Standard period adding

An example of the period adding structure in the discontinuous map (1) is shown in Fig. 7(a).

Let us briefly recall what is known about the organizing principles of this structure. It is

easy to see that for µR > 0 the map has a stable and globally attracting fixed point OR. As

µR is varied from positive to negative values, this fixed point disappears in a border collision

bifurcation, and a period adding sequence appears for which µR = 0 is an accumulation

point.

The description of this structure goes back to the pioneering works by Leonov

([22, 24, 25]), who used a recursive approach following so-called complexity levels. According

to this approach, the two fixed points OL and OR form the complexity level zero, and

between the parameter regions associated with each two consecutive cycles Oσ and O% of

complexity level m, there are two infinite families of regions associated with cycles Oσkρ

and Oσρk , k > 1. It is worth noting that for k → ∞ the sequence of regions associated

with the cycles Oσkρ converges towards a boundary of the region associated with Oσ, and

the infinite sequence of regions associated with Oσρk converges towards a boundary of the

region associated with O% (see [11] for details). It follows that for each m > 1 there are

2m families of cycles of complexity level m. For example, the cycles of complexity level

m = 1 are the well-known basic (also called maximal, or principle) cycles OLkR and OLRk ,

k > 1, the cycles of complexity level two are O(Lk1+1R)k2Lk1R, OLk1+1R(Lk1R)k2 , O(LRk1 )k2LRk1+1 ,

and OLRk1 (LRk1+1)k2 , k1, k2 > 1, and so on. For this reason, in the open parameter interval

µR ∈ (−ε, 0) with an arbitrary small ε > 0 there exists an infinite number of parameter

intervals associated with basic cycles OLRk , k > k0(ε), k0(ε) increasing with ε → 0, as well

as a countable set of intervals associated with cycles of complexity levels higher than one, and

also an uncountable set of singular parameter values associated with Cantor set attractors

(for details we refer to [11]). For each of the cycles, the corresponding parameter interval

is confined by the border collision bifurcations, at which the cycle collides with the border

x = 0 and disappears. Recall that the points of the cycles colliding with the border are

referred to as colliding points and the corresponding letters in the symbolic sequences as

colliding letters. As usual, below the colliding letters are underlined, so that, for example,

the symbolic sequences LRRRR and LRLRR imply that the basic 5-cycle OLR4 collides

with the border by the first and the last points, while the 5-cycle OLRLR2 of complexity level

two collides by the third and the last points, respectively.

6.2. The connected map: Augmented period adding

In the discontinuous map (1), the period adding structure does not involve any repelling

cycles, only attracting cycles and Cantor set attractors. In the connected map (1), all these

attracting cycles and Cantor set attractors are preserved, but in addition the map has an

infinite number of hidden orbits, which leads to a complex augmented period adding structure
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that relates closely to continuous maps. Below we describe this structure in detail. In (i),

we first identify the hidden orbits appearing at one particular border collision bifurcation

in this structure. In (ii), we briefly recall some basic facts about parent-child relations in

Farey trees, then we use these to identify the hidden orbits appearing at other bifurcations

in the augmented period adding structure, based on the connection to parents in (iii), and

the connection to children in (iv).

(i) The hidden orbits appearing at the border collision bifurcation of OR

In map (2), the period adding structure is supplemented by hidden orbits, as shown in

Fig. 7(b). For µR > 0 no hidden cycles exist, although the map has a pre-image f−1L (0), and

in fact, an infinite sequence of pre-images f−kL (0), k > 1. However, as f−kL (0) < 0 for all k

and the values of f(0) are positive, i.e., f−kL (0) 6∈ J , no orbit started at zero or at any of its

pre-images can return to zero. Still, it is not true that no hidden orbits exist in this case. In

fact, there are an uncountable number of distinct hidden orbits, starting at zero or any of its

pre-images under f−1L . Although there exist only a countable set of initial values for these

orbits, once an orbit arrives at zero, it can take any value from the interval [µR, µL] (i.e.,

an uncountable set) and then the forward iterations of this value will be performed by fR.

Clearly all these orbits converge to the stable fixed point OR. Nevertheless, their existence

is a difference between the connected map (2) and discontinuous map (1).

As µR passes through zero, the pre-image f−1R (0) appears, as well as the infinite sequence

of further pre-images f−kR (0), k > 1 (see Fig. 8(a)). Accordingly, at µR = 0 the infinite family

of hidden cycles OCRk , k > 1, appears, as given by Eq. (12). Note that for each k the cycle

OCRk exists not for all values of µR < 0, but only as long as all the involved pre-images

of zero are located inside the invariant absorbing interval [fR(0), fL(0)] = [µR, µL]. Since

the sequence of pre-images f−kR (0) of zero is monotonously increasing for increasing k, the

condition for a hidden cycle to exist is f−kR (0) < fL(0) and the bifurcation causing this cycle

to disappear occurs when

f−kR (0) = fL(0). (15)

It follows from Eqs. (11) and (15) that for each k > 1 the hidden (k + 1)-cycle OCRk exists

in the parameter interval[
µ
(k)
R , 0

)
where µ

(k)
R =

2(aR − 1)

a−kR − aR

. (16)

The latter equation implies also that µ
(k)
R < µ

(k+1)
R for all k > 1 and limk→∞ µ

(k)
R = 0.

Therefore, at each fixed µ
(1)
R < µ∗R < 0, a finite number of hidden cycles OCRk exists, with

1 6 k 6 kmax, and kmax depending on µ∗R as determined by the condition

µ
(kmax)
R 6 µ∗R < µ

(kmax+1)
R . (17)
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(a) (b)

Figure 8. A closer look at the region µR ∈ [−1, 0] from Fig. 7(b). The magnified bifurcation

diagram (a) shows pre-images of zero f−k
R (0), k = 1, . . . , 150, appearing at µR = 0 and

disappearing at µ
(k)
R . For µR ∈ [µ

(k)
R , µ

(k+1)
R ), hidden cycles OCR, . . . , OCRk exist. From

this, (b) shows the stable cycle OLR3LR4 and the coexisting hidden cycles OCR, OCR2 ,

OCR3 at the parameter value µ∗
R = −0.385 as marked in (a). Shown for parameter values

aL = aR = 0.9, µL = µR + 2.

As an example, Fig. 8(b) shows three hidden cycles OCR, OCR2 , OCR3 coexisting with the

stable cycle OLR3LR4 at the parameter value µ∗R = −0.385 satisfying µ
(3)
R 6 µ∗R < µ

(4)
R . Note

also that these are not the only hidden orbits existing at the considered parameter value.

Indeed, the existence of at least two hidden cycles OCσ and OC% implies the existence of a

countable number of further hidden cycles and an uncountable number of aperiodic hidden

orbits associated with symbolic sequences resulting from finite and infinite concatenations

of Cσ and C%, respectively. Evidently, all these orbits appear via the bifurcation occurring

at µR = 0.

(ii). Parent-child relations in Farey trees

So far we have described which hidden orbits (periodic and not) appear at the parameter

value µR = 0 where the fixed point OR undergoes a border collision bifurcation and

disappears. To generalize these results and to explain what happens at border collision

bifurcations of all other stable cycles forming the period adding structure, we need to recall

some basic facts about Farey trees. The classical Farey tree results from a limiting case of

Farey sequences. The Farey sequence Fm of rank m > 1 is defined as a sequence of irreducible

fractions with denominators not larger than k, increasing monotonically from 0
1

to 1
1
. It is

known that any three successive fractions a1
b1

a2
b2

, and a3
b3

in Fm, m > 2, satisfy the Farey
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addition rule a2
b2

= a1+a3
b1+b3

(this result was proven initially by Haros [26] and independently by

Cauchy [27], not by Farey). In this context, the fraction a2
b2

is called the mediant of a1
b1

and
a3
b3

. Then, the Farey tree is defined as a directed graph consisting of nodes corresponding to

fractions in the Farey sequence F∞ = limm→∞ Fm. For any three successive fractions a1
b1

a2
b2

,

and a3
b3

in Fm, m > 2, the graph contains the edges from the nodes corresponding to a1
b1

and
a3
b3

to the node corresponding to their mediant a2
b2

.

A closely related structure, referred to in [11] as the symbolic sequence adding scheme,

can be obtained by replacing fractions in a Farey tree by symbolic sequences and the Farey

addition by their concatenation. In the simplest case, if the fractions 0
1

and 1
1

in the starting

nodes of the Farey tree are replaced by the letters L and R, this structure specifies the

symbolic sequences corresponding to cycles in a period adding bifurcation structure between

the domains of the fixed points OL and OR. If the graph contains edges from the nodes

corresponding to symbolic sequences σ and % to a node corresponding σ%, then σ and %

are called the parent sequences of σ%, and σ% the child sequence of σ and %. Basically,

for any given sequence $ in the symbolic sequence adding scheme, its child-sequences are

the sequences belonging to the nodes in the graph to which there is an edge from the node

associated with $. It can be shown that each sequence σ% with the parent sequences σ and

% has two infinite families of child-sequences, namely

`(σ%) =
{
σ(σ%)k | k > 1

}
and r(σ%) =

{
(σ%)k% | k > 1

}
. (18)

For example, the sequence LR associated with a 2-cycle is a child-sequence of the starting

sequences L and R (the only common child of these sequences). Hence, the families of

child-sequences of LR are

`(LR) =
{
L(LR)k | k > 1

}
and r(LR) =

{
(LR)kR | k > 1

}
. (19)

Each of the starting sequences L, and R has only one family of child-sequences, namely

r(L) =
{
LkR | k > 1

}
and `(R) =

{
LRk | k > 1

}
. The parent-child relationship between

symbolic sequences forming a symbolic sequence adding scheme is rarely used in nonlinear

dynamics, but turns out to be essential for the description below.

(iii). Connection of a cycle to its parents via hidden cycles

Let us consider now the hidden 2-cycles OCR and OCL (see Fig. 9(a)). As already mentioned,

the cycle OCR exists in the parameter interval between µR = 0 (which corresponds to the

border collision bifurcation of the fixed pointOR) and µ
(1)
R (see definition in (16)). Recall that

the latter bifurcation is determined by the condition that the point of the hidden cycle given

by xCR
1 = f−1R (0) collides with the boundary of the invariant absorbing interval µL = fL(0).

Clearly, the condition f−1R (0) = fL(0) implies fR(fL(0)) = 0, which is the condition causing

the non-hidden 2-cycle OLR to collide with the border from the left side. In the discontinuous

map (1), this bifurcation is associated with the disappearance of a stable 2-cycle OLR. In

24



the connected map (2), the colliding point of the 2-cycle moves from a stable to a vertical

branch, so that the cycle persists but becomes hidden.

Similarly, for the other hidden 2-cycle OCL we find that it exists in the parameter range

between the border collision bifurcation of the fixed point OL and the other border collision

bifurcation 2-cycle OLR which is determined by the condition fL(fR(0)) = 0, or equivalently

f−1L (0) = fR(0). Accordingly, in the connected map (2) the parameter interval corresponding

to the stable 2-cycle OLR is surrounded by parameter intervals corresponding to the hidden

2-cycles OCR and OCL. These intervals extend from the border collision bifurcation of OLR

to the border collision bifurcation of the fixed points associated with the parent sequences

of LR, namely L and R.

To describe the corresponding structure more generally, let us introduce the following

notation:

• For a cycle O$, let ξL
$ and ξR

$ be its border collision bifurcations from the left and from

the right side, respectively.

• For a symbolic sequence $, let κL($) and κR($) be symbolic sequences resulting from

$ by replacing its colliding letters L and R, respectively, by the letter C.
Then, let us now consider a cycle Oσ% in the period adding structure of the discontinuous

map (1). Let σ and % be the parent sequences of σ%. Then

(p1) In the connected map (2), at the border collision bifurcations ξL
σ% and ξR

σ% the stable

cycle Oσ% disappears and the hidden cycles OκL(σ%), OκR(σ%) appear.

(p2) The hidden cycle OκL(σ%) exists in the parameter interval between the border collision

bifurcations ξL
σ% and ξR

σ . Similarly, the existence interval of the hidden cycle OκR(σ%) is

confined by the border collision bifurcations ξR
σ% and ξL

% .

Let us illustrate this with a few examples. It is known that if fL and fR are increasing

functions, the basic cycles OLRk , k > 1, collide with the border by the first and the last

points. For the 5-cycle OLR4 , replacing the colliding letter L and R by C, we obtain

κL(LRRRR) = CRRRR, κR(LRRRR) = LRRRC ≡ CLRRR. (20)

Therefore, the hidden 5-cycles appearing at the border collision bifurcations of OLR4 are

OCR4 and OCLR3 (see Fig. 9(b)). Since the points of hidden cycles are given by pre-images of

zero, it is easy to see that

xCR4

0 = 0,

xCR4

1 = f−4R (0),

xCR4

2 = f−3R (0),

xCR4

3 = f−2R (0),

xCR4

4 = f−1R (0),

xCLR3

0 = 0,

xCLR3

1 = f−1L (f−3R (0)),

xCLR3

2 = f−3R (0),

xCLR3

3 = f−2R (0),

xCLR3

4 = f−1R (0).

(21)

Taking into account that the hidden cycles exist if µR < 0 and the corresponding pre-images

of zero are located inside the absorbing interval I = [µR, µL], we conclude that the existence
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condition for the cycle OCR4 is

µR < 0, f−4R (0) < µL (22)

and the existence condition for the cycle OCLR3 is

µR < f−1L (f−3R (0)), f−3R (0) < µL. (23)

Indeed, these conditions follow immediately from the location of the points of the cycles with

respect to the boundaries of the absorbing interval I. In particular, for the cycle OCLR3 the

points located most far away from the border point x = 0 and hence most closely to the

boundaries of I are xCLR3

1 and xCLR3

2 , which implies conditions (23).

(a) (b)

Figure 9. Bifurcation diagrams for the connected map (2) showing: (a) the 2-cycle OLR,

surrounded by the hidden 2-cycles OCL and OCR; (b) the 5-cycles OLRLR2 and OLR4 ,

surrounded by the hidden 5-cycles OCLRLR, OCRRLR, and OCLR3 , OCR4 , respectively. Show

for parameters aL = aR = 0.9, µL = µR + 2.

Next, recall that the parent sequences of LR4 are LR3 and R. It follows from Eq. (22)

that the cycle OCR4 exists in the parameter interval confined by the parameter values

determined by the conditions

fR(0) = 0, (24)

f−4R (0) = fL(0) ⇔ f 4
R(fL(0)) = 0. (25)

As one can see, Eq. (24) corresponds to the border collision bifurcation of OR (the fixed

point associated with one of the parent sequences of LR4), while Eq. (25) corresponds to a

border collision bifurcation of OLR4 . Similarly, Eq. (23) implies that the existence interval

of the cycle OCLR3 is confined by the parameter values determined by the conditions

fR(0) = f−1L (f−3R (0)) ⇔ f 3
R(fL(fR(0))) = 0, (26)
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fL(0) = f−3R (0) ⇔ f 3
R(fL(0)) = 0. (27)

Here, Eq. (26) corresponds to the other border collision bifurcation of OLR4 , and Eq. (26) to

the border collision bifurcation of the 4-cycle OLR3 which is associated with the other one of

the parent sequences of LR4. This proves the statements (i) and (ii) in the particular cases

σ = LR4.

In addition, Fig. 9(b) illustrates the appearance of hidden cycles at the border collision

bifurcations of the 5-cycle OLRLR2 . Here, it follows from

κL(LRLRR) = LRCRR ≡ CRRLR (28)

κR(LRLRR) = LRLRC ≡ CLRLR (29)

that the existence interval of the cycle OLRLR2 is surrounded by the intervals where the

hidden cycles OCR2LR and OCLRLR exist. As one can see in Fig. 9(b), these intervals reach

from the parameter values corresponding to the border collision bifurcations of OLRLR2 to

the border collision bifurcations of OLR and OLR2 (recall that LR and LR2 are the parent

sequences of LRLR2).

The connectedness of the map makes it possible to provide a general proof of (i) and

(ii), but this is beyond our scope here. To give a basic idea of the proof, it is simple to show

that hidden cycles OκL(σ%), OκR(σ%) appear at the border collision bifurcations ξL
σ% and ξR

σ%,

as the connectedness of the map implies that when a fixed point disappears from the x > 0

branch of the map, it must either persist as a hidden fixed point or else co-annihilate with

one. More involved is to prove that the cycles OκL(σ%), OκR(σ%) appear at the border collision

bifurcations ξL
σ and ξR

% , using the fact that any cycle is a concatenation of its parents, not

only in the sense of symbolic sequences, but the geometrical shapes of the parents that are

glued together (see Fig. 10(a)), meaning the most outer points of the child cycle are the

images of the colliding points which are common for the parent and child cycles.

(iii). Connection of a cycle to its children via hidden cycles

The results obtained so far make it possible to specify the hidden orbits appearing at any

border collision bifurcation in the period adding structure in the connected map (2). Indeed,

as already mentioned, each sequence σ% in the symbolic sequence adding scheme which has

the parent sequences σ and %, has two infinite families of child-sequences, namely σ(σ%)k

and (σ%)k%, k > 1. Applying (p1) and (p2) to the corresponding cycles, we conclude that:

(p3) At the border collision bifurcations ξL
σ%, in addition to the hidden cycle ξL

κL(σ%), also the

infinite family of hidden cycles OκR(σ(σ%)k) appears. Similarly, at the border collision

bifurcations ξR
σ%, in addition to the hidden cycle ξR

κR(σ%), also the infinite family of hidden

cycles OκL((σ%)k%) appears.
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(a) (b)

Figure 10. (a) Parent cycles OLR (close to the border collision bifurcation ξLLR), OLR2

(close to ξRLR2), and their child cycle OLRLR2 . Colliding points are marked. (b) Bifurcations

diagram for the connected map (2), showing hidden cycles OC(RL)k and OC(LR)k , k =

1, 2, 3, 4, appearing at the border collision bifurcations ξRLR and ξLLR of the 2-cycle OLR.

Additionally, the cycles OL(LR)k and O(LR)kR, k = 1, 2, 3, 4, are shown, associated with the

child-sequences of LR. Shown for parameter values aL = aR = 0.9, µL = µR + 2.

(p4) Moreover, at the same bifurcations, all irreducible concatenations of cycles mentioned

in (i) and (iii) appear, as well as their concatenations with other hidden cycles existing

at these parameter values.

As an example consider the hidden orbits appearing at the border collision bifurcations

of the 2-cycle OLR. As already mentioned, the parent sequences of LR are L and R. Using

a simple cyclic shift, it can be shown that the families of the child-sequences of LR given by

Eq. (19) can be written as

`(LR) =
{
L(LR)k | k > 1

}
≡
{
RLL(RL)k−1 | k > 1

}
, (30)

r(LR) =
{

(LR)kR | k > 1
}
≡
{
LRR(LR)k−1 | k > 1

}
. (31)

For k = 1, . . . , 4, these cycles associated with these sequences are shown in Fig. 10(b). Using

the algorithm described in [11], it is not difficult to determine the colliding letters in these

sequences:

RLL(RL)k−1, LRR(LR)k−1. (32)

Therefore, the hidden cycles appearing at the border collision bifurcations ξL
LR and ξR

LR are

associated with the symbolic sequences

κL(RLL(RL)k−1) ≡ C(RL)k, κR(LRR(LR)k−1) ≡ C(LR)k (33)
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respectively. As before, the points of these cycles are given by the pre-images of zero and

each of the hidden cycles exists under the conditions that all the relevant pre-images are

located inside the invariant absorbing interval [µR, µL]. It follows from (ii), (iii) that for each

k > 1 the hidden cycles OC(RL)k OC(LR)k exist in the parameter intervals[
ξL
L(LR)k , ξ

R
LR

)
and

(
ξL
LR, ξ

R
(LR)kR

]
(34)

respectively (a few examples can easily be seen in Fig. 10(a)). Moreover, as the hidden fixed

point OC exists at the border collision bifurcations ξL
LR, ξR

LR, it follows from (iv) and (33) that

these bifurcations lead to the appearance of hidden cycles OCj(RL)k , OCj(LR)k , for j, k > 1,

respectively.

6.3. The continuous and the smooth maps: Augmented period adding

In the continuous map (3) and smooth map (4) in the limiting cases (dR−dL)→ 0 and ε→ 0,

respectively, the described structure persists with the obvious modification, namely that

hidden cycles become simply unstable. The discussion below applies only sufficiently close

to these limits, and in this manner hidden orbits provide a first step in approximating these

structures in the continuous or smooth maps, but we leave deeper study of the perturbation

to (dR− dL) and ε→ 0 values away from zero to future work. Under this assumption, in the

continuous map (3), all the cycles which appear hidden at a border collision bifurcation of a

cycle Oσ in the connected maps (2), appear at the same bifurcation as well. As an example,

Fig. 11(a) shows the appearance of the fixed point OC (at the border collision bifurcations

ξL
L and ξR

R of the fixed points), the 2-cycle OCL (at the border collision bifurcations ξL
L and

ξR
LR), and the 2-cycle OCR (at ξR

R and ξL
LR). Similarly, in Fig. 11(b) six 3-cycles are shown,

namely OCL2 , OCR2 , OCLR, OCRL, OC2L, and OC2R. Among these 3-cycles,

• the cycles OCL2 , OCR2 are associated with the symbolic sequences κR(RL2) and κL(LR2)

(recall that RL2 and LR2 are the only children sequences with the length 3 of L and R,

respectively). Therefore, the cycle OCL2 exists between the border collision bifurcations ξL
L

and ξR
RL2 and the cycle OCL2 between ξR

R while ξL
LR2 .

• the cycles OCLR, OCRL are associated with the symbolic sequences κL(RL2) and κR(LR2),

respectively. As RL2 and LR2 are children sequences of LR the existence interval of

the cycle OCLR is confined by the border collision bifurcations ξL
RL2 , ξR

RL and the existence

interval of OCRL by ξR
LR2 and ξL

LR.

• the cycles OC2L, and OC2R are associated with the symbolic sequences given by

concatenations of C with CL and CR, respectively. Accordingly, the cycle OC2L exists

if both the hidden fixed point OC and the hidden 2-cycle OCL exist. Since OC exists in the

complete parameter interval between ξL
L and ξR

R , while OCL does only between ξL
L and ξR

LR,

the existence region of the hidden 3-cycle OC2L coincides with the existence region of the

hidden 2-cycle OCL. Similarly, OC2R exists in the same parameter interval as OCR.
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(a) (b)

(c) (d)

Figure 11. Bifurcations shown in (a)-(b) for the continuous map (3), and in (c)-(d) for

the smooth map (4), corresponding to those of the connected map (2) from Fig. 10. Fixed

points and 2-cycles are shown in (a) and (c), 3-cycles are shown in (b) and (d). Insets show

magnifications of the marked rectangular regions. Shown for the parameter values from

Fig. 10 with ε = 0.1, dL = −0.025, dR = 0.025. These diagrams more closely resemble

Fig. 10 as we let ε→ 0 and dL = −dR → 0.

In the smooth map (4), the overall bifurcation structure remains similar, although the

cycles appear not in border collision but in smooth flip and fold bifurcations. It can clearly

be seen in Fig. 11(c) that the 2-cycle appearing in a flip bifurcation of the fixed point OL has

one point located close to zero and the other point far away from zero in the negative domain.

Accordingly, this 2-cycle can be referred to as OCL. For increasing µR the cycle undergoes

one more flip bifurcation, becomes stable with both points located far away from zero, i.e.,

resembling OLR. Next, the cycle undergoes one more flip bifurcation, turns eventually into
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(a) (b)

Figure 12. Generic bifurcation patterns formed by one stable and 3 unstable cycles in the

smooth map (4), showing: (a) 4-cycles, and (b) 5-cycles; for parameter values aL = aR = 0.9,

µL = µR + 2, ε = 0.1.

OCR, and finally disappears in a flip bifurcation of the fixed point OR.

Similar transformations of 3-cycles of map (4) are illustrated in Fig. 11(d). By contrast

to the 2-cycle, these appear and disappear via fold bifurcations, but the overall structure

remains similar to the one in map (3), as both structures follow the same generic template

defined by the corresponding (hidden and non-hidden) cycles in the connected map (2).

It is also worth noticing that each cycle O%σ which appear stable in the period adding

structure in the discontinuous map (1) is involved, in the continuous map (3) and smooth

map (4), into a generic pattern formed by four cycles of the same period. Two of these cycles

(which are hidden in map (2)), namely OκL(%σ) and OκR(%σ) have already been discussed

above, and it has been mentioned that these cycles appear (in map (2)) at the border

collision bifurcations ξR
σ and ξL

% . Additionally, at the same bifurcations one more cycle of the

same period appears. Clearly, as this cycle is complementary both to OκL(%σ) and OκR(%σ),

the associated symbolic sequence is

κL(κR(%σ)). (35)

As an example, Fig. 12(a) shows this pattern for the 4-cycle OLR3 in map (4). The symbolic

sequences of all four involved cycles are provided by the following diagram:

LRRR
↙ ↘

LRRC CRRR
↘ ↙
CRRC

(36)
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Similarly, for the patterns related to 5-cycles OLRLR2 and ORLRL2 of map (4) shown in

Fig. 12(b), the corresponding diagrams are given by

LRLRR
↙ ↘

LRLRC LRCRR
↘ ↙
LRCRC

RLRLL
↙ ↘

RLRLC RLCLL
↘ ↙
RLCLC

(37)

6.4. The different maps compared

As in the examples discussed earlier, the bifurcation structures in the continuous map (3) and

in the smooth map (4) are more complicated than the one in the discontinuous map (1). As

already mentioned, the standard period adding structure in map (1) is formed by attracting

cycles and Cantor set attractors. In maps (3) and (4), no Cantor set attractor exists, and not

every attracting cycle existing in map (1) is present in maps (3) and (4). Instead, these maps

exhibit other invariant sets, in particular, attracting and repelling cycles, chaotic attractors

and repellers.

Indeed, an attractor existing in the discontinuous map (1) is preserved in the continuous

map (3) iff its points are located sufficiently far away from the border point x = 0. Therefore,

a transition from map (1) to map (3) destroys all Cantor set attractors and also many

attracting cycles (since these appear via border collision bifurcations at x = 0, sufficiently

close to these bifurcations a point of any cycle of map (1) is close to x = 0). Instead, map (3)

exhibits repelling cycles and moreover, robust chaotic attractors containing points located on

the middle partition (dL, dR). As for the smooth map (4), is has non-robust chaotic attractors

as well as stable cycles with some points located sufficiently close to its smooth local minimum

and maximum surrounding the middle (steep) branch of the function. However, as maps (3)

and (4) approach map (2), i.e., for (dR − dL) → 0 and ε → 0, respectively, the portion of

the parameter space occupied by chaotic attractors and stable cycles (but but the parameter

intervals associated with repelling cycles) tends to zero measure. Therefore, the augmented

period adding bifurcation structure we reported above for map (2) is the limiting case of

the bifurcation structures in maps (3) and (4). Evidently, it includes all the stable cycles

existing in map (1), and all the unstable cycles existing in maps (3) and (4) in the limiting

cases (dR − dL) → 0 and ε → 0, respectively. A great advantage of map (2) is that all

its unstable cycles, being given by pre-images or zero, can be calculated much easier than

the corresponding unstable orbits of the continuous and smooth maps (omitted for that

very reason). Already for this reason, the connected map provides a useful approximation

of the continuous and smooth maps. Moreover, the diagrams (36) and (37) above show

how intuitively simple hidden orbits can be specified and tracked through border collisions,

showing the organizing principles of the overall bifurcation structure.
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7. Discussion: the role of hidden orbits

In section 4 to section 6, we have seen how hidden orbits provide unstable structures that

help define the structure of bifurcation diagrams for maps with discontinuities. In section 4

to section 5, the results are intuitively consistent with standard bifurcations, suggesting

that a topological equivalence may be possible between connected and continuous maps.

The more important conclusion is that we can carry out such a bifurcation analysis entirely

within the connected map, using hidden orbits and their concatenations, without reference

to continuous or any such equivalence being necessary.

We have shown examples of continuous and smooth maps here merely to show

qualitatively the correspondence between the bifurcations of the connected and continuous

maps. Regularizations that seek a continuous map equivalent in some limit to a discontinuous

map are non-unique, in terms of the gradients of the continuous maps sought and their

order of differentiability, and even how the limit is defined in which the discontinuity forms.

Notably, however, our results suggest that in the limit there exists a well-defined structure,

and that it is uniquely defined by the connected map.

In section 6, we saw not only how hidden orbits can be used to gain more information

about the structure of cascades known to occur in discontinuous maps, but also that this

limit can be used to study (as an approximation) the bifurcations of steep continuous maps

that have not been studied to date.

The results for the simple bifurcations in section 4 to section 5 in hindsight seem

intuitive, and perhaps even obvious: given that the connected map is clearly the limit

of some continuous map, as a segment of that map becomes increasingly steep, unstable

orbits visiting that segment will bunch up until they lie on the discontinuity. What is not

obvious is that this limiting behaviour should be useful, i.e. that it should provide well-

defined orbits, but we have shown that hidden orbits provide precisely that, sequences of

orbits that unambiguously form well-defined branches of bifurcation diagrams. Importantly,

the concatenations of hidden orbits are vital to this, despite having peculiar properties such

as the fact they they overlap and are infinitely unstable.

Maps with discontinuities continue to find new applications in science and engineering,

from early abstract models to study chaos such as [28], to now appearing in the study of

grazing in impact oscillators such as [29], or due to grazing in models of homeostasis in sleep-

wake processes such as [30]. Examples like these exhibit a wide range of bifurcation sequences

like those studied here, but in which the presence of hidden orbits is yet to be studied. In

many cases like the impact maps in [29] and sleep-wake maps in [30], more detailed physical

modeling can suggest that a discontinuous map is merely an approximation for a continuous

function, and little study has so far been made of the bifurcations of those continuous and

typically highly nonlinear maps, for which connected maps and their hidden orbits, rather

than strictly discontinuous maps, may provide a useful first approximation.
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Interestingly, in order to usefully characterize the dynamics, hidden orbits do not

necessarily need to represent physically accessible states of the system being modelled. In

the example of the flip bifurcation in Fig. 2, the hidden orbit defines the basin boundary of

the attractors. For a given application such an orbit need not necessarily represent a physical

motion, but might occupy a region of state space that is not reachable physically, or may

only be a pseudo-trajectory of the system. For example, in the return maps derived from

Lorenz or Cherry flows [1, 2, 3, 4], a hidden orbit corresponds to a pseudo-trajectory that

passes through a saddlepoint between different branches of its stable and unstable manifolds,

not a proper orbit of the flow itself, and yet significant in defining a region of orbits that are

not accessible in the return map.

8. Closing remarks

We have presented the first steps towards an understanding of bifurcations in discontinuous

maps where the discontinuity is treated as a connecting vertical (i.e. set-valued) branch. We

have shown, as suggested in [16], that hidden orbits in such maps simplify the description of

these bifurcations by bringing them closer to the familiar bifurcations of continuous maps.

In particular, we have shown here how behaviours special to discontinuous maps — involving

border collisions where periodic points are seemingly able to appear as if from nowhere, in

finite or infinite quantities, or accumulating as infinite sub-sequences of such bifurcations —

fit with the behaviour of continuous maps when hidden orbits are taken into account.

It is worth emphasizing that the connected map, and the introduction of hidden orbits,

do not undo what has been done in the study of discontinuous maps to date, indeed

quite the contrary. As remarked earlier (in section 2.2), adding connectedness across the

discontinuity only adds to, not subtracts from or alters, the bifurcation structures known

from discontinuous maps.

What this does suggest, however, is that a more rigorous correspondence could be

proven to exist between the dynamics of connected discontinuous maps and continuous or

differentiable maps with a steep branch. This permits more rigorous and complete use of

piecewise-linear maps to approximate smooth nonlinear maps with steep changes.

The obvious advantage of piecewise-linear maps is that their orbits and bifurcations

can be expressed explicitly and exactly. Were one to analyze the smooth map presented

here for its own sake, it would be difficult to provide a complete description of its intricate

and densely crowded bifurcation structures. The connected map, on the other hand, has

a bifurcation structure that can be described explicitly and is easy to characterize. That

structure is partly described by standard theory of discontinuous maps, but the connected

map ensures that the full topological bifurcation structure of the smooth map (in particular

highly unstable orbits created by the steep branch) is preserved.

The clearest demonstration of this is in section 4 and Fig. 2. The border collision
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bifurcations seen in Fig. 2(a) are not in any way comparable to the bifurcations of continuous

maps, and yet simply by including the discontinuity as a connecting vertical branch, we

obtain the ‘hidden orbits’ of the discontinuous maps by which the bifurcations in Fig. 2(b)

are recognisable simply as fold and flip bifurcations, clearly approximating the fold and flip

bifurcations of the continuous and smooth maps in Fig. 2(c)-(d).

In section 4, omitting hidden orbits would miss only a small number of unstable branches

that help complete the bifurcation diagrams. In section 5 and section 6, by contrast, omitting

hidden orbits would miss an infinity of unstable branches, including a chaotic repeller in

section 5 and section 6. Accepting the set-valuedness of the connected map would seem to

be a small price to pay to restore these features in the form of hidden orbits. In the period

adding structure, we have shown how to provide a complete specification of all the existing

hidden orbits using the parent-child relationship in the symbolic sequence adding scheme.

A more ambitious goal in the future would be to derive estimates of how far the orbits

of a smooth map with a vertical branch lie from the hidden orbits of its discontinuous

approximation. At the very least, the connected map can provide initial values from which

to seek numerical solutions of a smooth map. But ultimately it may be possible to derive

asymptotic approximations of solutions of smooth maps, which to leading order are just the

solutions of a connected but discontinuous map, as suggested in [31] for the corresponding

situation in dynamical flows.

We can also turn this picture around, and ask what continuous maps can tell us about

discontinuous ones. Continuity is of course a powerful property in forming theorems for

dynamical systems, and much of the extensive theory that exists for continuous maps is not

known to hold in the presence of discontinuity. The well-known proofs of the Sharkovsky

ordering for continuous maps, for example, do not hold for the discontinuous map (1), yet

in [16] the ordering is conjectured to hold for the connected map (2). Indeed we expect,

based on the results we have presented here, that many important theorems of dynamical

systems can be extended to require only connectedness rather than continuity, something

which would substantially increase their applicability to nonlinear dynamical systems. This

approach follows the philosophy that A.F. Filippov applied so successfully to flows with

discontinuities (as remarked in [16]), but which has taken longer to be turned systematically

to maps with discontinuities. The promise that such extensions are possible is lent weight

by the results here, which show how closely the connected map reproduces all of the periodic

structures of continuous or smooth maps, through the most intricate of bifurcations.
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Appendix A. Classification of the maps

If ones seeks a complete classification of the bifurcations of the map (2) (or equivalently of

(1) or (3) or (4)), there are 32 distinct generic classes to consider, associated with different

stabilities of the three branches of the map (i.e. left, right, and vertical). These come from

having four cases for each slope aR and aL, namely whether they are positive or negative and

have modulus greater or less than unity, while the two possible signs of µL − µR determine

whether the map has a ‘negative jump’ or ‘positive jump’ (i.e. a slope of +∞ or −∞) at

x = 0.

These generic classes can be represented as follows in Figures A1 and A2. Within

these we can identify monotonic shapes (classes 1,2,5,6,27,28,31,32), unimodal shapes (classes

3,4,7–10,13,14,19,20,23–26,29,30), and bimodal shapes (classes 11,12,15–18,21,22). Each is

shown at the bifurcation value µR = 0. Sections 4, 5, and 6, show examples taken from the

cases 27, 8, and 22, respectively.

Unfortunately, while we include these as a useful starting point for more general

bifurcation analyses, there is no simple connection between the slopes defining these classes

and the bifurcations they exhibit. It is not even simple to derive whether the bifurcations in

each class are local or global without some analysis. In a continuous map a border collision

bifurcation is always local, since all the orbits involved in the bifurcation are located in a

set of small intervals around the border point and its pre-images, and these all shrink to

zero size as the bifurcation value is approached. In discontinuous maps, regardless of the

slopes outside of the discontinuity, this localization no longer holds, because the jump at

the discontinuity prevents these intervals shrinking to zero. As a result, border collisions in

discontinuous maps may be global as well as local, and this remains so in the connected form

(2).

A more useful classification would therefore consider the number of rank-one pre-images

of x = 0 before and after a bifurcation. In the connected map (2) this number may be zero,
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Figure A1. Generic shapes of map (2) in the “positive jump” configuration.

one, two, or three (including that x = 0 can map to itself). Note that only those pre-images

that are reachable from the interval J are involved in the creation of hidden orbits. Hence a

classification may be based on the number of pre-images of zero (of any rank) appearing at a

bifurcation inside J . If, for example, this number increases from zero to one, the bifurcation

leads to the appearance of a single hidden orbit. But if at least two pre-images appear

inside J at the bifurcation, this leads immediately to the appearance of an infinite number

of periodic and aperiodic hidden orbits (see section 3.3).
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Figure A2. Generic shapes of map (2) in the “negative jump” configuration.
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