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Decisions made by two (or more) independent players in a dynamical system can result

in an indeterminable, yet non-stochastic, outcome. The mechanism can be presented as a

thought experiment in which two pilots attempt to steer a spacecraft but, in stabilizing its

pitch and yaw, lose all knowledge of its forward motion. It is useful to think of this pi-

lots’ dilemma as a classical analogue of Schrödinger’s “cat in a box” thought experiment. In

both, the outcome of a life or death scenario is indeterminate until it is directly observed, but

in place of the probabilistic radioactive source in Schrödinger’s problem, the discontinuous

action of the pilots’ decisions create the classical indeterminacy. We discuss the wider impli-

cations of the phenomenon, such as predicting indeterminate scenarios in optimal transport

or other network problems. The behaviour only becomes apparent when a systems dynamics

is sufficiently taken into account.
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I. INTRODUCTION

In this short paper we present a form of uncertainty that arises in classical systems due to
switching between regimes of different behaviour. Viewing these regimes as different decision
states, the phenomenon constitutes a macroscopic breakdown of the independence between
two decisions, making their outcomes appear non-rational and ultimately indeterminable.
The uncertainty has its origin neither in stochastic nor chaotic processes, nor is it due to
deterministic non-rational behaviour. Instead it is geometrical in origin, arising due to a
sensitivity to parameters, at the intersection of two or more thresholds where a choice is
made between alternate regimes of dynamics.

The mathematical scenario we present is very general, but can be clearly expressed as
a thought experiment. Two pilots are on a spaceship headed for Mars when their craft is
crippled by some catastrophe. Their only means of control are a yaw thruster and a pitch
thruster. One pilot will control each thruster, but their manual switches lie at distant ends
of the ship, and with their electrics down they are unable to communicate. Can the pilots
navigate their way to Mars successfully? We shall show that in successfully steering towards
Mars, the pilots lose all knowledge of their forward acceleration, and hence any ability to
safely complete their mission.

An instructive comparison can be made with Schrödinger’s thought experiment illustrat-
ing quantum uncertainty [20]. In this, the life or death of a cat inside a box is determined
by whether a radioactive source decays and triggers the release of a poison. Subject to the
laws of quantum mechanics, the cat cannot be determined as either alive or dead until it
is directly observed upon opening the box. In our problem it is instead the pilots’ fate at
stake, as the outcome of their decisions on the ship’s forward motion is indeterminable de-
spite knowing their individual behaviours at any instant. We shall make a closer comparison
once we have described the phenomenon of interest.

When the physical conditions determining a system’s state change abruptly, we observe
these as discontinuities in the equations governing their evolution. Discontinuities lead
to indeterminacies in a system’s solutions, but these are often resolvable by more precise
modeling. We shall show that there are certain situations where more precise modeling will
fail to resolve the indeterminacy, as an instability renders the outcome sensitive beyond all
orders to the slightest perturbation.

In the context of the stricken spaceship, each pilot is able to apply an appropriate sequence
of thrusts to achieve their required pitch and yaw. It is clear that their precise pattern of
incremental thrusts may be rather complex, but it is less clear that their forward motion
will turn out to be entirely indeterminable, becoming infinitely sensitive to everything from
the precise processes and sequences of decision making to the behaviour of the thrusters.

There are many alternative ways we might have formulated the problem that point to
likely real world applications that involve decision making, control switching, or routing
problems. A particularly general set up is to consider the transport of two resources across
a network, with the choice of how to route the two resources taking the place of the pilot’s
decisions, creating an indeterminacy in outcomes that would not be obvious in the usual
ways of setting up an optimal transport problem.

We briefly discuss transport and other related problems section V. In section II we set up
the piloting game to illustrate the phenomenon, before providing an overview explanation
from macro and micro scopic perspectives in section III and section IV.
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II. THE PILOTS’ DILEMMA

Let us set down equations for the scenario of the pilots’ dilemma. Let u and v represent
the pitch rate and yaw rate of a spaceship, respectively, and w represent its forward velocity.
The ship’s two pilots will attempt to stabilize the pitch and yaw rates, presumably around a
desirable absolute orientation. We shall assume the pilots respond to these rates of change
by thrusting to counteract any motion heading away from their desired trajectory.

With a vector u = (u, v, w) giving the rates of pitch, yaw, and forward motion, respec-
tively, the actions of the pilots take the form of an acceleration Bu = (Bu, Bv, Bw) applied
by the thrusters (using ‘B’ because these will be made up of Boolean decision functions).

These accelerations depend on the current thrust mode at any moment as decided by the
pilots. To encode these decisions we will define two Boolean variables,

λu = step(u− u∗) & λv = step(v − v∗) , (1)

where u∗ and v∗ are desirable thresholds at which to switch the thruster modes, and ‘step’
is the Heaviside step function (1 for positive argument and 0 for negative, and for now we
leave step(0) defined only as lying between 0 and 1). The accelerations will then be given by
functions Bu = Bu(λu, λv) of these Boolean variables. It is easy to see that these functions
take the form

Bu(λu, λv) = λu(1− λv)Bu(1, 0) + λuλvBu(1, 1)

+ (1− λu)λvBu(0, 1) + (1− λu)(1− λv)Bu(0, 0) , (2)

such that plugging in λu and λv as 0 or 1 on the righthand side yields the appropriate
decision output Bu(0, 0), Bu(1, 0), Bu(0, 1), or Bu(1, 1).

This allows us to write the acceleration resulting from the pilots’ decisions as

d
dt
u = Bu(λu, λv) . (3)

A factor multiplying the term ‘λu’ in (2) represents an action taken if the craft is pitching
upward, while a factor multiplying the term ‘1 − λu’ represents an action taken if pitching
downward, and so on, so that the coefficients in (2) constitute logical terms as summarized
in fig. 1, while the overall function Bu provides the thrust they result in.
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*

yaw rate

high, v>v
*

u
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“ x λv ”

yaw rate

low, v<v
*
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B(0,1) B(1,1)

B(0,0) B(1,0)

FIG. 1. Boolean terms that contribute to each B(λu, λv).

The expressions (2) and (3) will be useful in a number of ways. Note, however, that
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(3) describes only the instantaneous thrust, and will not describe the acceleration over a
sustained period of motion, which instead requires a different set of equations.

Say that, over a given duration, the thrusters spend a fraction of time µij in each mode
B(i, j), then the motion is given by

d
dt
u = µ11Bu(1, 1) + µ10Bu(1, 0) + µ01Bu(0, 1) + µ00Bu(0, 0) , (4)

with a normalization condition µ11 + µ10 + µ01 + µ00 = 1.

We may describe (3) and (4) as the microscopic and macroscopic equations of motion,
respectively. While the motions follow (3) at each instant, over any interval of time the
motion must instead follow (4), and only under special conditions are the two equivalent.

It is with equation (4) that the fate of our pilots is placed in jeopardy. Their first objective
is to stabilize their pitch and yaw motion to u = u∗ and v = v∗, and hence achieve

d
dt
(u, v) = (0, 0) . (5)

According to (4), there are three unknowns µ11, µ10, µ01, (with one fixed by the normalization
condition µ00 = 1 − µ11 − µ10 − µ01). Only two of these µijs are fixed by (5), leaving one
undetermined. This leaves the remaining equation of motion dw

dt
in (4) able to take a range of

possible values, lying in a one-dimensional set parameterized by the remaining undetermined
µij. The ship’s forward acceleration is thus uncertain.

This is not so surprising, since despite the microscopic equations of motion (3) being well-
determined, for the macroscopic motion we have constructed a problem with two constraints
and three unknowns. The non-trivial problem arises because this indeterminacy arises in
what constitutes a singular limit: there is no unique well-determined ‘regularization’ of this
system that will resolve it. If we attempt to model the processes behind the pilots’ decision,
we shall find a whole range of possible models all consistent with the same limits (3) and
(4), and yet with inconsistent outcomes.

This is concerning, as such a scenario can arise in any process of interacting decisions
that are instantaneously given by an equation like (3), but over long times are described by
(4). Equations like these, with discontinuous terms representing abrupt systemic changes
governing how a state evolves, are increasingly common in a broad range of disciplines, from
friction to genetics to economics. Discontinuous quantities like (1) may represent anything
from decisions to transitions between different media with different physical properties; we
will remark further on applications at the end of this article. For more than two decisions
or discontinuities, moreover, the problem only worsens, but two will be enough for us here.

The pilots’ goal is to to stabilize the pitch and yaw motion, and for this to be possible
we must have (at least locally)

Bu(1, ·) < 0 < Bu(0, ·) , Bv(·, 1) < 0 < Bv(·, 0) . (6)

where the ‘·’ denotes a 0 or 1. We can assign arbitrary values to the forward acceleration
Bw(·, ·). For illustration we will take

Bu(0, 1) = 1

10
(5,−3, 13) , Bu(1, 1) = −1

10
(2, 3, 3) ,

Bu(0, 0) = 1

10
(5, 7,−5) , Bu(1, 0) = 1

10
(−8, 7,−7) .

(7)

These values are not special, and similar behaviour will be observed with randomly chosen
coefficients; these have merely been tuned slightly to highlight certain aspects of the be-
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haviour. We have taken constants in (7) for simplicity, but these could involve functions of
the displacements, velocities, and even time, provided locally the conditions (6) are satisfied.

It is important that the four vectors Bu(0, 1), Bu(1, 1), Bu(0, 0), Bu(1, 0), are linearly
independent. If they are not, the coefficients µij will be uniquely determined by (5) (because
linear dependence will fix another µij) and so the motion will be well-determined. This
means that the indeterminacy of interest arises when the pilots’ decisions are not simply
additive: it is necessary at least that the pitch thruster has some effect on the yaw motion,
or vice versa, and that they both affect the forward motion in a non-additive way (so both
thrusters firing together produce more or less acceleration than firing separately, perhaps
due to power limitations). These create a kind of nonlinearity, specifically the presence of
the bilinear λu×λv term in (3). This affects the rational interpretation of the pilots’ actions,
as we discuss in section III.

Let us start with a simple experiment, a numerical simulation that works by solving (3)
in discrete time steps. Suppose that the thrusters fire in δt = 6 minute intervals. The
accelerations are piecewise-constant, so the velocity simply updates as

u(t + δt) = u(t) + δt.Bu(λu, λv) . (8)

Let the pilots decide how to set the thrusters at the same time once every hour (i.e. every
∆t = 60 minutes, or every 10 thrusts). In the lefthand graph of fig. 2 we plot the the absolute
pitch x and yaw y (the integrals of u and v), which successfully stabilize to x ≈ y ≈ 0.
Curve (i) shows the corresponding forward displacement z (the integral of w): the ship is
accelerating forwards.
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FIG. 2. Graphs of displacement and velocity from a discrete time simulation. Graphs of z and w are shown
for the different decision models (i)-(iii) described in the text. Graphs of x, y, u, v, are shown for case (i) (and
indistinguishable for (ii)-(iii); units are in radians and radians per hour). The small offsets used to stabilize x and
y are v∗ = −0.007, with u∗ = +0.0025 in (i) and u∗ = −0.002 in (ii-iii) (this stabilizes the displacement but is
not significant for the variability in velocities). Initial conditions are x = (0.1, 0.07, 0) and u = (−1,−1, 1) π

10
.

If we change the timing of decisions there is no visible difference in the graphs for x and
y, but the graph for z changes markedly. Curve (ii) shows the outcome if the pitch is instead
reset every 9 thrusts, and curve (iii) if the yaw is instead set every 9 thrusts (while in each
case the opposite thruster is still reset every 10 thrusts). The corresponding velocities are
shown in the righthand graph, with u and v stabilizing to around zero (with the chatter of
the decisions across the decision thresholds clearly visible), while w varies substantially. The
acceleration (i.e. gradient) along the three curves is approximately: (i) +11.7, (ii) −0.95,
(iii) −8.31, in metres per hour squared.
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The timings of the pilots’ decisions markedly affect the ship’s forward motion, despite
its pitch and yaw hardly changing between the different implementations. In (i) the pilots
make their decisions after every 10 thrusts, in (ii) and (iii) they make them every 9th or 10th

thrust.
If we decrease the timestep δt between thrusts, and even let it tend to zero, the different

between the pilot behaviours in (i)-(iii) becomes infinitesimal, yet the difference in the graphs
for (i)-(iii) in fig. 2 remain unchanged, and hence contradictory. This is the singular limit
— no matter how perfectly we try to simulate or sample the motion, infinitesimal changes
in the pilots’ decision making will give entirely different outcomes. And so far we have only
considered a rather ideal discrete problem.

Figure 3 shows estimates of the acceleration for a range of models that constitute other
small perturbations of the decision making process. The white ‘hull’ region (between the
grey borders) shows the set of all behaviours that are physically possible, formed from the
convex hull of all accelerations permitted by (4) as each µij varies between 0 and 1.
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FIG. 3. Simulations of dw
dt

for different decision models: discrete model (8) with both pilots making decisions
every φ hours; rational model (12) treating {λu, λv} as independent macroscopic probabilities; hysteretic across
the decision boundaries of size δu = εu, δv = εv, or time delay across the decision boundaries of size δt = εu
across u = u∗ and δt = εv across v = v∗, with εv/εu = tan πφ

2
in both cases.

The ‘rational’ curve in fig. 3 shows the value of dw
dt

obtained if we apply the equations (5)
assuming that the microscopic equation (3) holds over a long time scale, treating λu and λv

as continuous variables (we shall say more about this interpretation in section III). This can
also be interpreted as the game theoretical equilibrium solution if the two pilots are players
in a competitive game (see e.g. [10, 18]), or the outcome if the thrusts switch on/off as step
functions but instead smoothly via steep sigmoid functions. In each of these we treat λu

and λv essentially as continuous variables between 0 and 1, and seek their values when (3)
satisfies (5), which has a unique solution.

The remaining graphs in fig. 3 model the decision making process as having a spatial or
temporal delay between the crossing of the thresholds u = u∗ and v = v∗, and the resetting
of the thruster modes. The ‘discrete’ curve just simulates each pilot choosing the thruster
settings each time a thruster is fired, similar to fig. 2 but at intervals of δt = ∆t = φ hours.
The ‘hysteresis’ curve assumes that the pilots react after an overshoot εu and εv in the u and
v values themselves, while the ‘delay’ curve assumes the pilots react at times εu and εv after
u or v pass their desired values, and we characterize these by their ratio εv/εu = tan πφ

2
.
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The graphs are generated by running each simulation for long enough that the dynamics
finds an attractor around u ≈ u∗, v ≈ v∗, then reading off the proportions µij of time spent
in each mode Bu(·, ·) in the attractor, and using (4) to calculate the effective dw

dt
.

As before, we can shrink the absolute size of the discretization steps or the overshoots in
these models to zero, whereupon the differences between the models become infinitesimal,
and yet the difference in their outcomes will remain unchanged. The outcome is sensitive
beyond all orders to the precise way decisions are taken and implemented.

We should emphasize that the erraticness of the graphs in fig. 3, and disagreement between
them, is not an effect of inherent randomness in the system, as so far no randomness or noise
is present. To further demonstrate this we can add noise, either as random perturbations of
the state at each discretization step, or random perturbations of the time delays, resulting
in fig. 4. Noise dampens down the level of volatility seen in fig. 3, and pushes solutions to
the ‘rational’ outcome. The spatial noise is a perturbation of the discrete model, and we
see that for very small noise the ‘discrete’ curve from fig. 3 is just slightly flattened, but for
larger noise it collapses towards the ‘rational’ outcome. This shows that the sensitivity in
the system is indeed due to a geometric instability, not any underlying randomness. It also
hints — somewhat loosely — that the volatility of the system is linked to a loss of rationality
in interaction of the pilots’ decisions.

0.0           0.2            0.4           0.6            0.8            1.0

0.01

0.001

φ

h
u

ll}
spatial noise

noisy delay

0.4

0

−0.4
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dw---
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FIG. 4. The discrete simulation from fig. 3 with random perturbations to the velocity of amplitude 0.001 or
0.01 (as indicated) at each time step, and the delay simulation from fig. 3 with the delay multiplied by a random
factor between 0 and 1 each time a decision threshold is crossed. The hull an rational curve are reproduced for
reference.

III. PROBABILISTIC EXPLANATION

In (4) we introduced four macroscopic quantities µij , which were the overall proportion of
time for which the ship had its pair of thrusters in each overall mode ‘ij’ during its motion.
We can instead assign a probability, ρ, that each thruster is in its ‘1’ mode at any instant,
i.e.

ρu = probability that u > u∗ , ρv = probability that v > v∗ , (9)
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which we may write as ρu = Prob(u > u∗) and Prob(v > v∗). It must then be true that

ρu = µ10 + µ11 , ρv = µ01 + µ11 , (10)

or in lengthier notation,

Prob(u > u∗) =Prob(u > u∗ ∩ v > v∗) + Prob(u > u∗ ∩ v < v∗) ,

and

Prob(v > v∗) =Prob(u > u∗ ∩ v > v∗) + Prob(u < u∗ ∩ v > v∗) .

So while µ11 gives the probability that the pair of thrusters are both in the ‘11’ setting,
ρu and ρv give the separate probabilities that each individual thruster is in the ‘1’ setting.
The usual laws of logic tell us how to combined these. It appears in our problem that the
pilots act independently. If the probabilities ρu and ρv are independent then it is also true
that Prob(u > u∗ ∩ v > v∗) = Prob(u > u∗)× Prob(v > v∗), or in our notation

µ11 = ρuρv . (11)

Substituting (10) and (11) into the macroscopic equations (4) return us (after a little straight-
forward algebra) to the microscopic equations

d
dt
u = Bu(ρu, ρv) , (12)

just with the binary variables λu,v = 0 or 1 replaced by continuous probabilities ρu,v ∈ [0, 1].
That is, while λu,v represented decision states, ρu,v now represent the probability that the
system is in each of those states at any time.

Applying the conditions (5) then provides two conditions that uniquely fix the values
of the probabilities ρu and ρv for which the ship’s course stabilizes. This is the ‘rational’
curve in fig. 3, namely the rational outcome of the pilots’ decisions if they can be treated as
independent. If (11) holds for the macroscopic probabilities µij and ρu,v, then the rational
behaviour at any instant given by (3) or (12), is equivalent to the observed macroscopic
behaviour (4).

Alas, in our simulations we find that although the pilots’ instantaneous decisions are
made independently, this independence does not carry over to their macroscopic behaviour.
That is, (10) is found to hold, but (11) does not, and as a result (4) does not simplify to
(2). The quantities calculated from the discrete simulations from fig. 2 listed in table I show
this. The fact that the pilots act independently does not translate to independence of the
probabilities ρu and ρv, that their thrusters are in any given mode during their motion.

experiment ρu ρv ρuρv µ11 µ10 µ01

(i) 0.468 0.472 0.221 0.149 0.318 0.323

(ii) 0.549 0.490 0.269 0.290 0.259 0.200

(iii) 0.557 0.431 0.240 0.360 0.196 0.070

TABLE I. The probabilities ρu, ρv, and µij , calculated from the simulations (i-iii) from fig. 2 (recall that
µ00 + µ10 + µ01 + µ11 = 1). Note that (10) holds but (11) does not.
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IV. MICRO-DYNAMIC EXPLANATION

The source of erratic variation in the outcome of decisions is fairly simple to explain as
a general mechanism. The specific details for any given model of the decision processes are
very intricate, however, and only partially understood. When u and v stabilize to values
u ≈ u∗ and v ≈ v∗, they are actually evolving around a small but complex attractor in the
neighbourhood of the decision thresholds. A sample of these attractors are simulated in fig. 5
using different decision processes from fig. 3. Before we go on to discuss these in more detail,
for now note simply how the dynamics in the (u, v) plane, close to the decision thresholds,
varies drastically between different decision models. In (i.a-c) there is a hysteretic overshoot
in u and v before the pilots react, and as we change the relative overshoots of the two pilots,
the system evolves around an attractor with markedly different shape and periodicity (or
chaos). Similar differences are seen in fig. 5(ii.a-c) in the time-delayed model, as the relative
time delays in the pilots’ decisions is varied. The attractors formed by other processes
are more complex and their bifurcations less obvious, but examples of these attractors are
shown, simulating decisions in a discretized model in (iii), with a randomly chosen time
delay in (iv), or with a discretized model subject to random spatial perturbations in (v).

+1

0

−1
−1         0        +1

v-v
*

u-u
*

(i.a)                    (i.b)          (i.c)

(ii.a)            (ii.b)          (ii.c)

(iii)                   (iv)          (v)

FIG. 5. Attractors formed in an ε-neighbourhood of u = u∗, v = v∗, if the pilots’ decisions involve: (i) hysteresis
with φ values a) 0.3, b) 0.5, c) 0.7; (ii) time delay with φ values a) 0.4, b) 0.5, c) 0.65; (iii) discretization with
φ = 1; (iv) noisy time delay with φ = 1; (v) spatial noise with φ = 1.

To make this clearer, in fig. 6 we show the attractors in the first two rows of fig. 5, along
with the points on the graphs in fig. 3 they are responsible for. We see how, as we move
along the graphs, the shape and period of the attractors change markedly. The attractors
are undergoing bifurcations, marked by the abrupt changes in gradient of the graphs, i.e.
by how the forward acceleration dw

dt
changes with the parameter.

More in-depth but abstract investigations of these attractors and their bifurcations can
be found in [12–14]. In fact the first hints of the bifurcations behind this (in the setting
of hysteresis) date back to [3], but their full significance took longer to be realised, and
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FIG. 6. The hysteresis and delay graphs from fig. 3, showing the attractors from fig. 5 that give rise to them, at
three sample points each.

in-depth analysis has only been possible so far for a small sample of the possible decision
processes. We shall summarise what is known.

The hysteretic case is the easiest to study in detail, as is done in [3, 14]. Because there
is a spatial overshoot of εu and εv before switching occurs over the thresholds u = u∗ and
v = v∗, the dynamics bounces around inside a ‘chatterbox’ with edges u = u∗ ± εu and
v = v∗ ± εv, forming a one-dimensional map (in the space of (u, v)). An example is shown
in fig. 7(left). Although this map is discontinuous, its second return map is continuous,
but non-differentiable anywhere a trajectory enters or exits a corner of the chatterbox; an
example with the corresponding orbit is shown in fig. 7(right). At each parameter there
exists a unique periodic or chaotic attractor (like those in fig. 5(i) and fig. 7). Whenever
the attractor touches the corner of the chatterbox, corresponding to touching a vertex of
the one-dimensional return map, a discontinuity-induced bifurcation occurs, in which their
period and shape can jump abruptly. This causes an aprupt change in the portions of time
µij spend in each thruster mode, resulting in an abrupt change in the forward w dynamics.

For the other decision processes in fig. 3, the explanation for the erraticness of the pre-
dicted speeds is analogous, but more complex. In any case the dynamics in the (u, v) plane
in the neighbourhood of the thresholds u = u∗, v = v∗, is given by a two-dimensional non-
differentiable map. These can undergo a vast array of abrupt changes through discontinuity-
induced bifurcations that occur at non-differentiable points of their maps, understood in two
dimensions or above only in special cases, such as the border collision maps [7, 21].

A detailed analysis of each possible decision process, while no doubt illuminating, is
not necessary to understand the main point. As in the hysteretic case, we see that these
discontinuity-induced bifurcations constitute an abrupt change in the sequencing and timing
of decisions near the cross-hairs of the u and v decision thresholds. Each bifurcation results
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FIG. 7. The decision dynamics in the neighbourhood of u = u∗, v − v∗, for a hysteretic decision process, is
described in (u, v) space by a one-dimensional map on the boundary of the chatterbox (left) on which decisions
are implemented. We take a coordinate θ ∈ [0, 1) around the boundary of the chatterbox. The second return
map (right) is a piecewise linear map on the circle. An example orbit is shown on each.

in an aprupt change in the proportion of time µij spends in each thruster mode, result-
ing in abrupt changes in the forward w dynamics. Moreover between the different decision
processes the kinds of attractors formed, and hence the proportions µij and forward mo-
tion, are markedly different. If we proceed towards an ideal limit, letting the time between
decisions tend to zero, occurring infinitesimally close to the ideal decision threshold, the dif-
ference between these decision processes becomes infinitesimal, and yet makes no difference
to volatility of the forward (z) dynamics.

The sensitivity of the dynamics arises because these bifurcations are closely spaced with
respect to parameter variations, as seen in fig. 5 by the closeness of non-differentiable edges
in the graphs of dw

dt
varying with the parameter φ. Similar graphs would be obtained if we

varied other parameters in the model, for example the thruster constants in (7). We could,
for instance, extend the simulations in fig. 2 to produce a graph similar to fig. 3, in which φ
represents the difference in the pilots’ relative timings due to hysteresis, and we could plot
the specific attractors similar to fig. 5 behind each observed acceleration.

The simulated processes here are motivated by a range of applications. Economics and
biology often use discrete models, stepping between freeze-frames in a system’s motion.
Computer simulations are necessarily discrete. In such models a decision can be enacted at
a given step without any obvious consequences for determinacy becoming apparent. Delay
and hysteresis are particularly of concern in electronic control and rigid body mechanics.
A popular current trend, to facilitate numerical or analytical analysis, is to approximate
discontinuous quantities like (1) with smooth sigmoid functions, in the assumption this
results in a well-defined ‘regularized’ system. We see here how these approaches would
all give seemingly sensible and yet contrary resolutions to the same problem, due to an
underlying and unobvious instability. The danger is that a very rigorous study in any one of
these settings would give the illusion of uniqueness, when in fact exercising only selectivity
among the infinities of a fundamentally indeterminate and sensitive problem. In many
applications it is likely that various such practical factors are involved, i.e. elements of
discretization, delay, hysteresis, and noise, all competing to make the indeterminacy of the
pilots’ dilemma unresolvable. It is therefore important to understand when such ambiguities
exists in the first place, and just how sensitive they make the outcome.
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V. APPLICATIONS, AND RELATIONS TO OTHER KINDS OF INDETERMINACY

The decisions made by the pilots in this problem constitute discontinuities which, though
this thought experiment is classical and non-stochastic, render the pilots’ fate indeter-
minable. The rationalilty of their independent decisions on the microscopic scale is be-
trayed by the long time dynamics, forming dynamic dependencies that break macroscopic
rationality. Their choices create a point of structural instability that is sensitive to pertur-
bation beyond all orders of modelable precision, and as the macroscopic behaviour falls on
a dynamic attractor inflicted by this instability, a unique outcome becomes indeterminable.

In fig. 2 in particular, we saw what happened if the pilot’s decisions failed to be precisely
simultaneous, resulting in entirely different forward motions. This poses a particular problem
in a variety of practical scenarios, as there may exist no unique absolute sequencing of
decisions. If there is physical separation between decision makers and their apparatus, then
the perceived sequencing of decisions at different places in the system is relative, depending
on the distances involved and the speed of information travel, for example between the
pilots, their controls, and their sensors.

To help visualize this we can represent the pilot scenario as a transport problem. Consider
two raw materials produced at rates u and v, from separate mines Mu and Mv. These are
sent to either of two factories, Fu and Fv, for processing, namely Mu is sent to Fu, and Mv

to Fv, at times of low production denoted by λu = 0 and λv = 0. When production at Mu

is high, denoted λu = 1, its material is routed through both factories, and similarly for Mv

when λv = 1. The processed materials are manufactured into a final product at rate w.
The equation (2) describes the state of the network at any instant, and (3) describes how
this causes the network — the rates of mining and manufacture — to evolve. Because the
system is evolving, then under the conditions reached in the pilots’ dilemma, its behaviour
becomes indeterminate, and the rational expectation of behaviour based on the static state
(2) becomes meaningless for determining, for example, an optimal transport strategy.

0
λu

λv

Mu

w

Fu

Mv Fv
0

1

1

FIG. 8. Schematic of a transport network for the pilots’ dilemma.

The resources in question may indeed be physical materials or packages, being routed
across a network of processing stations towards their ultimate destinations, by what appears
at any instant to be the most effective path. They may be electronic in nature, whether
carrying power across machines or grids, or sending electronic instructions to send control
actions or investment and trade decisions. In many such systems the high speeds of decision
making versus the physical scales mean that simultaneity, and therefore unique sequencing,
of decisions become impossible to define, as discussed in [6] for example.

Being neither chaotic nor stochastic, the indeterminacy here is not one commonly dealt
with in dynamical systems literature. So can we look elsewhere for similar forms of behaviour
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that might provide insight?

Quantum mechanics may seem an extreme place to look for comparison, but Schrödinger’s
cat thought experiment provides a useful cnouterpoint. In this, a cat’s fate is made uncertain
due to the fundamentally probabilistic evolution of a wave function. In our pilots’ dilemma
the system is fundamentally deterministic, yet that determinacy is broken over time by the
discontinuities in the microscopic interaction of the pilots’ decisions. Their similarity is
that in both cases the indeterminacy is rooted in a problem of singular perturbations. In
quantum mechanics the limit ~ → 0 is singular, and for small ~ and a body (like a cat) of
large mass, any miniscule perturbation will cause a probabilistic wave solution to collapse
to a definite classical state (see e.g. [4, 15, 16]). In the pilots’ dilemma the singular limit
concerned is the smallness of the ε-neighbourhood of states around which the decisions are
made. In the singular limit a range of outcomes are possible, and any slight alteration in
assumptions of how the decisions proceed selects one of the infinitely many possiblities.

Such ambiguities are nothing new in static problems, particularly in rigid body problems.
The forces through seemingly simple arrangements of bodies are unsolvable, like a ladder
leaning against a wall (at a shallow angle), or a stool with more than three legs resting on
a floor (making wobbling chairs and tables on uneven floors so commonplace). These are
typically cited only as examples to avoid. To resolve them requires precise knowledge of the
compliance of the bodiies and the contact between them, meaning in effect, even for such
simple physical set ups, there are no ‘typical’ ladders or stools or floors about which to make
general statements.

A more subtle conceptual counterpoint is Bertrand’s chord paradox (see e.g. [1, 5, 19]).
Given a circle inscribed with an equilateral triangle, what is the probablity that a chord
of the circle has length larger than the side length of the triangle? Somewhat surprisingly,
Joseph Bertrand showed that the answer is not unique. It turns out that the probability
depends on the method by which the chord is chosen: again there is no ‘typical’ answer to
the problem.

The pilots’ dilemma is no different to these, showing us an indeterminacy resolvable only
by perfect knowledge of the processes and sequences of decision making. Those processes
are often complex and poorly understood, and may in fact be impossible to resolve at all.
When the indeterminacy affects the kind of attractor an evolving system will follow, its
consequences for applications become non-trivial.

One can find equations with discontinuous righthand sides of the form (3) scattered
through models of rigid body mechanics, economics, predator-prey systems, electronic con-
trol, circuits with superconducting elements, cell biology and genetics, climate, . . . too many
to review here (see e.g. [7, 12] as a starting point, or search for papers mentioning dynamics
of nonsmooth, piecewise, Filippov, sliding, or discontinuous type). They may describe deci-
sions and control actions, or represent changes in medium or environment. They seem to be
rapidly rising in usage in mathematical modeling, partly because they offer piecewise-linear
simplifications of insoluble nonlinear models, and partly because of the deceptive ease of
encoding such discontinuities into numerical simulations. A single decision or discontinuity
can create ambiguities (see [11, 12]), but not with such extreme effects as arise with two
or more discontinuities as seen here. Though a number of methods have been proposed
for resolving the dynamics at an intersection of discontinuities (e.g. [2, 3, 8, 9, 14, 17]),
they are unable to escape the ambiguity that confronts them all. Indeed the reason why
this has not come to light before is simple enough — it involves decision processes, which
mathematically are ‘discontinuous’, and invite a host of mathematical methods which, as
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we have shown, while appearing rigorous in isolation, when brought together could not be
more contradictory.

In summary, we have revealed here a form of indeterminacy, of potential relevance wher-
ever decisions or regulatory processes are involved, and we have tried to set out the particular
conditions under which it occurs. We see here that rather than trying to resolve the inde-
terminacy, it is the indeterminacy itself that reveals the most interesting result after all: a
localized, non-chaotic, non-stochastic, classical (i.e. non-quantum) source of uncertainty.
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