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Abstract. This paper attempts to present a version of Dulac’s problem for

piecewise analytic vector fields that states conditions for the birth of the num-

ber of limit cycles around certain minimal sets. A suitable model-theoretic
structure is introduced under which a qualitative investigation of the problem

is settled.

1. Introduction

In short, recall that Dulac’s Problem consists in studying if an elementary poly-
cycle of an analytic vector field admits limit cycles accumulationg onto it. This
problem raises from an attempt of studying how many limit cycles can be admit-
ted by a polynomial vector field of degree n on R2, i.e., the second part of the
Hilbert’s sixteenth problem. From the original work of Dulac it is derived that if
a polynomial differential equation has saddle connections forming a simple homo-
clinic or heteroclinic loop, then the equation has finitely many limit cycles. More
specifically, the second part of the Hilbert’s sixteenth problem can be written as:

- Determine the maximum number of limit cycles admitted by a polynomial vector
field of degree n on R2.

A preliminary step towards the solution of this part of Hilbert’s sixteenth prob-
lem is proving the following result:

- A polynomial vector field on R2 has at most a finite number of limit cycles.
This last question can be extended to analytic vector fields and it can be reduced

to the problem of non-accumulation of limit cycles, see [19]:
- An elementary polycycle of an analytic vector field cannot have limit cycles

accumulating onto it.
In 1923, the French mathematician Henri Dulac gave an incomplete proof which

was noticed much later, thus it turned out to be called the Dulac’s Problem. A
correct proof was given for quadratic vector fields by R. Bamon, [2], and the general
case was estated independently by Yu Il’Yashenko, [12], and by J. Ecalle, [8].

In addition to the study in smooth systems, cycles can be studied in the context
of piecewise smooth vector fields. In the last years, the theory of discontinuous
vector fields has become stronger with growing importance at the frontier between
mathematics, physics, engineering, and the life sciences. Interest stems, partic-
ularly, from piecewise smooth dynamical models in control theory [3], nonlinear
oscillations [1, 16], impact and friction mechanics [6], economics [14, 11], biology
[4], etc. In the present work, we consider bifurcations of a planar vector field Z
presenting discontinuities on a line L. Such system can have loops represented
by typical singularities connections where such singularities are in L resulting in
scenarios that do not appear for smooth vector fields.
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Let U be an open subset of R2 with compact closure. Consider a smooth em-
bedded submanifold Σ = h−1(0) ∩ U , where h : U → R is a smooth function for
which 0 is a regular value. In this way, Σ splits U in two open regions

Σ+ = {p ∈ U ;h(p) > 0} and Σ− = {p ∈ U ;h(p) < 0}.

A piecewise analytic vector field in U is as vector field of the form

Z(p) =

{
X(p), p ∈ Σ+,
Y (p), p ∈ Σ−,

where X and Y are analytic vector fields in U . Denote by Ωω the set of all piecewise
analytic vector fields defined as above. In Σ the following regions are distinguished

• crossing region: Σc = {p ∈ Σ; Xh · Y h(p) > 0},
• sliding region: Σs = {p ∈ Σ; Xh(p) < 0 and Y h(p) > 0},
• escaping region: Σe = {p ∈ Σ; Xh(p) > 0 and Y h(p) < 0},

where Xh(p) = 〈X,∇h〉(p) is the Lie derivative of h, at p, in the direction of X,
the same for Y h(p). Trajectories of Z through points on the switching manifold
Σ follow the Filippov convention, see [9, 10]. It means that, the trajectory of Z
through p ∈ Σc is the concatenation of trajectories of X and Y through p. For
p ∈ Σs ∪ Σe the trajectory obeys the Filippov vector field obtained by the convex
combination of X(p) and Y (p) which is tangent to Σ at p.

As seen above, Dulac’s problem was originally proposed for analytic vector fields.
In this context, polycycles admit hyperbolic and elementary singularities. A next
step in this direction is to replace analytic by piecewise analytic vector fields. So,
we propose a version of this problem for piecewise analytic vector fields considering
polycycles possessing only hyperbolic singularities and crossing Σ only in points of
Σc.

Consider a piecewise analytic vector field Z = (X,Y ) where X and Y are analytic
vector fields in R2 and assume that Z admits a hyperbolic polycycle Γ, i.e., Γ is a
closed curve composed by a finite number of segments of regular orbits and a finite
number of hyperbolic saddles of Z = (X,Y ), i.e., hyperbolic saddles of X in Σ+

or hyperbolic saddles of Y in Σ−, see Definition 1. If p ∈ Σ is a hyperbolic saddle
point of X (resp. Y ) and a regular point o Y (resp. X) then p is said to be a
saddle-regular point of Z. If p ∈ Σ is a hyperbolic saddle of both X and Y , then p
is called a saddle-saddle point of Z.

The question we want to answer is
- Can a hyperbolic polycycle Γ of Z have limit cycles accumulating onto it?

The answer for this question is no provided the polycycle is hyperbolic. If a poly-
cycle Γ does not intersect the switching manifold, then the problem reduces to the
smooth one. Thus, we also suppose Γ ∩ Σ 6= ∅. In order to answer this question
we follow the same steps for the smooth case in [19]. Our objective is to give an
extension for piecewise analytic vector fields of all concepts and results existent for
hyperbolic polycycles of analytic vector fields. It is worthwhile to emphasize the
extension performed is not a particular case of the original problem, there exist es-
sential differences in the transition maps near hyperbolic saddle points. Moreover,
we generalize the result by allowing fold points on the polycycle, i.e., by allow-
ing that some of the singularities of the polycycle to be points where the contact
between the vector field and the switching manifold Σ is of order 2.

In another words, the central point here is to prove the following theorems.
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Theorem A. A hyperbolic polycycle of a piecewise analytic vector field Z ∈ Ωω

cannot have limit cycles accumulating onto it.

Theorem B. A polycycle of a piecewise analytic vector field Z = (X,Y ) ∈ Ωω,
which singularities are only hyperbolic saddles outside of the switching manifold,
saddle-regular, saddle-saddle, fold-regular, fold-fold, and fold-saddle points, cannot
have limit cycles accumulating onto it.

This work is organized as following. Section 2 is devoted to state notations
and construction of the first return map to be studied. Theorem A is proved in
Section 3. Finally, in Section 4 the result presented in Theorem A is generalized
for polycycles presenting fold points on the switching manifold and Theorem B is
proved.

2. Preliminaries

Firstly, it is necessary to state a good normal form for a vector field near a
hyperbolic saddle point. Consider the vector field X ∈ χ∞ and suppose that
X has a hyperbolic saddle s ∈ R2. The main interest here is to study X in a
neighborhood of s so, without loss of generality, we suppose s = (0, 0) and X is
defined in a neighborhood of s, V0 ⊂ R2. Due to the hyperbolicity we also assume
s is the unique singular point of X in V0.

Let µ1 and µ2 be the eigenvalues of DX(s) with µ2 < 0 < µ1 and let r = −µ2

µ1

be the ratio of hyperbolicity of X at s. The next theorem is explored in [19]
by combining results due to Bonckaert and the Poincaré-Dulac normal form, see
[5, 18, 19].

Theorem 1. Let X be a C∞ having a hyperbolic saddle point at the origin with
hyperbolicity ratio r. Then, there exists a function N : N → N such that, in some
neighborhood of the saddle point s, X is Ck−conjugated to the polynomial vector
field

(1) x
∂

∂x
+

−r +
1

q

N(k)∑
i=1

αi+1(xpyq)i

 y
∂

∂y
,

if r = p
q ∈ Q. If r /∈ Q, X is Ck−conjugated to the linear vector field

(2) x
∂

∂x
− ry ∂

∂y
.

Remark 1. More generally, if X is an analytic vector field and r = p/q ∈ Q, then
X is conjugated to the following analytic vector field

(3) x
∂

∂x
+

1

q

(
−p+

∞∑
i=0

αi+1(xpyq)i

)
y
∂

∂y
,

where Pα(z) =
∞∑
i=1

αiz
i is an analytic function of z ∈ R, and α = (α1, α2, . . .) ∈ A,

where A is the set

A =

{
α = (α1, α2, . . .); |α1| <

1

2
, |αi| < M for i ≥ 2

}
and M > 0 is a fixed constant, see [19].
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Now, remember that Ωω denote the set of all piecewise analytic vector fields in
R2, i.e., for all Z = (X,Y ) ∈ Ωω the vector fields X and Y are analytics.

Definition 1. Let Z = (X,Y ) ∈ Ωω be a piecewise analytic vector field. A con-
tinuous closed curve Γ is said to be a hyperbolic polycycle of the vector field Z if it
is composed by a finite union of segments of regular orbits, γ1, γ2, . . . , γn, of Z and
hyperbolic saddles, p1, p2, . . . , pn, such that for each 1 ≤ i ≤ n, the ending points
of γi are pi and pi+1, respectively. Moreover, γi ∩ Σ ⊂ Σc, for all i = 1, . . . , n, if
pi ∈ Σ then pi ∈ Σc and pi is a saddle-regular or saddle-saddle point of Z for which
the invariant manifolds of the saddle are transversal to Σ at this point.

Under these conditions, there exists a first return map defined in one of the
regions delimited by the polycycle. Before the analysis of the first return map some
technical concepts are required. The following definitions concern about real maps
defined in a half-open interval.

Definition 2. The Dulac series of a map f , defined in a half open interval [0, δ),
is a formal series

f̂(x) =

∞∑
i=1

xλiPi(lnx),

where 0 < λ1 < λ2 < · · · < λn < · · · is an increasing sequence of positive numbers
tending to infinity, Pi are polynomials. Moreover, this series must be asymptotic to
f in the following sense: for any n ∈ N, there is s ∈ N such that∣∣∣∣∣f(x)−

s∑
i=1

xλiPi(lnx)

∣∣∣∣∣ = O(xλn).

Definition 3. A germ of a map f at 0 ∈ R+ is called quasi-regular if

1. f has a representative on [0, δ) which is C∞ on (0, δ), where δ is a positive
constant;

2. f admits a Dulac series.

Moreover, f is a quasi-regular homeomorphism if it is quasi-regular and P1 ≡ A,
where A is a positive constant.

It follows from the definition that the set D of the quasi-regular homeomorphisms
is a group (with the composition of maps) which contains the group Diff0 of germs
of diffeomorphisms fixing the origin, see [19].

Definition 4. A germ of a map f : [0, δ)→ R is quasi-analytic if

1. f is quasi-regular;
2. the map x → f ◦ exp(−x) has a bounded holomorphic extension F (z) in

some domain ∆b of C, defined by ∆b = {z = u+ iv ∈ C; u > b(1 + v2)1/4}
where b is a positive real number.

The first step towards the solution of the proposed problem is to construct a
first return map. Let Γ be a hyperbolic polycycle of Z ∈ Ωω and let p1, . . . , pn
be the vertices of Γ, in some cyclic order. Let σ′ ' [a, b) be a half open segment
transversal to Γ, with a ∈ Γ, and such that the first return map P of Γ is defined
from σ ⊂ σ′ → σ′.

At each vertex pi choose a local system of coordinates (xi, yi) in such way that the
axis 0xi

and 0yi are the local unstable and stable manifolds, respectively. Moreover,
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if pi ∈ Σ we assume that Σ is a curve crossing transversely both axes at the origin
and the first return map P is defined in the first quadrant of the (xi, yi)−plane.
Denote by Σ+

i the half-plane that contains the positive part of axis 0yi and by
Σ−i the half-plane that contains the negative part of axis 0yi . Consider transversal
sections σi and τi defined as following:

Case C1− pi /∈ Σ or pi ∈ Σ and Σ does not lie on the first quadrant: let σi and τi be
transversal sections to 0yi at (0, εi) and to 0xi

at (εi, 0), respectively with
εi > 0. See Figure 1 (a) and (b);

Case C2− pi ∈ Σ, Σ lies on the first quadrant and pi is a saddle of the vector field
defined in Σ+

i : let σi be a transversal section to 0yi at (0, εi) with εi > 0
and let τi be a segment contained in Σ with 0 ∈ τi. See Figure 1 (c);

Case C3− pi ∈ Σ, Σ lies on the first quadrant and pi is a saddle of the vector field
defined in Σ−i : let τi be a transversal section to 0xi

at (εi, 0) with εi > 0
and let σi be a segment contained in Σ with 0 ∈ σi. See Figure 1 (d).

xi

xi

xixi

yi

yi

yi yi

σi

σi
σi

σi

τi

τi
τi

τi

pi

pi

pi pi

(a) (b)

(c) (d)

Figure 1. Transition maps from σi to τi: (a)− (b) Case 1, (c) Case 2 and (d) Case 3.

In each one of these cases, one define a transition map Dij , j = 1, 2, 3, near the
saddle point pi, from σ+

i to τi, where σ+
i ⊂ σi with xi ≥ 0 and Di(0) = 0. Since

quasi-analyticity is preserved by diffeomorphism, there is no loss of generality in
particularizing transversal sections and in assuming εi = 1, for all i. In the cases
C1 and C2, consider σi as the image of the map xi ∈ (−δi, δi) 7→ (x, 1) ∈ R2, where
δi > 0 is small enough. In the case C3 we consider σi given by the parametrization of
Σ. Let ϕi(t, xi, yi) be the flow near the saddle and let ti(xi) be the smallest positive
time spent by the trajectory passing through (xi, yi) ∈ σ+

i to intersect τi, ti(xi)
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is called transition time from σi to τi. Then, define Di2(x) = π1(ϕi(ti(xi), xi, 1))
and Dij(x) = π2(ϕi(ti(xi), xi, εi)) for j = 1, 3 where π1 and π2 are the canonical
projections on the first and second coordinate, respectively.

After crossing τi, the trajectory of Z by p ∈ σi will cross σi+1. If τi ∩ σi+1 = ∅,
since a regular orbit makes the connection between pi and pi+1, there exists an
analytic diffeomorphism Ri : τi → σi+1 such that Ri(q) is the point in σi+1 where
the positive trajectory of Z passing through q ∈ τi intersects σi+1. If τi ∩ σi+1 6=
∅, the transition from τi to σi+1 will be just the identity map and for questions
of completeness we also denote it by Ri. See Figure 2 as an illustration of this
construction. Finally, the first return map can be written as a composition

(4) P (x) = Rn ◦Dnjn ◦ · · · ◦R1 ◦D1j1(x),

with jk = 1, 2 or 3 for k = 1, . . . , n.

σ1
σ2

σ3

τ1

τ2

τ3

p1

p2

p3

Σ

Figure 2. First return map for a polycycle with 3 saddle points. Here σ2 ⊂ Σ.

Remark 2. Observe that the structure of the first return map for polycyles of
piecewise analytic vector field is very similar to that for analytic vector fields. The
central difference is the existence of two different types transition maps, Di2 and
Di3, that does not happen in the analytic case.

Remark 3. In order to simplify the notation, the index i will be omitted in Dij,
i.e., Dij = Dj. It is possible once we analysis is local at a fixed saddle point.

3. Proof of Theorem A

A sufficient condition to prove that a hyperbolic polycycle of an analytic vector
field cannot have limit cycles accumulating onto it is to prove that the first return
map near a hyperbolic polycycle is quasi-analytic, see Chapter 3 in [19]. As seen in
Remark 2, the structure of the first return map in the piecewise analytic case is the
same as in the analytic case, a sufficient condition to prove Theorem A is to prove



ON THE DULAC’S PROBLEM FOR PIECEWISE ANALYTIC VECTOR FIELDS 7

that the first return map remains quasi-analytic. Moreover, as seen in Chapter 3
of [19], in order to prove that the first return map is quasi-analytic it is sufficient
to prove that the transition maps at hyperbolic saddle points are quasi-analytic.
In fact, the piecewise analytic case differs from the analytic one by the existence of
transition maps of the types D2 and D3. Therefore, the only thing that must be
proved is that transition maps as D2 and D3 are quasi-analytic maps. In order to
prove it, we follow the same steps used in [19] to prove that D1 is a quasi-analytic
map, for this reason, we omit some details.

The first condition in the quasi-analyticity definition is quasi-regularity. So, now
we prove that the transition maps at hyperbolic saddle points are quasi-regular
maps.

Proposition 1. Transition maps associated to hyperbolic saddle points of piecewise
analytic vector fields are quasi-regular homeomorphisms.

Proof. Let Z = (X,Y ) be a piecewise analytic vector field. Without loss of gener-
ality suppose that X has a hyperbolic saddle point at the origin. So, we want to
study the transition map associated with this saddle point. This transition map
can be of type Di, i = 1, 2, 3.

If the transition map is of type D1 then it coincides with the classical case which
is already proved, see for instance [13, 19].

Now, observe that D1 = D3 ◦ D2, i.e., a map of type D1 is a composition of
maps of type D2 and D3. Since D is a group and D1 ∈ D it is enough to prove one
of the statements: D2 ∈ D or D3 ∈ D.

In order to prove that D3 ∈ D suppose that the saddle point of X is at the origin
of the system of coordinates (x, y) and consider V0 be the neighborhood of the saddle
point where the normal form given in equation (3) holds. Since the analysis is local
we can suppose that Σ is locally a straight line given by Σ = {(x, y) ∈ R2; y = x}.
Furthermore, as seen before, we can consider σ3 = {(x, x) ∈ R2;x ∈ (−δ, δ)} ⊂
Σ and τ3 = {(1, y) ∈ R2; |y| < δ̄} ⊂ Σ, for some δ > 0, δ̄ > 0. Denote by
ϕ(t, x, y) = (ϕ1(t, x, y), ϕ2(t, x, y)) the flow of the vector field X defined in Σ−,
then ϕ1(t, x, y) = etx. So, the transition time from σ3 to τ3 is t3(x) = − lnx and
D3(x) = ϕ2(t3(x), x, x).

The normal form considered has two different expressions provided r ∈ Q or
r /∈ Q. For this reason we have two different situations to explore:

I) If r /∈ Q: in this case, ϕ2(t, x, y) = e−rty. Therefore, D3(x) = e−rt3(x)x =
x1+r which is an analytic map. Consider the following Dulac series

D̂3(x) =

∞∑
i=1

xλ
3
iP 3

i (lnx),

where λ3
1 < λ3

2 < · · · is an increasing sequence tending to infinity with λ3
1 =

1 + r, P 3
1 (u) ≡ 1 and P 3

i (u) ≡ 0 for all i > 1. Hence, D3(x) is a quasi-regular
homeomorphism.

Hence, D3 is a quasi-regular homeomorphism.

II) If r =
p

q
∈ Q, with p and q without common factors: it is not possible to

obtain algebraically a expression for D3(x). In this case, by performing the singular
change of coordinates x = x, u = xpyq, the differential equation associated with X
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becomes

(5)

 ẋ = x

u̇ = Pα(u) =
∞∑
i=1

αiu
i.

Now, system (5) has separable variables and ϕ1(t, x) = etx is the solution for
the first equation satisfying ϕ1(0, x) = x. For the second one, Pα is analytic for
α ∈ A. Let ϕ2(t, u) be the solution of this equation, which is analytic, verifying
ϕ2(0, u) = u.

We can expand ϕ2(t, u) in series in u for each t,

(6) ϕ2(t, u) =

∞∑
i=1

gi(t)u
i.

We know that, the time spent to go from σi to τi is ti(x) = − lnx, i = 1, 3.
Therefore, we have u|σ3

= xpxq = xp+q and u|τ3 = (et(x)x)pD3(x)q = D3(x)q.
Also, u|τ3 = u(t(x), u|σ3

), i.e.,

(7) D3(x)q = u|τ3 = u (− lnx, xp+q) =
∑
i≥1

gi (− lnx)x(p+q)i,

for x > 0, provided this series converges for t = − lnx, and D3(0) = 0.
By performing a similar analysis for a transition maps of type D1 we obtain

(8) D1(x)q = u|τ1 = u (− lnx, xp) =
∑
i≥1

gi (− lnx)xpi,

for x > 0, provided this series converges for t = − lnx, and D1(0) = 0. Hence, Dq
1

and Dq
3 has the same structure, it implies that the proof of D3 is a quasi-regular

map follows exactly in the same way as the proof of D1 is quasi-regular, see Chapter
5 in [19] and Chapter 2 in [7]. �

Finally, to finish the proof of Theorem 1 it is enough to prove the following
result.

Proposition 2. The transition maps associated to hyperbolic saddle points of piece-
wise analytic vector fields, Di, i = 1, 2, 3, are quasi-analytic maps.

Proof. We consider the same statements as in proof of Proposition 1 and it follows
from that result that it is enough to prove the second part of Definition 4. It means
that we have to prove that fi(x) = Di(e

−x), has a bounded holomorphic extension
Fi in some domain ∆bi = {x + iy ∈ C; x > bi(1 + y2)1/4}, with bi > 0 constant,
for i = 1, 2, 3. Similarly to the proof of Proposition 1, the case i = 1 coincides with
the classical one, see [19].

Since D1 is quasi-analytic, the map f1 has a bounded holomorphic extension F1

in ∆b1 = {x + iy ∈ C; x > b(1 + y2)1/4} for some b1 > 0. Now, we prove that D3

is quasi-analytic, in order to do that consider the maps

E : x ∈ R→ e−x and L : x ∈ R∗+ → − lnx,

where R∗+ = {u ∈ R;u > 0}. Observe that L = E−1. From normal form 9 we obtain

D2(x) = e−t2(x)x where t2(x) is the transition time from σ+
2 = {(x, 1) ∈ R2;x > 0}

to τ2 = {(x, y) ∈ R2; y = x}. It is known that D3 ◦D2 = D1 and Di are invertible
maps, for i = 1, 2, 3, then

f3 = D3 ◦ E = (D1 ◦ E) ◦ (L ◦D−1
2 ◦ E) = f1 ◦ h,
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where h = L ◦ D−1
2 ◦ E. For x + iy ∈ C define H(x + iy) = h(x) + iy and

F3(x+ iy) = F1 ◦H(x+ iy). Notice that F3|R = f3, so F3 is a complex extension of
f3. Moreover, since h is a smooth map for x > 0, it follows that H is holomorphic
in {x+ iy ∈ C;x > 0}.

Now, we show that F3 is bounded in ∆b1 . In order to do that, observe that
D−1

2 (u) ≤ u for all 0 < u ≤ 1, L is a decreasing map and 0 < E(x) ≤ 1 for
all x > 0. It implies that h(x) ≥ x for all x > 0. Consider x + iy ∈ ∆b1 , then
h(x) ≥ x > b1(1 + y2)1/4 ≥ 0 and, consequently, H(x+ iy) = h(x) + iy ∈ ∆b1 and
H(∆b1) ⊂ ∆b1 . Since F1 is bounded in ∆b1 and F3 = F1 ◦H, it follows that F3 is
bounded and holomorphic in ∆b1 . Hence, D3 is quasi-analytic.

Observe that H is invertible in {x+ iy ∈ C;x > 0} and H−1(x+ iy) = h−1(x) +

iy = (L ◦D2 ◦ E)(x) + iy. Consider Ẽ(x+ iy) = Exp(−x− iy) and define F2(x+

iy) = Ẽ(H−1(x + iy)). Thus, F2 is holomorphic in ∆b1 , F2|R = f2. Notice that
F2(x+iy) = D2(E(x))(cos y−sin y) and 0 < D2(E(x)) ≤ 1 for all x > 0. Therefore,
F2 is bounded in ∆b1 and, consequently, D2 is quasi-analytic. �

It concludes the proof of Theorem A.

4. Generalization and Proof of Theorem B

Consider Z = (X,Y ) ∈ Ωω, remember that p ∈ Σ = h−1(0) is a fold point of
X (resp. of Y ) if Xh(p) = 0 and X2h(p) 6= 0 (resp. Y h(p) = 0 and Y 2h(p) 6= 0).
Moreover, a fold point of X (of Y ), p ∈ Σ, is visible if X2h(p) > 0 (resp. Y 2h(p) <
0) and it is invisible if X2h(p) < 0 (resp. Y 2h(p) > 0).

Definition 5. p ∈ Σ is a fold-regular of Z = (X,Y ) if p is a fold of X (resp. of
Y ) and Y h(p) 6= 0 (resp. Xh(p) 6= 0). p ∈ Σ is a fold-fold point of Z = (X,Y ) if p
is, simultaneously, a fold of X and Y . p ∈ Σ is a fold-saddle of Z if p is a fold of
X (resp. of Y ) and a saddle singularity of Y (resp. of X).

As seen in the previous section, the proof of the quasi-regularity of a transition
map does not have a drastic change if we consider hyperbolic polycycles of piecewise
analytic vector fields. In this section we consider a weaker hypothesis by allowing
fold-regular, fold-fold, and fold-saddle singularities in the polycycle, see Figure 3.
The construction and analysis of the first return maps are done in the exactly
same way as for the hyperbolic polycycles. Therefore, as we have seen above, it
is enough to prove that the transition map, in a neighborhood a fold-regular or a
fold-fold singularity, is quasi-analytic. The first step in this direction is to prove
that transition maps at fold points are quasi-regular.

In order to study the quasi-regularity of the transition maps at fold points, we
consider Σ+ and Σ− as being manifolds with boundary Σ which is locally, around
the origin, given by Σ = h−1(0) where h(x, y) = y. Assume that X is a vector field
defined in Σ+ and Y is a vector field defined in Σ−. In addition, assume the origin
is a visible fold point of X and of Y , which are analytic vector fields. Then, from
the approach developed in [20], there exists a neighborhood of the origin such that
X and Y are separately conjugated (by means of C∞−diffeomorphisms) to

(9) Xab(x, y) =

(
a
bx

)
and Ycd(x, y) =

(
c
dx

)
,

respectively, with ab > 0 and cd < 0. Now, we define the transversal sections to
study the transition maps: − For Xab, consider ε > 0 and define
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Σ

Σ

Σ Σ

Figure 3. Examples of polycycles having singularities of the types saddle-fold, fold-
regular and fold-folds.

• if a > 0: σ ⊂ Σ and τ =
{

(x, ε) ∈ R2;
√

2a
b ε− δ < x <

√
2a
b ε+ δ

}
, for

some δ > 0. Moreover, if D+
ab is the transition map at 0, in order to obtain

D+
ab(0) = 0, we consider another parametrization of τ , i.e., we consider the

change x 7→ x −
√

2a
b ε. Thus, by calculating the flow of Xab we can also

calculate the transition map from σ to τ , which is D+
ab(x) =

√
x2 + 2a

b ε−√
2a
b ε for x ≥ 0 with (x, 0) ∈ σ;

• if a < 0: interchange the definition of σ and τ in the case a > 0. In this
case, we need a new parametrization of σ and we obtain that by doing x 7→

x−
√

2a
b ε the transition map from σ to τ is D−ab(x) =

√(
x−

√
2a
b ε
)2

− 2a
b ε

for x ≥ 0 with
(
x+

√
2a
b ε, ε

)
∈ σ.

− For Ycd, consider ε > 0 and define

• if c > 0: σ ⊂ Σ and τ =
{

(x,−ε) ∈ R2;
√
− 2c

d ε− δ < x <
√
− 2c

d ε+ δ
}

,

for some δ > 0. Analogously to the calculations for Xab with a > 0 we

obtain D+
cd(x) =

√
x2 + 2c

d ε−
√

2c
d ε for x ≥ 0 with (x, 0) ∈ σ;

• if c < 0: interchange the definition of σ and τ in the case c > 0. Analogously

to the calculations forXab with a < 0 we obtainD−cd(x) =

√(
x−

√
2c
d ε
)2

− 2c
d ε

for x ≥ 0 with
(
x+

√
2c
d ε,−ε

)
∈ σ.

See Figure 4 for a geometric illustration of the transition maps. Observe that,
the case a > 0 (resp. a < 0) is analogous to the case c > 0 (resp. c < 0). Thus, it
is enough to prove that D±ab is quasi-regular.
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σ

σ

σ

σ

τ

τ

τ

τ

−ε −ε

εε

(a) (b)

(c) (d)

Figure 4. Transition maps through fold points: (a) Xab with a > 0; (b) Xab with
a < 0; (c) Xcd with c > 0; (d) Xcd with c < 0.

Proposition 3. Transition maps associated to visible fold points of C∞ vector fields
defined in a submanifold of R2 with boundary are quasi-regular homeomorphisms.

Proof. Let the origin be a fold point of the C∞ vector field X defined in Σ+∪Σ = Σ.
As we have observed above, the case where the origin is a fold point for the vector
field defined in Σ− is analogous, then it is not considered.

Since X is C∞−conjugated to Xab with Σ = {(x, 0) ∈ R2}, there exist C∞−
diffeomorphisms, ϕ and ψ, defined around the origin, with ϕ(0) = ψ(0) = 0 such
that the transition map D, of X, satisfies

• D(x) = ϕ ◦D+
ab ◦ ψ(x) if a > 0;

• D(x) = ϕ ◦D−ab ◦ ψ(x) if a < 0.

Since the set D, of all quasi-regular homeomorphisms, is a group which contains
the set Diff0 of all diffeomorphisms fixing the origin, it is enough to show that D±ab
are quasi-regular homeomorphisms.

Observe that, for a > 0, D+
ab can be C∞−extended to an open neighborhood of

the origin. Then, we can calculate the infinity formal Taylor series

∞∑
i=1

1

i!

di

dxi
D+
ab(0)xi,

where, for each n ∈ N, we have

∣∣∣∣D+
ab(x)−

n∑
i=1

1

i!

d

dx
D+
ab(0)xi

∣∣∣∣ = O(xn). Moreover,

d
dxD

+
ab(0)

= 0 and d2

dx2D
+
ab(0) =

(
2a
b ε
)− 1

2 > 0. Therefore, we obtain an asymptotic Dulac

series by doing λi = i+ 1 and Pi(u) ≡ 1
(i+1)!

di+1

dxi+1D
+
ab(0) for all i ≥ 2, and so

D̂+
ab(x) =

∞∑
i=1

xλiPi(lnx),
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with P1 ≡
(

2a
b ε
)− 1

2 > 0. Hence, D+
ab is a quasi-regular homeomorphism. Now,

observe that D+
ab ◦D

−
ab(x) ≡ x, so D+

ab ◦D
−
ab = Id. Since the set D is a group and

D+
ab and Id are quasi-regular, we get that D−ab is a quasi-regular homeomorphism.

Therefore, we have proved the result. �

Now, we proceed to prove the quasi-analyticity of the transition regular map at
fold-regular points.

Proposition 4. Transition maps associated to visible fold points are quasi-analytic.

Proof. It is enough to show that D+
ab is quasi-analytic and from Proposition 3 it is

enough to show the second part of Definition 4.

Letm be any positive real number and consider g(x) = D+
ab(e

−x) =
√
e−2x + 2a

b ε−√
2a
b ε. Since e−x is a decreasing map, we have that e−x < e−m for all x > b, more-

over e−x → 0 as x→ +∞. Therefore, e−2x is bounded in the set {x ∈ R;x > m}.
Now, define the following complex extension of g,

G : C −→ C
z 7→

√
e−2z + 2a

b ε−
√

2a
b ε

.

As a, b, ε > 0, G is a composition of holomorphic maps, G is thus a holomorphic
map. Observe that, for z = u + iv ∈ C, |e−2z| = |e−2u−2vi| = |e−2u(cos(2v) −
i sin(2v))| ≤ e−2u. Moreover, ∆m = {z = u + iv;u > m(1 + v2)1/4} ⊂ {z = u +
iv;u > m}. Therefore, G is bounded in the set ∆m = {z = u+iv;u > m(1+v2)1/4}
and it concludes the proof. �

Now, a straight consequence of this result and from the fact D is a group.

Corollary 1. Transition maps associated to fold-regular, fold-fold or fold-saddle
points of piecewise analytic vector fields, are quasi-regular homeomorphisms and
quasi-analytic maps.

From Proposition 4 and Corollary 1 we conclude the result obtained for hyper-
bolic polycycles does not change if fold points are allowed instead of saddle points.
It concludes the proof of Theorem B.
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3. E. A. Barbashin, Introduction to the theory of stability, Wolters-Noordhoff, 1970.
4. A. D. Bazykin, A. I. Khibnik, and B. Krauskopf, Nonlinear dynamics of interacting popula-

tions, vol. 11, World Scientific, 1998.

5. P. Bonckaert, On the continuous dependence of the smooth change of coordinates in

parametrized normal form theorems, Journal of Differential Equations 106 (1993), no. 1,
107–120.

6. B. Brogliato, Nonsmooth mechanics: models, dynamics and control, Springer Science & Busi-
ness Media, 2012.

7. K. da S. Andrade, On degenerate cycles in discontinuous vector fields and the dulac’s problem,

Ph.D. thesis, Unicamp, Brazil, 2016.
8. J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de

Dulac, ActualitÃ c©s MathÃ c©matiques, Hermann, Paris, 1992.



ON THE DULAC’S PROBLEM FOR PIECEWISE ANALYTIC VECTOR FIELDS 13

9. A. F. Filippov, Differential equations with discontinuous right-hand sides: control systems,

Mathematics and its Applications. Soviet Series, Kluwer Academic Publ, Dordrecht, 1988.

10. M. Guardia, T. M. Seara, and M. A. Teixeira, Generic bifurcations of low codimension of
planar Filippov systems, J. Differential Equations 250 (2011), no. 4, 1967–2023.

11. C. Henry, Differential equations with discontinuous right-hand side for planning procedures,

Journal of Economic Theory 4 (1972), no. 3, 545–551.
12. Y. S. Il’Yashenko, Limit cycles of polynomial vector fields with nondegenerate singular points

on the real plane, Functional Analysis and its Applications 18 (1984), no. 3, 199–209.

13. , Finiteness theorems for limit cycles, Translations of Mathematical Monographs,
no. 94, American Mathematical Soc., 1991.

14. T. Ito, A Filippov solution of a system of differential equations with discontinuous right-hand

sides, Economics Letters 4 (1979), no. 4, 349–354.
15. V. S. Kozlova, Roughness of a discontinuous system, Vestnik Moskovskogo Universiteta Seriya

1 Matematika Mekhanika (1984), no. 5, 16–20.
16. N. Minorsky and T. Teichmann, Nonlinear oscillations, Physics Today 15 (2009), no. 9, 63–65.
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