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Before we even encounter calculus, we are taught how to apply Newton’s laws to
collisions — the punctuation of smooth motion by violent changes of speed or direction.
This is precisely the kind of thing that differential calculus usually avoids. So we dutifully
keep calculus separate from the practial discontinuities we become increasingly familiar
with: electronic switches, physical impacts, cellular mitosis, human decisions, physical
properties changing across boundaries between media. But after many years in the
wilderness, discontinuities are now also the subject of increasingly rich and sophisticated
theory in the context of dynamics and differential equations.

Sometimes discontinuities afford a better representation of reality, other times they
offer a computationally convenient charicature of nonlinearity. But in fact, and most
fundamentally, they arise in the very calculus of ‘smooth’ nonlinear systems themselves.
This is the idea set out below.

‘Nonsmooth’ is a casual form of the more precise term ‘piecewise smooth’, meaning
smooth almost everywhere, except at certain isolated thresholds. So, almost everywhere,
the systems in our purview submit to all of the theory pertaining of smooth dynamics,
but at a discontinuity, as we are increasingly finding, all hell breaks loose. But we are
also discovering how this can be tamed, and brought under the auspices of piecewise
smooth dynamical systems theory.

Analytic domains and divergent sums

Far from being a crude modeling tool, a discontinuity is actually a subtle phenomenon
that arises in the series expansions of functions. We will first describe it for simple func-
tions, then describe its application to things like WKBJ solutions of nonlinear differential
equations, and to stationary phase or Laplace methods applied to integrals.

‘What is your favourite sigmoid?’ is a social opening line perhaps found only at
workshops on nonsmooth dynamics, but its answer can be very revealing. A biologist
may prefer a Hill function, the neural networkers a tanh function, the numericists an
arctan. Look closely through all the complication of rate-and-state or hidden variables
in earthquake models, and you’ll often find the humble sign function of Coulomb friction.

A sigmoid function ‘looks like an S’, asymptoting to constants at its tails which we
can scale to +1 and −1, and transitioning between the two in a smoothly differentiable
fashion. How do you approximate such a transition? Take the example of the sigmoid

(1) y(x) =
x√

ε2 + x2
≈ sign(x)

{

1− 1
2(ε/x)

2 + 3
8(ε/x)

4 − 5
16 (ε/x)

6 + . . .
}

Here we have not taken the usual Taylor approximation about some finite x value, e.g.
y = x/ε − x3/2ε3 + ... about x = 0, as such a polynomial approximation, to any order,
cannot capture the asymptotic character of y → ±1 as x/ε→ ±∞. That is instead given
by approximating for large x/ε, about the ‘point at infinity’. This is the approximation
in (1), which captures the tails well, and even works quite well deep into the regions

Research Perspectives CRM Barcelona, Spring 2016, vol. 9, in Trends in Mathematics

Springer-Birkhuser, Basel

1
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|x| < ε, only failing ultimately as x approaches zero. The leading order sign(x) term
signifies the transition, regulated as x/ε shrinks by the asymptotic terms in the tail.

As a series approximation, the behaviour of the righthand side of (1) is obvious. For
x/ε≫ 1 the successive terms in 1− 1

2 (ε/x)
2+ 3

8(ε/x)
4− 5

16(ε/x)
6+ . . . are ever shrinking,

so the series converges. Moreover, because |x/ε| is ‘far from’ the approximation’s centre
at infinity, the approximation is very accurate (of order O

(

εp+2/xp+2
)

if we truncate (1)
at the (ε/x)p term).

At |x| = ε the trouble begins. The terms in the series are all of the same order (i.e.
|x|/ε = 1), signalling that the series is no longer convergent, and no longer equates to the
function on the lefthand side of (1). As x passes through the region |x| < ε around zero
this allows the series to change its analytic form from 1− 1

2(ε/x)
2+ 3

8(ε/x)
4− 5

16 (ε/x)
6+. . .

to −1+ 1
2(ε/x)

2− 3
8(ε/x)

4+ 5
16(ε/x)

6− . . . . This creates the ‘sign’ function out the front.
When functions undergo a jump in their analytic series expansion like this, it needn’t

be so simple, i.e. the forms for x > 0 and x < 0 could be entirely unrelated, say

(2) y(x) =

{

y+(x) if x > +ε
y−(x) if x < −ε

for different analytic expressions y+(x) and y−(x). It turns out that any systems that
jump in some way between different steady regimes of behaviour seem to do so in this
way, controlled by such a switching multiplier y. The difficulty in engineering and natural
sciences in general is that we do not know y. We do not even know what equations
might govern y. In optics y might be subject to a wave equation, in electromagnetism to
Maxwell’s laws, in a fluids problem to the Navier-Stokes equations, in quantum mechanics
to Schrodinger’s equation. In those contexts we can fill in the jump using asymptotic
matching (see e.g. [1]). But what equations should the albedo of the Earth’s surface
obey in climate science? Or the immune response of species in an ecosystem? Or the
interfacial contact force between rough irregular bodies? We know they jump, we know
little of the process by which they do so. So we admit our deficiency, model the parts
we can model with confidence, and study the rest under the theory of piecewise smooth

systems.

Coarse/asymptotic approx where precise asymptotics are unknown

Take a variable x = (x1, ..., xn) whose dynamics depends on an external variable y, and
assume y switches between values ±1 as a function σ(x) changes sign (generalizing from
σ = x above), as

(3) ẋ = f(x; y) and Dy = p(y, σ, ε) .

where D is some differential or integral operator. Many classes of such equations lead to
y ∼ sign σ + O (ε/σ). We already saw a trivial example above in (1) where y was taken
to be a sigmoid. A number of models are given in [3], where Dy = p is an ordinary
differential equation, partial differential equation, or integral equation, for example:

• In the ordinary differential equation,

(4) ẋ = f(x; y) and εẏ = (1− y2)σ(x)− εy ,

the variable y tends on the ε timescale to

(5) y(σ) = sign(σ)− ε
2σ

{

1− ε
4|σ| + O

(

(ε/|σ|)3
)

}

.
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• In the partial differential equation,

(6) ẋ = f(x; y) and ε2ẏ = σ(x)yσ + εyσσ ,

the variable y relaxes on the ε timescale to

(7) y(σ) = sign(σ)−
√

2ε/π

σ e−σ
2/2ε(1−

√
ε/σ + O

(

ε/σ2
)

) ,

• In summing over different oscillatory modes, or in using Laplace or Fourier
methods, we often face an integral equation for y like

(8) ẋ = f(x; y) and y(ω) =

∫ ω

−∞
dk a(k) eψ(k) .

If we take a(k) to be slow (polynomially) varying, and eψ(k) fast (exponentially)
varying, its asymptotics consists of (see [3]) terms of the form

(9) y(σ) ≈ −a(ω)eψ(ω)

ψ′(ω) + a(ks)e
ψ(ks)

√

2π
−ψ′′(ks)

1+signσ
2 + O (ε/σ)

where σ = Im [ψ(0) − ψ(ks)], and φ
′(ks) = 0.

The point is that all of these take the form y ∼ signσ + O (ε/σ). In piecewise smooth
dynamics we simply use y = sign(σ) and appeal to Filippov [2] (or alternative) for the
rest. But what if the O (ε/σ) tail is nontrivial? For example, consider

(10) y(σ) = −(1− ρ)
ε

σ
+ sign(σ)

1+ ε2

σ2
√

1+(1−ρ) ε
2

σ2

.

which is non-monotonic for ρ 6= 0 (and produces the ODE solution above for ρ = 0)1.
As the figure below shows, this has ρ-dependent but ε-independent peaks, which retain
their height in the limit ε→ 0. How should we distinguish models with different ρ in the
limit ε → 0? We need a way to preserve the nonlinearity of the function as ε → 0 and
y → sign(σ), i.e. to remove the ambiguity in sign(σ) at σ = 0.

y y

σ/ε
ε→0

ρ=7

ρ=0
ρ=3

−2               0        2−2               0          2

1

−1

1

−1
σ/ε

Figure 1. The graphs of y(σ) for different ρ, which all limit to a sign function as

ε→ 0. For ρ > 0 the graph has peaks whose height is ε-independent, and therefore

do not disappear as we shrink ε, but get squashed into the region |σ| = O (ε).

Placing y inside f(x; y) we obtain an asymptotic expression for ẋ, expressed very
generally for some functions pn(x) and q(σ/ε), of the form

(11) ẋ = p0(x) + p1(x) sign(σ) + q(σ/ε)
∞
∑

n=1

pn+1(x)(ε/σ)
n ,

In [3] it is shown that this can be cast in an ε-independent form

(12) ẋ = f(x; y) =
f+(x) + f−(x)

2
+

f+(x)− f−(x)

2
y +

(

y2 − 1
)

g(x; y) .

1for other examples try a Hill, tanh, or error function with complex argument σ + iρ.
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The first two terms will look familiar from Filippov’s convex combinations of f±, if
y ∈ [−1,+1]. The nonlinear term

(

y2 − 1
)

g(x; y) is described as hidden, because away

from the switch where y ∼ ±1 the term y2 − 1 vanishes everywhere. Because (12) is
ε-independent it remains valid as we take ε→ 0, so we may now treat y as simply a sign
function, y = sign(σ) for σ 6= 0 and y ∈ [−1,+1] for σ = 0.

A by-product of this (see [3]) is a dynamical expression that enables us to resolve
y ∈ [−1,+1] for σ = 0,

(13) εẏ = f(x; y) · ∇y(x) as ε→ 0 on σ = 0 .

We call this the switching layer system, and refer to the region y ∈ (−1,+1), x|σ=0 ∈
R
n−1, as the switching layer on σ = 0.

Purchase your zoo guides here

Whatever the process lying behind the discontinuity (above we have focussed on its oc-
curence as an asymptotic phenomenon), piecewise smooth dynamics allows us to identify
the jump with a well-defined switching surface, a topological object with its own char-
acter (a manifold or variety), its own singularities (tangencies between it and the vector
fields f(x;±1)), and its own bifurcations (discontinuity-induced bifurcations).

Recent advances in nonsmooth dynamics have opened the flood doors to new discov-
eries, of new attractors and new forms of chaos, of bifurcations in systems with multiple
switches, with symmetries, or with hidden dynamics. As discussed in Paul Glendinning’s
Less Is More articles in this volume, the endless classifications that are now possible cre-
ate an exciting but ultimately self-serving exercise. There are bigger questions out there,
about how we put these ideas to use in applications, and about what truly new phenom-
ena there are to be found, such as bifurcations that violate the rules of smooth systems,
singularities that break down determinism, and complex attractors that challenge our
notions of dimension or codimension. Important too is to continue pushing forward our
understanding of what it means to perturb a nonsmooth system, and what the effect is
of modeling non-idealities like noise, hysteresis, and delay.

We are making real strides forward. You have hopefully found some solutions, and
the beginnings of many ongoing discussions, in this volume.
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Abstract: Perhaps we should open this volume by asking why nonsmooth dynamics

is the subject of a three month Intensive Research Program at the CRM (February to
April 2016), why it was the subject of more than 2000 papers published in 20152, and
why it is a growing presence at international conferences involving mathematics and its
applications. We briefly survey here why discontinuity is not only important in modeling
real-world systems, but is also a fundamental property of many nonlinear systems.

2and only 700 in the year 2000; data from Thomson Reuters Web of Science.


