An update on *that* singularity

Mike R. Jeffrey

University of Bristol, Department of Engineering Mathematics, Woodland Road, Bristol BS8 1UB, UK mike.jeffrey@bristol.ac.uk

A bridge over troubled flows

Nothing epitomizes the intrigue of piecewise-smooth dynamics like the two-fold singularity. It is incredibly simple to describe — a point where a flow is tangent to a discontinuity threshold from both sides — yet intricate in its dynamics. Its understanding has pushed the boundaries of understanding in piecewise-smooth systems more than any other discontinuity-induced phenomenon.

It took nearly 30 years, from the translation of Filippov's seminal book introducing the two-fold to the english speaking world, to resolving its switching layer behaviour, before we could say that the two-fold singularity was understood. And it *is* now understood, in wonderful detail: its structural and asymptotic stability [**11**, **9**], its bifurcations including its local form and the affect of higher orders [**11**, **3**, **4**], the winding numbers when a flows rotates around it [**6**], the determinacy or determinacy-breaking that occurs when a flow passes through it [**8**], even its extension to multiple switches [**10**].

We now know that the two-fold singularity's structural stability requires nonlinear switching or *hidden* terms, and that it comes in three main flavours, with numerous subclasses between which bifurcations can occur. We know that it is neither an attractor nor a repellor, but an organizing centre, a bi-directional bridge between attracting and repelling sliding on a switching surface, which can lead to the creation of a determinacy-breaking attractor (described as *non-deterministic chaos* in [3, 8, 1, 2]).

The developments towards understanding the two-fold singularity can be traced through the papers [7, 16, 11, 3, 4, 6, 9, 10]. Attempts to look beyond nonsmooth theory into the effects of regularization, introducing a non-ideal switch that is smooth, noisy, delayed, or hysteretic, have begun in [18, 13, 14, 12]. Finally, while attempts to explore its applications in electronics or mechanics have so far been somewhat unsatisfactory, hints of a deeper role in phase randomization can be found in [15].

To summarize the story so far, we must begin, of course, with . . .

Definition 1 A *two-fold* is a point \mathbf{x}_p in a system

(1)
$$\dot{\mathbf{x}} = \left\{ \begin{array}{ll} \mathbf{f}^+(\mathbf{x}) & \text{if } \sigma(\mathbf{x}) > 0\\ \mathbf{f}^-(\mathbf{x}) & \text{if } \sigma(\mathbf{x}) < 0 \end{array} \right\} \quad \text{where} \quad \begin{array}{ll} \sigma(\mathbf{x}_p) \\ \mathbf{f}^{\pm}(\mathbf{x}_p) \cdot \nabla \sigma(\mathbf{x}_p) \end{array} \right\} = 0 ,$$

and with certain non-degeneracy conditions satisfied at \mathbf{x}_p , namely $(\mathbf{f}^{\pm} \cdot \nabla)^2 \sigma \neq 0$, $0 \notin \mathbf{f}^{\lambda} \cdot \nabla \mathbf{x}$, and with transversality of the surfaces $\sigma = 0$, $\mathbf{f}^+ \cdot \nabla \sigma = 0$, $\mathbf{f}^- \cdot \nabla \sigma = 0$. We will introduce the combination \mathbf{f}^{λ} below.

The local dynamics depends entirely on two parameters evaluated at \mathbf{x}_{p} ,

(2)
$$\nu^{+} = \frac{(\mathbf{f}^{+} \cdot \nabla)(\mathbf{f}^{-} \cdot \nabla)\sigma}{\sqrt{|(\mathbf{f}^{+} \cdot \nabla)^{2}\sigma.(\mathbf{f}^{-} \cdot \nabla)^{2}\sigma|}} \qquad \& \qquad \nu^{-} = \frac{-\mathbf{f}^{-} \cdot \nabla \mathbf{f}^{+} \cdot \nabla \sigma}{\sqrt{|(\mathbf{f}^{+} \cdot \nabla)^{2}\sigma.(\mathbf{f}^{-} \cdot \nabla)^{2}\sigma|}}$$

characterizing the local curvature of the flow. The product $\nu^+\nu^-$ has a simple geometrical interpretation: it quantifies the jump in the vector field between \mathbf{f}^{\pm} at the singularity.

An update on that singularity

Measuring angles from to the '+' or '-' folds respectively, letting $s^{\pm} = \operatorname{sign}(\mathbf{f}^{\pm} \cdot \nabla)^2 \sigma$,

(3)
$$\nu^{+}\nu^{-} = -s^{+}s^{-}\frac{\cot\phi - \cot\theta_{+}^{+}}{\cot\phi - \cot\theta_{+}^{-}} = -s^{+}s^{-}\frac{\cot\phi + \cot\theta_{-}^{-}}{\cot\phi + \cot\theta_{-}^{+}},$$

where ϕ is the angle between the folds, and θ_j^i is the angle of \mathbf{f}^i from the 'j' fold, measured in the plane spanned by \mathbf{f}^+ and \mathbf{f}^- , with *i* and *j* denoting the labels + or -.

The leading order expansion of the two-fold singularity (sometimes called the 'normal form' in a somewhat loose usage of the terminology) is given [7, 4] by

(4)
$$(\dot{x}_1, \dot{x}_2, \dot{x}_3) = \left\{ \begin{array}{cc} (-x_2, -s^+, \nu^+) & \text{if } x_1 > 0 \\ (x_3, \nu^-, s^-) & \text{if } x_1 < 0 \end{array} \right\} + \left(\mathsf{O}\left(|\mathbf{x}|^2 \right), \mathsf{O}\left(|\mathbf{x}| \right), \mathsf{O}\left(|\mathbf{x}| \right) \right),$$

where $s^{\pm} = \text{sign} \left[(\mathbf{f}^{\pm} \cdot \nabla)^2 \sigma(\mathbf{x}_p) \right]$, and in higher dimensions $\dot{x}_{i \geq 4} = \mathsf{O}(|\mathbf{x}|)$ for i = 4, 5, ...

Bifurcation diagrams

Almost everything we understood until the year 2009 could already be found in Filippov's book [7], but much of it was presented in the form of unexplained diagrams whose original source is unknown (with their description emerging across [17, 4, 6]).

The wealth of information we have on the leading order dynamics (the truncation of (4)) is summarized in the figure below, see [4, 6] for detail.

FIGURE 1. Two-folds come in three flavours, formed by the different combinations of visible or invisible folds as determined by the signs of s^{\pm} . Top: Regions of attracting sliding (*att.*, shaded), repelling sliding (*rep.*, shaded), and crossing (unshaded) all meet at the singularity. Bottom: Their sliding and crossing topologies in the ν^{\pm} parameter plane are shown below; for the invisible two-fold, k is the number of windings between visits to the sliding regions, tending to infinity where $\nu^{+}\nu^{-} \geq 1$ in $\nu^{\pm} < 0$. See [4, 6] for detail.

The folds are:

- both visible if $s^+ > 0$ and $s^- < 0$ at \mathbf{x}_p ,
- both *invisible* if $s^+ < 0$ and $s^- > 0$ at \mathbf{x}_p ,
- one visible and one invisible if $s^+s^- > 0$ at \mathbf{x}_p ,

(we sometimes refer to these as the *flavours* of two-fold).

Crossing maps and winding numbers

The distinguishing feature of the invisible two-fold is that the flow can wind repeatedly around the singularity, making repeated visits to the crossing regions, possibly between entry/exit points to/from the attracting/repelling sliding regions.

Let $\mathbf{y} = (x_2, x_3)$ denote a point on the switching surface $x_1 = 0$, and \mathbf{y}_i denote an iterate of the return map to the switching surface under the flow. A single return to the surface is given by

(5)
$$\mathbf{y}_{2m+1} = \underline{\underline{B}}^{\pm} \mathbf{y}_{2m}$$
, $\underline{\underline{B}}^{+} = \begin{pmatrix} -1 & 0 \\ -2\nu^{+} & 1 \end{pmatrix}$ & $\underline{\underline{B}}^{-} = \begin{pmatrix} 1 & -2\nu^{-} \\ 0 & -1 \end{pmatrix}$

where $\underline{\underline{B}}^+$ and $\underline{\underline{B}}^-$ are applied in $x_2 < 0$ and $x_3 < 0$ respectively. The second return map, on $x_2 < 0$ or $x_3 < 0$, is therefore

(6)
$$\mathbf{y}_{2m+2} = \underline{\underline{A}}^{\pm} \mathbf{y}_{2m} , \qquad \underline{\underline{A}}^{\pm} = \underline{\underline{B}}^{\mp} \underline{\underline{B}}^{\pm}$$

Because the maps are associated with folds, they are involutions, so $(\underline{B}^+)^2 = (\underline{B}^-)^2 = \underline{1}$ and $\underline{A}^+ = (\underline{A}^-)^{-1}$. The solutions to the difference equation (6) are now obviously

(7)
$$\mathbf{y}_{2m} = (\underline{\underline{A}}^+)^m \mathbf{y}_0$$
 or $\mathbf{y}_{2m} = (\underline{\underline{A}}^-)^m \mathbf{y}_0$,

and a little trigonometry using the substitution $\nu^+\nu^- = \cos^2\Theta$ provides

(8)
$$(\underline{\underline{A}}^{\pm})^{m} = \frac{\sin[2m\Theta]}{\sin 2\Theta} \underline{\underline{A}}^{\pm} - \frac{\sin[2(m-1)\Theta]}{\sin 2\Theta} \underline{\underline{1}}^{\pm}$$

This is also the source of the crossing numbers k in the previous figure. The main dynamical features revealed by the map are shown in the figure below.

FIGURE 2. The nonsmooth diabolo: invariant manifold (left) around an invisible twofold. Right top: shown in the switching plane, the manifold bifurcates and disappears at $\nu^+\nu^- = 1$, see [11]. Right bottom: the effect of higher order terms, showing a particular case leading to a determinacy-breaking attractor — as the flow exits the repelling sliding region, the crossing flow wraps it back around (via k windings) into the attracting sliding region, whereupon the sliding flow re-injects it back into the repelling region; when all local trajectories pass through the singularity, determinacy is broken; see [3].

Sliding dynamics and hidden instability

To derive sliding dynamics we need to define a *combination* of \mathbf{f}^{\pm} on the switching surface. It turns out that Filippov's combination hides a structural instability, in

(9)
$$(\dot{x}_1, \dot{x}_2, \dot{x}_3) = \frac{1}{2} (1+\lambda) (-x_2, -s^+, \nu^+) + \frac{1}{2} (1-\lambda) (x_3, \nu^-, s^-),$$

essentially because the value $\lambda = \frac{x_3 - x_2}{x_3 + x_2}$ for which sliding occurs is singular at $x_2 = x_3 = 0$.

It is shown in [9] that a structurally stable combination is

(10) $(\dot{x}_1, \dot{x}_2, \dot{x}_3) = \frac{1}{2} (1+\lambda) (-x_2, -s^+, \nu^+) + \frac{1}{2} (1-\lambda) (x_3, \nu^-, s^-) + (1-\lambda^2) (\alpha, 0, 0)$ for small $\alpha \neq 0$. A well-defined manifold \mathcal{M} of sliding solutions then exists,

(11) $\mathcal{M} = \left\{ (\lambda, x_2, x_3) : \frac{1}{2} (1 - \lambda) x_3 - \frac{1}{2} (1 + \lambda) x_2 + \alpha (1 - \lambda^2) = 0 \right\} ,$

inside the layer $(\lambda, x_2, x_3) \in (-1, +1) \times \mathbb{R}^2$, with \mathcal{M} normally hyperbolic except on

(12)
$$\mathcal{L} = \left\{ (\lambda, x_2, x_3) \subset \mathcal{M} : \ \lambda = 2 \frac{2\alpha + x_3 - x_2}{x_3 + x_2} = -\frac{x_3 + x_2}{4\alpha} \right\} ,$$

which corresponds to the two-fold magnified inside the switching layer $\lambda \in (-1, +1)$, $(x_2, x_3) \in \mathbb{R}^2$. The dynamics inside the layer is given by

(13)
$$(\varepsilon \dot{\lambda}, \dot{x}_2, \dot{x}_3) = \frac{1}{2} (1+\lambda) (-x_2, -s^+, \nu^+) + \frac{1}{2} (1-\lambda) (x_3, \nu^-, s^-) + (1-\lambda^2) (\alpha, 0, 0)$$

for $\varepsilon \to 0$, which can be transformed into the well-known singularity of folded slowmanifolds associated with canards in smooth slow-fast systems,

$$(\varepsilon \dot{x}, \dot{y}, \dot{z}) = (y + x^2, pz + qx, r) + (\mathsf{O}(\varepsilon x, \varepsilon z, xz), \mathsf{O}(z^2, xz), \mathsf{O}(z, x))$$

provided $\alpha \neq 0$, where p, q, r, are real constants, and provided the conditions $\frac{1}{2}(\nu^+ - \nu^-) \leq 1 = -s^+ = s^-$ or $\frac{1}{2}(\nu^+ - \nu^-) \geq -1 = -s^+ = s^-$ do not hold.

References

- [1] M. Buchanan. Differentiating the discontinuous. Nature Physics Thesis, 7:589, 2011.
- [2] M. Buchanan. Generating chaos in a new way. Phys. Rev. Focus, 28:1, 2011.
- [3] A. Colombo and M. R. Jeffrey. Non-deterministic chaos, and the two-fold singularity in piecewise smooth flows. SIAM J. App. Dyn. Sys., 10:423–451, 2011.
- [4] A. Colombo and M. R. Jeffrey. The two-fold singularity: leading order dynamics in n-dimensions. *Physica D*, 263:1–10, 2013.
- [5] F. Dumortier, R. Roussarie, J. Sotomayor, and H. Zoladek. Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals. Springer-Verlag, 1991.
- [6] S. Fernández-Garcia, D. Angulo-Garcia, G. Olivar-Tost, M. di Bernardo, and M. R. Jeffrey. Structural stability of the two-fold singularity. SIAM J. App. Dyn. Sys., 11(4):1215–1230, 2012.
- [7] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publ. Dortrecht, 1988 (Russian 1985).
- [8] M. R. Jeffrey. Non-determinism in the limit of nonsmooth dynamics. PRL, 106(25):254103, 2011.
- [9] M. R. Jeffrey. Hidden degeneracies in piecewise smooth dynamical systems. Int. J. Bif. Chaos, 26(5):1650087(1-18), 2016.
- [10] M. R. Jeffrey. Exit from sliding in piecewise-smooth flows: deterministic vs. determinacy-breaking. Chaos, 26(3):033108:(1-20), 2016.
- [11] M. R. Jeffrey and A. Colombo. The two-fold singularity of discontinuous vector fields. SIAM Journal on Applied Dynamical Systems, 8(2):624–640, 2009.
- [12] K. U. Kristiansen and S. J. Hogan. Regularizations of two-fold bifurcations in planar piecewise smooth systems using blow up. *submitted*, 2015.
- [13] J. Llibre, P. R. da Silva, and M. A. Teixeira. Sliding vector fields via slow-fast systems. Bull. Belg. Math. Soc. Simon Stevin, 15(5):851–869, 2008.
- [14] D. J. W. Simpson. On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations. *Discrete Contin. Dyn. Syst. to appear*, 2014.
- [15] D. J. W. Simpson and M. R. Jeffrey. Fast phase randomisation via two-folds. *submitted*, 2015.
- [16] M. A. Teixeira. Stability conditions for discontinuous vector fields. J. Differ. Equ., 88:15–29, 1990.
- [17] M. A. Teixeira. Generic bifurcation of sliding vector fields. J. Math. Anal. Appl., 176:436–457, 1993.
- [18] M. A. Teixeira, J. Llibre, and P. R. da Silva. Regularization of discontinuous vector fields on R³ via singular perturbation. Journal of Dynamics and Differential Equations, 19(2):309–331, 2007.

Abstract: It took nearly 30 years from the translation of Filippov's seminal book to be able to say that the two-fold singularity is understood. We now know that its structural stability requires nonlinear switching or *hidden* terms, and that it comes in three main flavours, with numerous subclasses between which bifurcations can occur. We know that it is neither an attractor nor a repellor, but a bridge between attracting and repelling sliding, and in certain cases is a source of determinacy-breaking.