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A bridge over troubled flows

Nothing epitomizes the intrigue of piecewise-smooth dynamics like the two-fold singu-
larity. It is incredibly simple to describe — a point where a flow is tangent to a dis-
continuity threshold from both sides — yet intricate in its dynamics. Its understanding
has pushed the boundaries of understanding in piecewise-smooth systems more than any
other discontinuity-induced phenomenon.

It took nearly 30 years, from the translation of Filippov’s seminal book introducing
the two-fold to the english speaking world, to resolving its switching layer behaviour,
before we could say that the two-fold singularity was understood. And it is now under-
stood, in wonderful detail: its structural and asymptotic stability [11, 9], its bifurcations
including its local form and the affect of higher orders [11, 3, 4], the winding numbers
when a flows rotates around it [6], the determinacy or determinacy-breaking that occurs
when a flow passes through it [8], even its extension to multiple switches [10].

We now know that the two-fold singularity’s structural stability requires nonlinear
switching or hidden terms, and that it comes in three main flavours, with numerous
subclasses between which bifurcations can occur. We know that it is neither an attractor
nor a repellor, but an organizing centre, a bi-directional bridge between attracting and
repelling sliding on a switching surface, which can lead to the creation of a determinacy-
breaking attractor (described as non-deterministic chaos in [3, 8, 1, 2]).

The developments towards understanding the two-fold singularity can be traced
through the papers [7, 16, 11, 3, 4, 6, 9, 10]. Attempts to look beyond nonsmooth
theory into the effects of regularization, introducing a non-ideal switch that is smooth,
noisy, delayed, or hysteretic, have begun in [18, 13, 14, 12]. Finally, while attempts to
explore its applications in electronics or mechanics have so far been somewhat unsatis-
factory, hints of a deeper role in phase randomization can be found in [15].

To summarize the story so far, we must begin, of course, with . . .

Definition 1 A two-fold is a point xp in a system

(1) ẋ =

{

f+(x) if σ(x) > 0
f−(x) if σ(x) < 0

}

where
σ(xp)

f±(xp) · ∇σ(xp)

}

= 0 ,

and with certain non-degeneracy conditions satisfied at xp, namely (f± · ∇)2σ 6= 0,

0 /∈ fλ · ∇x, and with transversality of the surfaces σ = 0, f+ · ∇σ = 0, f− · ∇σ = 0. We
will introduce the combination fλ below.

The local dynamics depends entirely on two parameters evaluated at xp,

(2) ν+ = (f+·∇)(f−·∇)σ√
|(f+·∇)2σ.(f−·∇)2σ|

& ν− = − f−·∇f+·∇σ√
|(f+·∇)2σ.(f−·∇)2σ|

,

characterizing the local curvature of the flow. The product ν+ν− has a simple geometrical
interpretation: it quantifies the jump in the vector field between f± at the singularity.
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Measuring angles from to the ‘+’ or ‘−’ folds respectively, letting s± = sign(f± · ∇)2σ,

(3) ν+ν− = −s+s−
cotφ− cot θ++
cotφ− cot θ−+

= −s+s−
cot φ+ cot θ−−
cot φ+ cot θ+−

,

where φ is the angle between the folds, and θij is the angle of f
i from the ‘j’ fold, measured

in the plane spanned by f+ and f−, with i and j denoting the labels + or −.
The leading order expansion of the two-fold singularity (sometimes called the ‘normal

form’ in a somewhat loose usage of the terminology) is given [7, 4] by

(4) (ẋ1, ẋ2, ẋ3) =

{

(−x2,−s+, ν+) if x1 > 0
( x3 , ν

−, s− ) if x1 < 0

}

+
(

O
(

|x|2
)

,O (|x|) ,O (|x|)
)

,

where s± = sign
[

(f± · ∇)2σ(xp)
]

, and in higher dimensions ẋi≥4 = O (|x|) for i = 4, 5, ....

Bifurcation diagrams

Almost everything we understood until the year 2009 could already be found in Filippov’s
book [7], but much of it was presented in the form of unexplained diagrams whose original
source is unknown (with their description emerging across [17, 4, 6]).

The wealth of information we have on the leading order dynamics (the truncation of
(4)) is summarized in the figure below, see [4, 6] for detail.
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Figure 1. Two-folds come in three flavours, formed by the different combinations of
visible or invisible folds as determined by the signs of s±. Top: Regions of attracting
sliding (att., shaded), repelling sliding (rep., shaded), and crossing (unshaded) all meet at
the singularity. Bottom: Their sliding and crossing topologies in the ν± parameter plane
are shown below; for the invisible two-fold, k is the number of windings between visits to
the sliding regions, tending to infinity where ν+ν−

≥ 1 in ν± < 0. See [4, 6] for detail.

The folds are:

• both visible if s+ > 0 and s− < 0 at xp,
• both invisible if s+ < 0 and s− > 0 at xp,
• one visible and one invisible if s+s− > 0 at xp,

(we sometimes refer to these as the flavours of two-fold).
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Crossing maps and winding numbers

The distinguishing feature of the invisible two-fold is that the flow can wind repeatedly
around the singularity, making repeated visits to the crossing regions, possibly between
entry/exit points to/from the attracting/repelling sliding regions.

Let y = (x2, x3) denote a point on the switching surface x1 = 0, and yi denote an
iterate of the return map to the switching surface under the flow. A single return to the
surface is given by

(5) y2m+1 = B±y2m , B+ =

(

−1 0
−2ν+ 1

)

& B− =

(

1 −2ν−

0 −1

)

,

where B+ and B− are applied in x2 < 0 and x3 < 0 respectively. The second return
map, on x2 < 0 or x3 < 0, is therefore

(6) y2m+2 = A±y2m , A± = B∓B± .

Because the maps are associated with folds, they are involutions, so (B+)2 = (B−)2 = 1

and A+ = (A−)−1. The solutions to the difference equation (6) are now obviously

(7) y2m = (A+)my0 or y2m = (A−)my0 ,

and a little trigonometry using the substitution ν+ν− = cos2 Θ provides

(A±)m =
sin[2mΘ]

sin 2Θ
A± − sin[2(m− 1)Θ]

sin 2Θ
1 .(8)

This is also the source of the crossing numbers k in the previous figure. The main
dynamical features revealed by the map are shown in the figure below.
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Figure 2. The nonsmooth diabolo: invariant manifold (left) around an invisible two-
fold. Right top: shown in the switching plane, the manifold bifurcates and disappears at
ν+ν− = 1, see [11]. Right bottom: the effect of higher order terms, showing a particular
case leading to a determinacy-breaking attractor — as the flow exits the repelling sliding
region, the crossing flow wraps it back around (via k windings) into the attracting sliding
region, whereupon the sliding flow re-injects it back into the repelling region; when all local
trajectories pass through the singularity, determinacy is broken; see [3].

Sliding dynamics and hidden instability

To derive sliding dynamics we need to define a combination of f± on the switching surface.
It turns out that Filippov’s combination hides a structural instability, in

(ẋ1, ẋ2, ẋ3) =
1
2 (1 + λ) (−x2,−s+, ν+) + 1

2 (1− λ) (x3, ν
−, s−) ,(9)

essentially because the value λ = x3−x2

x3+x2
for which sliding occurs is singular at x2 = x3 = 0.
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It is shown in [9] that a structurally stable combination is

(10) (ẋ1, ẋ2, ẋ3) =
1
2 (1 + λ)

(

−x2,−s+, ν+
)

+ 1
2 (1− λ)

(

x3, ν
−, s−

)

+ (1− λ2)(α, 0, 0)

for small α 6= 0. A well-defined manifold M of sliding solutions then exists,

(11) M =
{

(λ, x2, x3) : 1
2 (1− λ) x3 − 1

2 (1 + λ) x2 + α(1 − λ2) = 0
}

,

inside the layer (λ, x2, x3) ∈ (−1,+1) ×R
2, with M normally hyperbolic except on

(12) L =

{

(λ, x2, x3) ⊂ M : λ = 2
2α + x3 − x2

x3 + x2
= −x3 + x2

4α

}

,

which corresponds to the two-fold magnified inside the switching layer λ ∈ (−1,+1),
(x2, x3) ∈ R

2. The dynamics inside the layer is given by

(13) (ελ̇, ẋ2, ẋ3) =
1
2 (1 + λ)

(

−x2,−s+, ν+
)

+ 1
2 (1− λ)

(

x3, ν
−, s−

)

+ (1− λ2)(α, 0, 0) ,

for ε → 0, which can be transformed into the well-known singularity of folded slow-
manifolds associated with canards in smooth slow-fast systems,

(εẋ, ẏ, ż) = (y + x2, pz + qx, r) + (O (εx, εz, xz) ,O
(

z2, xz
)

,O (z, x))

provided α 6= 0, where p, q, r, are real constants, and provided the conditions 1
2 (ν

+−ν−) ≤
1 = −s+ = s− or 1

2 (ν
+ − ν−) ≥ −1 = −s+ = s− do not hold.
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Abstract: It took nearly 30 years from the translation of Filippov’s seminal book
to be able to say that the two-fold singularity is understood. We now know that its
structural stability requires nonlinear switching or hidden terms, and that it comes in
three main flavours, with numerous subclasses between which bifurcations can occur. We
know that it is neither an attractor nor a repellor, but a bridge between attracting and
repelling sliding, and in certain cases is a source of determinacy-breaking.


