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Regularization was a big topic at the 2016 CRM Intensive Research Program on
Advances in Nonsmooth Dynamics. There are many open questions concerning well
known kinds of regularization (e.g. by smoothing or hysteresis). Here we propose a
framework for an alternative and important kind of regularization: by external variables.

Shadowing in one variable

Begin with a one-dimensional dynamical system

(1) ẋ = −λ+ xb(x;λ) where λ = sign(x) .

with the sign function being ±1 for x ≷ 0 and having the set value (−1,+1) for x = 0.
This has an attracting fixed point on the discontinuity, where ẋ = −λ.

Define a switch-shadowing system

(2) ẋ = −λ+ xb(x;λ) , ẏ = (x− y)/γ , where λ = sign(y) ,

or a state-shadowing system

(3) ẋ = −λ+ yb(y;λ) , ẏ = (x− y)/γ , where λ = sign(x) ,

where γ > 0 is small and y is an external variable, representing some extra stage in the
switching process, such that each shadow system relaxes to (1) as y → x. So y tends to

x like e−t/γ (for small γ where we can treat x as slow varying), i.e. y shadows x.
We restrict attention to the neighbourhood of the equilibrium at x = y = λ = 0 in

each system. In the switch-shadowing system the switching surface becomes y = 0, and
sliding no longer occurs because solutions all cross the surface (because the y component
does not switch) – the surface is ‘transparent’ in some nomenclature. In the state-
shadowing system the switching surface remains sliding.

We will analyze these using switching layer methods (see [1] and next section).
For the switch-shadowing system on y = 0 the switching layer system is

(4) ẋ = −λ+ xb(x;λ) , ελ̇ = x/γ , for λ ∈ (−1,+1) , ε → 0 ,

and the Jacobian of the equilibrium is

(5)

(

∂ẋ
∂x

∂ẋ
∂ελ

∂ελ̇
∂x

∂ελ̇
∂ελ

)

=

(

b −1/ε
1/γ 0

)
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with eigenvalues (b(0, 0) ± i
√

4− b2γε)/2
√
γε → 1

2b(0, 0) ± i∞ as ε → 0. Outside the
switching surface the dynamics spirals in as a ‘fused focus’ towards x = y = 0, but once
there, in the x-λ dynamics the attractivity depends on the sign of b(0, 0). In particular
if b(0, 0) > 0 then the sliding equilibrium will become unstable, and a limit cycle will be
formed inside the switching layer (x, λ) ∈ R× (−1,+1).

For the state-shadowing system on x = 0 the switching layer system is

(6) ελ̇ = −λ+ yb(y;λ) , ẏ = −y/γ , where λ ∈ (−1,+1) ,

and the Jacobian of the equilibrium is

(7)
∂(ελ̇, ẏ)

∂(ελ, y)
=

(

−1/ε b(0; 0)
0 −1/γ

)

with eigenvalues −1/γ and −1/ε → −∞. In this case the equilibrium of the shadow
system remains an attractor.
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Figure 1. The original system and its two shadow regularizations.

Shadowing in n variables

Now take a multivariable state x = (x1, ..., xn), and assume there is one switch for every
coordinate (this can be generalized later). So we have switching functions h1, .., .hn, and
switching multipliers λ = (λ1, ..., λn) where λi ∈ [−1,+1], such that λi = signhi for
hi 6= 0 and λi ∈ (−1,+1) for hi = 0. Letting f be a smooth function of x and λ, the
system

(8) ẋ = f(x;λ) where λi = signhi

is smooth except at the thresholds Σi = {x ∈ R
n : hi = 0}.

In the piecewise smooth setting we assume each hi is a regular function of x, some
hi = hi(x). When hi = 0 for some i, we blow up the switching surface hi = 0 into a

switching layer λi ∈ (−1,+1), with dynamics given by εiλ̇i = f(x;λ) · ∇hi for εi → 0.
Take coordinates in which hi = xi for i = 1, ..., n. When x lies on the intersection

of all n switching thresholds x1 = x2 = ... = xn = 0, we study the dynamics in the
codimension n switching layer (λ1, ..., λn) ∈ (−1,+1)n given by

(9) ε.λ̇ = f(0;λ) , |ε| → 0 ,

where ε denotes the diagonal matrix with entries ε1, ..., εn, or in components εiλ̇i =
fi(0;λ1, ..., λn) for i = 1, ..., n. Sliding modes are equilibria of the fast system. We
assume these lie at x = λ = 0, and are stable, which means

(10)
∂ε.λ̇

∂ε.λ
= ε−1.

∂f

∂λ
has eigenvalues with negative real part at (0;0).

Define a switch-shadowing system

(11) ẋ = f(x;λ) , ẏ = (x− y)/γ , where λi = sign(yi) ,
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or a state-shadowing system

(12) ẋ = f(y;λ) , ẏ = (x− y)/γ , where λi = sign(xi) ,

where γ > 0 is small (we could choose different γi for each component of y), and y is an
n-dimensional external variable. As before, both tend to (8) as y shadows x.

Each has an equilibrium at x = y = λ = 0. For the switch-shadowing system on
y = 0 the switching layer system is

(13) ẋ = f(x;λ) , ελ̇ = x/γ , for λ ∈ (−1,+1)n ,

and the Jacobian of the equilibrium is

(14)





∂ẋ
∂x

∂ẋ
∂ε.λ

∂ε.λ̇

∂x

∂ε.λ̇

∂ε.λ



 =

(

∂f(0;0)
∂x ε−1.∂f(0;0)∂λ
1/γ 0

)

where 1 is the n × n identity matrix. The stability of the term ε−1. ∂f
∂λ

from (10) does

not guarantee stability of the shadow equilibrium, which will depend crucially on ∂f(0;0)
∂x .

For the state-shadowing system on x = 0 the switching layer system is

(15) ελ̇ = f(y;λ) , ẏ = −y/γ , where λ ∈ (−1,+1) ,

and the Jacobian of the equilibrium is

(16)
∂(ε.λ̇, ẏ)

∂(ε.λ,y)
=

(

ε−1.∂f(0;0)∂λ
∂f(0;0)

∂y

0 −1/γ

)

In this case it seems likely that the equilibrium of the shadow system remains an attractor,
the stability of the term ε−1. ∂f∂λ from (10) and the term −1/γ playing the crucial role.

Examples

The following examples motivated the shadow regularizations proposed above.

• Genetic Regulatory Networks: a typical gene network protein-only model gives the
dynamics of the concentration xi of the protein product of a gene i, for i = 1, ..., n, as

(17) ẋi = Bi(Z1, ..., Zn)− αixi , Zi = step(xi − θi) ,

where αi, θi > 0. In [3] this is extended to include the intermediary role of mRNA.
Instead we make xi the concentration of the ith mRNA molecule, and yi the protein
product concentration for gene i, then the proposed model is

(18) ẋi = Bi(Z1, ..., Zn)− αixi , ẏi = κixi − βiyi , Zi = step(yi − θi) ,

with αi, βi, κi, θi > 0.

• Time delay: assume a system modelled by ẋ = f(x;λ) with λ = sign(x) actually
switches not exactly when a solution x(t) lies at x(t) = 0, but when x(t− τ) with a time
delay τ . We can define a delayed variable y(t) = x(t− τ), or let

(19) ẋ = f(x;λ) , ẏ = (x− y)/τ , where λ = sign(y) .

• Plankton: a predator-prey system discussed in [4] for predator population x3 and prey
populations x1, x2, is

(20)
ẋ1 = {r1 − x3µ}x1
ẋ2 = {r2 − x3(1− µ)}x2
ẋ3 = {q1x1µ+ q2x2(1− µ)−m}x3







where µ = step(x1 − ax2) ,
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in terms of constants r1, r2, q1, q2,m, a. This assumes the consumption of prey is propor-
tional to their population x1 or x2. If instead consumption is proportional to a variable
y1 or y2, which tends towards the population, we have

(21)

ẋ1 = r1x1 − x3y1µ
ẋ2 = r2x2 − x3y2(1− µ)
ẋ3 = {q1y1µ+ q2y2(1− µ)−m}x3
ẏ1 = (x1 − y1)/γ1
ẏ2 = (x2 − y2)/γ2























where µ = step(x1 − ax2) .

• Electronic sensors: a typical form for a piecewise affine control system is

(22) ẋ = Ax+ bu where u = step(x1 − θ) ,

in terms of a constant matrix A and vector b describing electronic components. In [2]
it is noted that, although a control system implements control on the state x, it does so
by measuring not x itself, but a sensor value y, hence a more faithful model is

(23) ẋ = Ax+ bu , ẏ = (x− y).κ , where u = step(y1 − θ) ,

for some diagonal matrix κ.

A united form

We can express both the switch and state shadow regularizations together by writing

(24) ẋ = f (sµ(x,y);λ) , ẏ = (x− y)/γ , where λi = sign (Sµ(xi, yi)) ,

for vector and scalar shadow functions sµ(x,y) and Sµ(x, y) which satisfy sµ(x,x) = x

and Sµ(x, x) = x, for example sµ(x,y) = µx+(1−µ)y and Sµ(x, y) = µx+(1−µ)y. The
switch-shadowing and state-shadowing systems are obtained at the extremes for µ = 1
and µ = 0 respectively. In the most general case we could consider γ to be a (contracting)
matrix, and/or a function of x and y.

It will be interesting to study in the future how the stability of equilibria is affected
under such regularizations in general, and the implications this has for the structural
stability of piecewise smooth systems.

A final but important note must be made if the switching layer expression ελ̇ = ...
is derived as the approximation to a smooth system (as in e.g. GRN models [3]). Then
the ε on the lefthand side of this expression is actually a function of λ, which makes the

vanishing entries of the Jacobians from ∂ελ̇
∂ελ become nonzero, and while we expect this

not to qualitatively affect the result as ε → 0, further study is required.
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Abstract: Regularization was a big topic at the 2016 CRM Intensive Research Pro-
gram on Advances in Nonsmooth Dynamics. There are many open questions concerning
well known kinds of regularization (e.g. by smoothing or hysteresis). Here we propose a
framework for an alternative and important kind of regularization, by external variables
that shadow either the state or the switch of the original system. The shadow systems
are derived from and inspired by various applications in electronic control, predator-prey
preference, time delay, and genetic regulation.


	Regularization by External Variables
	Shadowing in one variable
	Shadowing in n variables
	Examples
	A united form
	References


