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Introduction

The study of nonsmooth dynamics has a long history, but has been recently en-
livened by the introduction of new techniques, the discovery of new phenomenon,
and the explosion of new practical disciplines applying nonsmooth dynamical mod-
eling. The more formal name for our field is piecewise-smooth dynamics, concern-
ing the theory and applications of how dynamical systems that are smooth almost
everywhere behave when affected by discontinuities at isolated thresholds.

This volume presents an informal course at graduate level, aimed at mathe-
maticians, scientists, and engineers, studying models that involve a discontinuity,
or studying the theory of nonsmooth systems for its own sake. These notes are de-
rived from lectures given at the Advanced School on Piecewise Smooth Dynamical
Systems, organized in the Centre de Recerca Matemàtica (Bellaterra, Catalonia),
during 11-15 April, 2016. The School was organized with support from the Engi-
neering and Physical Sciences Research Council (EPSRC), the Societat Catalana
de Matemàtiques, WIRIS, and the Institute for Mathematics and its Applications
(IMA). The course comes in two parts: flows and maps (or continuous and dis-
crete time systems). Each part introduces the applications and main theoretical
techniques, of piecewise-smooth dynamics, some long-established and others newly
emerging.

An introduction to the dynamics of piecewise-smooth flows is authored by
Mike Jeffrey. The chapter starts with a few key points in the history & applica-
tions of discontinuities from mechanics and control systems, and some of the key
figures in setting up a general theory for differential equations with ‘discontinuous
righthand sides’. The methods of inclusions versus combinations are discussed,
after which we introduce the elementary dynamics of crossing and sliding at a
discontinuity surface. The analytical methods of switching layers and layer vari-
ables are presented for one switch and then for multiple switches. The concepts of
discontinuity-induced phenomena and determinacy breaking are introduced, along
with the definitions of stability, equivalence, & bifurcation in piecewise-smooth
flows. We end by introducing some of the novel attractors and bifurcations that
offer a hint at what remains to be discovered, including the present state of zoology
of singularities in the plane.

An introduction to the dynamics of piecewise-smooth maps is authored by
Paul Glendinning. After a discussion of why piecewise-smooth maps are inter-
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esting, the course moves into their phenomenology, and reviews some techniques
from smooth theory. The main topics are then: basic stability analysis, piece-
wise monotonic maps of the interval, rotation-like maps, gluing bifurcations (aka
Big Bang bifurcations and period-adding), an introduction to renormalization,
decomposition theorems and a brief guide to kneading theory, piecewise-smooth
maps of the plane including the Lozi and border collision normal form, piecewise
isometries, bounding regions, periodic orbits and resonance, robust chaos, and
two-dimensional attractors. The course concludes with a discussion of challenges
in higher dimensions, particularly concerning periodic orbits, N-dimensional at-
tractors, and analogies with smooth cases.

The Barcelona course itself included a series of guest lectures, introduc-
ing course participants to some of the current research topics in applications of
piecewise-smooth dynamics. The guest lecturers were researchers in residence at
the Intensive Research Program on Advances in Nonsmooth Dynamics at the
CRM, 1 February – 29 April 2016. A flavour of these contributions can be found
in the Extended Abstracts of the Intensive Research Program [1].



Chapter 1

Piecewise Smooth Flows

1.1 Introduction

This course is about the geometry of piecewise-smooth dynamical systems. The
solutions of a system of ordinary differential equations, such as

ẋ = f (x) (1.1)

where x = (x1, x2, . . . , xn) is some n-dimensional vector or variables, and f is an
n-dimensional vector field, can be pictured as trajectories (or orbits) in space (for
example Rn or some subset of it). Those trajectories are organized by various
singularities, separatrices, and invariant sets, whose geometry can be studied in
great generality. A loss of continuity in the differential equations greatly adds to
the richness of that geometry.

= f(x,a,b,...)

fx=(x1,  x2, ...)

dx
dt

      .  
or  x

parameters

x1

x2

switching 
surface

vector field

state, dependent variable

time, independent variable

Figure 1.1: The vector field f tells us the velocity with which some flow evolves through a
state x . If the flow is non-differentiable then f is discontinuous.

Piecewise smooth equations are smooth except at isolated thresholds called
switching surfaces. Solutions of those equations are continuous, but they may ‘kink’
at a switching surface, becoming non-differentiable, and possibly non-unique.
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6 Chapter 1. Piecewise Smooth Flows by Mike R. Jeffrey

The mathematician Alexei Fedorovich Filippov set out methods for solving
piecewise-smooth differential equations, and these have been adopted as standard.
Recently, however, with the discovery of new singularities and singular phenomena,
we have understood that more is needed. This series of lectures will provide you
with the tools to delve more deeply into the world of nonsmooth dynamics.

We will focus on:

• geometry of piecewise-smooth vector fields,

• general methods for solving and analysing them,

• their key notions of stability and bifurcations.

Some important current topics that we will not cover, but you may wish to
look up, include:

• special cases: e.g. piecewise linear or continuous non-differentiable vector
fields, hybrid/impact systems;

• modeling non-idealities: e.g. smoothing, noise, delay, etc., and the various
types of ‘regularization’, a word that comes up a lot as an open problem in
current piecewise-smooth systems.

You may also want to look into simulation methods: piecewise-smooth sys-
tems require special consideration when simulating. There are event detection
routines built into Matlab and Mathematica. There are ways of making continua-
tion tools like AUTO or MatCont work with discontinuities (often by smoothing
them out), including the AUTO-derived TcHat. Filippov’s solving methods (we’ll
discuss these in the course) have even been built into tools like Mathematica. But
these are not up-to-date in the many advances in theory that we have seen in the
last decade. Use them all with care and critical judgement.

1.1.1 Nonsmooth dynamics in a nutshell

You will notice that this first chapter on piecewise-smooth flows devotes most of
its content to considering how we obtain a well-defined flow from a discontinuous
vector field, leaving only limited space to begin introducing the fascinating phe-
nomena that result. This is because so much is possible when a flow passes through
a discontinuity, that our concept of solutions must be of sufficient detail and suf-
ficient generality to explore those possibilities. This is in contrast to the second
chapter on maps, where the vanishing likelihood of encountering the discontinuity
itself, when evolving in discrete steps, simplifies the field considerably, the solu-
tion concept is easily set up, and the study can proceed directly to studying the
dynamics.

When we have introduced the solution concept for piecewise-smooth flows
properly, we will see that there are really just a few basic elements needed to
begin building up an understanding. First the vector field.
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The vector field is discontinuous at the switching surface. A sliding vector
field may be induced on the surface, and we shall see how to define this.

f+

f1f2

f3 f4

f1

f2

f3
f4

f−

Figure 1.2: Discontinuities along one threshold in two dimensions, two thresholds in two
dimenions, and two thresholds in three dimensions.

Locally, solutions take certain simple forms. Away from the switching sur-
face they will be smooth unique curves, thanks to the existence and uniquness of
solutions of differentiable dynamical systems. At the surface, however, they might
cross through the discontinuity, or they might slide along it, following a sliding
vector field.

crossing sliding

Figure 1.3: Typical trajectories through or along a switching surface.

The switching surface has a lower dimension than the surrounding space, so
if sliding occurs, the space the solutions occupy changes, see fig. 1.4. This results
in non-uniqueness. When sliding is:

• attractive, solutions stick to the switching surface, and then many solutions
will all evolve onto the same trajectory in forward time. The history of any
point (shown in the left part of fig. 1.4) in attractive sliding is therefore
non-unique — this is common in physics as mechanical ‘sticking’.

• repulsive, solutions escape a switching surface, and then the sliding mode has
many possible future trajectories (shown in the right part of fig. 1.4). The fu-
ture of any point in repulsive sliding is therefore non-unique — determinacy
is broken.

The only other things we must add to these are the elementary singularities.
In differentiable vector fields, the commonly encountered singularity is a steady
state or ‘equilibrium’, where f = 0 in a system ẋ = f . At a discontinuity we
encounter a new kind of steady state, a sliding equilibrium, fig. 1.5, (called a
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sticking determinacy-breaking

Figure 1.4: Sliding along the switching surface leads to sticking (if attractive) or
determinacy-breaking (if repulsive).

‘pseudo’ equilibrium in many texts, but they are genuine steady states, as we shall
see, so using the term ‘pseudo’ is misleading).

equilibrium (e.g. node) sliding equilibrium 

(e.g. sliding node)

Figure 1.5: The basic steady-state singularities.

In piecewise-smooth systems there is much more to local dynamics than
studying equilibria. It is often the transient (i.e. non-stationary) dynamics that
creates the most interesting effects. In addition we must consider stationarity
relative to the switching surface, i.e. tangency of solutions to the switching surface.

tangency (visible) tangency (invisible)

Figure 1.6: The basic transient singularities, characterizing stationarity between the flows
and the switching surface

Keeping these few elements in mind will be of great assistance in gaining some
intuition for the (at first strange) terrain of what we have come to call informally:
Nonsmoothland.

1.2 History & Applications

Dynamical theory for smoothly evolving systems came a long way in the last cen-
tury. The most interesting phenomena that are now familiar in dynamical systems
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occur because of nonlinearity. Nonlinearity means the rate of change of a system
is itself varying as we move around the system, so any local approximation will
not represent the wider system well. Most important for us is what this means in
terms of dynamical behaviour: if we change some variable or parameter, then the
system’s behaviour may not respond proportionally (unlike a linear system), and
we obtain phenomena like bifurcations, chaos and complexity.

Continuity and differentiability of such equations have been vital to taming
the complications of nonlinearity. Systems which are not differentiable or are not
continuous, however, have been studied as long as there have been dynamical sys-
tems. Collisions between rigid bodies result in a discontinuous jump in contact
force. Electrical switches discontinuously turn on/off the current in a circuit. Peo-
ple in societies discontinuously switch from following one rule or trend to another.
The intervals of smooth evolution before and after a switch are well described by
standard (nonlinear) dynamcal theory. To stitch those ‘before’ and ‘after’ systems
together in more than an ad hoc fashion requires a general set of tool to understand
the effect of discontinuities, via the theory of piecewise-smooth dynamics.

Discontinuities are often involved when different objects or subsystems inter-
act. At a point where the equations are not differentiable, or not even continuous,
almost nothing from standard ‘smooth’ dynamical systems theory can be applied.

1.2.1 Ancient History

One of the most familiar physical forces to us is also one of the most complex, and
a prime example of how discontinuities complicate one of the most fundamental
processes of interaction: friction.

The resistance force of friction between two rigid bodies in contact with rough
unlubricated contact surfaces has a long and contentious history. It goes back to
the greek philosophers, but let us start with the seeds of the modern theory:

• in 1500 Leonardo da Vinci shows that frictional resistance depends on load,
but not on contact area;

• in 1699 Amontons rediscovers da Vinci’s laws, and describes friction as the
work done to overcome — through wear and deformation — the surface
roughness between two objects;

• in 1700 Desagulier shows that friction does not depend on surface roughness,
seeming to contradict Amonton’s theory;

• in 1750 Euler shows that static friction force is greater than kinetic friction
force, so more force is required to instigate motion of a static object, than
is required to keep an object in motion;

• in 1785 Coulomb added clarity and depth to the former theories, especially
those of da Vinci and Amontons;
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• in 1950 Bowden and Tabor clarified the role of contact area and surface
roughness, showing that friction does depend on the true contact area, which
is often less than the apparent contact area (i.e. the full contact surface);

• 1950 and into the present, the field of Tribology remains active, studying
speed-dependence and friction memory, the different friction characteristics
at different scales of length, time, or speed, and remains important, for ex-
ample, to the health, automotive, and energy industries.

This is a very fleeting description, meant only to highlight the complexity of a
contact force that we use and interact with every moment of every day. The most
enduring part of this story — that friction depends principally on load only — is
encapsulated in the now commonly adopted law

mẍ = −µFN (1.2)

where m is the mass of an object with displacement x, moving at speed ẋ, on a
surface moving at speed v, creating a normal reaction force FN on the object. The
quantity µ is the coefficient of friction, given for some constant µk by

µ = µk sign(ẋ − v) = µk × { +1 if ẋ > v ,−1 if ẋ < v ,
(1.3)

where ẋ > v means the object is slipping to the right and ẋ < v means the object
is slipping to the left (relative to the surface).

 .
x

v v

μNFN

right

slip

 .
x

μNFN

left

slip

Figure 1.7: The switching force of friction.

We have in friction our first discontinuous system. It says that as an object
changes from slipping right (ẋ > v) on a surface to slipping left (ẋ < v), the friction
force jumps abruptly between −µkFN and +µkFN . What happens in between?
What complications does the jump introduce into the dynamics? These are the
questions of piecewise-smooth dynamical systems theory.

The other very common piecewise-smooth system, typically encountered in
highschool mechanics even before calculus teaches us to deal with smooth systems,
is a collision. Take a block of massm, with position x, driven by a force f , colliding
with a wall at position c,

mẍ = f ∶ ẋ↦ −rẋ if x = c & ẋ > 0 , (1.4)
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where r is the coefficient of restitution. This is an impact system, composed of a
differential equation (left part) and a discrete impact map (right part).

 .
x

incoming

        .
−rx

recoil

Figure 1.8: The discontinuity in velocity resulting from impact with a hard wall.

Because this mixes up continuous and discrete time evolution, it crosses the
divide between the two chapters of this course, and opens the way to study of
the incredibly general field of sytems that are hybrids of maps and flows (see e.g.
[6, 28, 7]), which we will not delve in to here (another example of a hybrid system is
cellular mitosis: a cellular organism grows continuously until it triggers a discrete
change in mass corresponding to mitosis, see e.g. [33]).

However, usually a map just represents a jump through some fast continuous
interval of motion. In the case above, the restitution map ẋ ↦ −rẋ represents a
jump through a continuous impact phase. Alternatively we could model this as

mẍ = f − k step(x − c) , step(x − c) = { 1 if x > c ,
0 if x < c , (1.5)

introducing a large wall stiffness k. This now has continuous time solutions that
are non-differentiable at x = c, and falls back under our topic of piecewise-smooth
flows.

1.2.2 History of Piecewise Smooth Dynamical Theory

Serious attempts to develop the mathematics of dynamical systems with disconti-
nuities go back to the 1930s (at least). They are worth a look, because this is still
a young field of research, both in theory and applications, and the ideas in these
texts still strongly influence our thinking today:

• 1934 Kulebakin [21]: vibration control for aircraft DC generators;

• 1934 Nikolzky [25]: a boat rudder as a switching controller;

• 1937 Andronov, Vitt, Khaikin [4]: numerous examples are studied of me-
chanical engines and circuits, analyzing their dynamics and stability;
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• 1953 Irmgard Fluegge-Lotz [11]: proposes discontinuous control to design
missile aiming technologies;

• 1974 onwards, Vadim Utkin [35, 34, 36, 37]: develops a general design method
for electronic switching (“variable structure control”), an essential step to
our modern approach to solving discontinuous systems. The method was
based on the work of Filippov and contemporaries, e.g. [9, 3, 27, 2], which
itself didn’t reach mainstream western attention until Filippov’s work was
translated in 1988. . .

• 1988 Aleksei Federovich Filippov [10]: develops the first substantial dynami-
cal theory of “differential equations with discontinuous righthand sides”. The
book actually represents a substantial Russian literature going back half a
century, some references to which you will find here, others you will find in
the book’s substantial bibliography;

• 1990 onwards, Marco Antonio Teixeira [29, 30, 31, 32]: shows how ideas
from singularity theory can be applied to study the geometry of flows near
discontinuities;1

• The modern era: the fundamental theory (this course) and applications (to
electronics, mechanics, especially power control, but also to cell mitosis, eco-
nomics, predator-prey, climate, and countless more), remain active and grow-
ing fields of interest.

Alexei Fedorovich Filippov Irmgard Fluegge-Lotz Vadim I. Utkin Marco Antonio Teixeira

1.3 Inclusions & Combinations

Our first task is to learn how to turn discontinuous vector fields into well formed
differential equations, and then to learn how to solve them.

1note we have written “1990 onwards” but one of these references is earlier. Before this Teixeira

phrased this work as ‘divergent diagrams’ or ‘pairings of fields and functions’ to circumvent the

early skepticism towards discontinuous dynamical systems. Teixeira now leads one of the most

fervent and successful communities in geometric piecewise-smooth dynamical theory.
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1.3.1 Discontinuous vector fields

We start with a vector x = (x1, x2, . . . , xn) ∈ Rn, of the variables x1, x2, . . . , xn. Its
time dependence is described by vector fields f i such that

ẋ = f i(x) on x ∈ Ri

or, in components,

(ẋ1, ẋ2, . . . , ẋn) = (f i
1, f

i
2, . . . , f

i
n) . (1.6)

The index i is taken from a set of labels identified with the regions Ri. The
boundary between these regions is the switching surface Σ, such that the full
space is given by Σ ∪R1 ∪R2 ∪ . . .
Example 1.3.1. For two regions we could take labels i = 1,2, or i = +,−, so that
e.g. ẋ = f + for x ∈ R+ and ẋ = f − for x ∈ R− (fig. 1.9, left). For four regions we
may take labels i = 1,2,3,4, or alternatively i = ++,+−,−+,−−.

The figure shows a system with: two regions, two regions where the boundary
between them is a corner, or four regions.

f+
f−

2 regions 4 regions2 regions
at a corner

Σ

Σ1
Σ1

Σ2

Σ2

R+

R+

R− R− R−−
R−+

R++
R+−

Figure 1.9: Discontinuous vector fields with m = 2, m = 4, or m = 2 regions; in the last
example the switching surface has a corner.

In each open region Ri the vector fields f i are smooth, so we can apply
standard dynamical systems methodology. This course is about what then happens
at the discontinuity boundary — the switching surface Σ — between them.

1.3.2 The inclusion

On the switching surface Σ the variation ẋ is not yet well-defined. To extend
ẋ = f i(x) to the boundary Σ, write

ẋ ∈ F where f i(x) ∈ F ∀ i ∶ lim
x ′→x

f (x ′) = f i(x)
where F is set-valued for x ∈ Σ, and F = f i(x) for x ∈ Ri.

This system is known as a differential inclusion, and Filippov developed their
dynamical theory extensively in [10], starting with perhaps the most important
result to begin with:
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F
R+

Σ

R−

f+ f+

f−

f−

Figure 1.10: The set F at a switching surface Σ between vector fields f + on region R+ and
f − on region R−.

Theorem 1.3.2. Existence of solutions.
Solutions of ẋ = F exist if F(x) is non-empty, bounded, closed, convex, and

upper semicontinuous2. [Filippov 1988 Thm1 p77]

So if solutions to the vector field exist, forming a piecewise-smooth flow, what
do they look like?

1.3.3 A classic example: Coulomb friction

Example 1.3.3. Consider a block, resting on a surface that moves at velocity v,
attached to a spring of stiffness k and a damper with a coefficient c. Using the
friction law we gave above, the forces on the block give us

force = mẍ = −cẋ − kx − λFN , λ = { +1 if ẋ > v “slip right”−1 if ẋ < v “slip left”
(1.7)

 .
x

       .
cx

kx

v
μNFN

FN

mg

Figure 1.11: A block on a moving belt.

Written as a two-dimensional ordinary differential equation this is

ẋ = y , ẏ = − c
m
y − k

m
x − λFN

m
. (1.8)

2Upper semicontinuity is an extension of the notion of continuity for sets. It says

supb∈F(x) ρ(b, a) → 0 as p′ → p for a ∈ F(p′) and b ∈ F(p) where ρ(b, a) = infa∈A, b∈B ∣a − b∣

with ∣a − b∣ the distance between a & b.
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The equilibrium at (x, y) = (−λFN /k,0) is an attractor, because (1.8) vanishes at
this point, and the Jacobian matrix there,

∂(ẋ, ẏ)
∂(x, y) =

1

m
( 0 m−k −c )

has eigenvalues (−c ± √c2 − 4km)/2m with negative real part (giving a focus for
small damping c2 < 4km and a node otherwise); these are basic results using the
local stability theory of smooth dynamical systems (see e.g. [5, 22]). Because there
is only a single equilibrium, at y = 0, the region in which it exists (in right slip
ẋ > v or left slip ẋ < v) depends on the sign of the constant v.

x

v

v<0

left 
slip

left 
slip

right 
slip

right 
slip

stick

stick

v>0

 .
x

x

v

 .
x

Figure 1.12: Dynamics of the oscillating block shown in the phase plane (x, ẋ).

As we trace out trajectories in this phase space, we find that the block can go
from left slip to right slip or vice versa, and it can go from right or left slip to stick,
then back to slip. All trajectories are eventually attracted to the equilibrium.

Sticking is represented by motion along ẋ = v, which means that the block
and surface have matching speeds and are therefore stuck together.

We need a method to describe this sticking motion. This comes from solving
the inclusion.

1.3.4 The switching multiplier λ and switching function σ

Take a single switch at a threshold σ(x) = 0, in the bimodal system

ẋ = { f +(x) if σ(x) > 0
f −(x) if σ(x) < 0
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in terms of a switching function σ ∶ Rn ↦ R, so Σ = {x ∈ Rn ∶ σ(x) = 0}.
We can re-write this as

ẋ = f (x ;λ)
replacing each index i with a unique switching multiplier λ, such that

f +(x) = f (x ;+1),
f −(x) = f (x ;−1), i.e. i = ± ⇔ λ = ±1. (1.9)

We then define
λ = sign (σ(x)) for σ(x) ≠ 0
λ ∈ (−1,+1) for σ(x) = 0 . (1.10)

This last definition is extremely important to remember. The multiplier λ takes
values ±1 outside the switching surface, and lies inside the open interval (−1,+1) on
the switching surface. We shall see later how to fix the value inside this interval.
We will often write for shorthand just λ = sign(σ), understanding the value of
sign(σ) to lie in (−1,+1) for σ = 0.

So the switching of the multiplier λ causes the vector field f (x ;λ) to switch
between functional forms f +(x) and f −(x). The dependence of f on λ tells us
about how the jump between those modes occurs.

The function f (x , λ) combines f + and f − into a single expression where the
switching is described by λ, so we may refer to f (x , λ) as a combination.

1.3.5 Combinations

The combination f (x ;λ) is differentiable with respect to x and λ (by which we
mean that the partial derivaties ∂

∂x
f and ∂

∂λ
f exist). The discontinuity is now

encoded in the multiplier λ.

• E.g. Convex combination (Filippov 1988 Def 4a p50-52 [10])

ẋ = 1
2
(1 + λ) f +(x) + 1

2
(1 − λ) f −(x) (1.11)

• E.g. Nonlinear combination (Jeffrey 2013 [14])

ẋ = 1
2
(1 + λ) f +(x) + 1

2
(1 − λ) f −(x) + (λ2 − 1)g(x , λ) (1.12)

In both examples f (x ;±1) ≡ f ±(x). The function g can be any finite-valued vector
field. The multiplier λ in either case satisfies (1.10).

The term (λ2−1)g(x , λ) is called hidden, because it vanishes for x ∉ Σ (when
λ = ±1). (In fact it is so hidden that you won’t find it in most other courses or
texts on piecewise-smooth dynamics to date, and until 2013, Filippov’s convex
combination alone was considered standard). We’ll generalize all of this for more
complex switching later.
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f(fil)

(λ2−1)g

R+

Σ

R−

f+ f+

f−

f− ∇σ

Figure 1.13: The Filippov convex combination (dotted line) written f (fil) = 1
2
(1 + λ) f + +

1
2
(1 − λ) f −, and a non-convex combination (dashed curve) formed by hidden term (λ2−1)g .

The geometry of the convex combination and the hidden term (λ2 − 1)g are
illustrated in fig. 1.13. The convex combination traces out a linear path in space
along which the endpoint of the vector f might lie for a point on the discontinuity.
The hidden term generalizes this by displacing the line to follow a curve.

Example 1.3.4. Consider the vector field

f (x ;λ) = 1
2
(1 + λ)(2,1) + 1

2
(1 − λ)(−1,2) + (λ2 − 1)(0,−1) (1.13)

with a switching multiplier λ = sign(x1 + x2). This switches between (2,1) and(−1,2) across σ = x1 + x2. The convex and nonlinear combinations are shown in
fig. 1.14.

f(fil)

(λ
2
−1)(0,−1)

x1+x2=0

f+

f+

f−

f−

Figure 1.14: The Filippov convex combination (dotted line) and a non-convex combination
(dashed curve) for theorem 1.3.4 with quadratic dependence on λ.
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1.4 Types of dynamics

Filippov’s theory tells us that a family of solutions of the equations, the flow,
exists. What do the solutions look like?

1.4.1 The inclusion. . . solutions

We concatenate smooth segments of solutions of ẋ = F in the regions Ri and on Σ
(shown in fig. 1.10), to form continuous curves that preserve the direction of time
(illustrated in fig. 1.15).

R+

Σ

R−

f+

f−
R+

Σ

R−
f−

Figure 1.15: A crossing solution (left) corresponding to the inclusion from fig. 1.10 and
fig. 1.13. We can concatenate over many discontinuities (right).

Definition 1.4.1. An orbit of the piecewise-smooth system through a point x0 is a
maximal (‘longest possible’) concatenation of trajectories through x0.

The phrase ‘longest possible’ here is usually as interpreted as a continuous
trajectory x(t) existing over a time interval t ∈ (t1, t2) which is the largest possible
interval, e.g. typically t ∈ R for x ∈ Rn, but possibly a finite interval if only a finite
space is considered, e.g. x ∈ U ⊂ Rn where x(t1) and x(t2) lie on the boundary ofU and x(t) ∈ U for t ∈ (t1, t2).

We can solve the equations ẋ = f i(x) for the flow inside the regions Ri. We
can now use the combination to find the flow on Σ.

A family of solutions parameterized by initial conditions x0 forms a flow
Φt(x0) defined by

x(t) = Φt(x0) ∶ d

dt
Φt(x0) = f (Φt(x0);λ) , Φ0(x0) = x0 .

We may write the constituent flows in the regions R+, R−, as Φ+t , Φ−t , where
d

dt
Φ±t (x0) = f (Φt(x0);±1) .
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1.4.2 Crossing and Sliding

Let Φ+t , Φ
−
t , Φ

Σ
t , be the flows on R+, R−, Σ, respectively. At Σ:

• an orbit can cross through Σ at time τ .

To cross from R− to R+ at a point x1 = Φ−τ (x0) ∈ Σ where σ(x1) = 0, it is
necessary that σ̇(Φ−τ−δt(x0)) and σ̇(Φ+τ+δt(x0)) have the same sign, where δt
is a small increment of time. Similarly to cross from R+ to R− at a point
x1 = Φ+τ (x0) ∈ Σ where σ(x1) = 0, it is necessary that σ̇(Φ+τ−δt(x0)) and
σ̇(Φ−τ+δt(x0)) have the same sign. In either case, therefore, crossing requires

(f + ⋅ ∇σ)(f − ⋅ ∇σ) > 0 on Σ . (1.14)

• an orbit can slide along Σ, where the flow ΦΣ
t must satisfy

x(t) = ΦΣ
t (x0) ∶

d

dt
σ(x(t)) = 0 on Σ (1.15)

In the convex combination (1.11), since σ̇ = ẋ ⋅ ∇σ = f ⋅ ∇σ, sliding requires
that both vector fields f ± point towards (or both away from) Σ, therefore
sliding occurs where

(f + ⋅ ∇σ)(f − ⋅ ∇σ) < 0 on Σ , (1.16)

and satisfies

0 = σ̇ = ẋ ⋅ ∇σ = {1 + λ
2

f +(x) + 1 − λ
2

f −(x)} ⋅ ∇σ (1.17)

⇒ λ = λΣ ≡ (f − + f +) ⋅ ∇σ(f − − f +) ⋅ ∇σ (1.18)

⇒ ẋ = f Σ ≡ (f − ⋅ ∇σ)f + − (f + ⋅ ∇σ)f −(f − − f +) ⋅ ∇σ . (1.19)

In three dimensions this is compactly written as

f Σ ≡ ∇σ × (f + × f −)(f − − f +) ⋅ ∇σ (1.20)

For sliding to exist we must have λΣ ∈ (−1,+1) by (1.10), and indeed it is easy
to show that (1.18) satisfies this if and only if (1.16) is satisfied. Sliding can
occur outside (1.16) for a cnonlinear switching system like (1.12), occuring
wherever σ̇ = σ = 0 can be satisfied for [∈] (−1,+1).
Later it will be useful to observe that, from (1.19), we have

f Σ = f + if f + ⋅ ∇σ = 0 , (1.21)

f Σ = f − if f − ⋅ ∇σ = 0 , (1.22)
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meaning that when the sliding vector field becomes equal to f + or f − at
points where their normal components vanish, i.e. where they lie tangent to
Σ. These two scenarios correspond to λΣ = +1 and λΣ = −1 by (1.18), and
therefore also apply to (1.12).

Defining sliding dynamics therefore generally requires solving for the value
of λ that provides motion along σ = 0:
Definition 1.4.2. The sliding dynamics is given by

ẋ = f Σ(x) on σ(x) = 0 (1.23)

where f Σ(x) is the sliding vector field, given by

f Σ(x) ≡ f (x ;λΣ) s.t. f (x ;λΣ) ⋅ ∇σ = 0 & λΣ ∈ (−1,+1) (1.24)

on σ(x) = 0.
Example 1.4.3.

(i) The orbit

x(t) = { Φ−t (x0) if t < τ
Φ+t−τ (x1) if t > τ (1.25)

crosses from R− to R+ at time τ ;

(ii) The orbit

x(t) = { Φ−t (x0) if t < τ
ΦΣ

t−τ (x1) if t > τ (1.26)

starts in R−, then sticks to Σ at time τ , sliding thereafter;

where Φ±t are the flows of ẋ = f ±, and x1 = φ−τ (x0) ∈ Σ.

Φ
−
t

Φ
−
t

Φ
+
t

Φ
Σ

t

x1

x0

x1cross

slide

x0

Figure 1.16: Examples of crossing and sliding.

Example 1.4.4 (Crossing). Consider the system

(ẋ1, ẋ2) = (2 + λ,1) , λ = sign(x1), (1.27)
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so σ(x) = x1. Let τ > 0. See fig. 1.17.
There is an obvious crossing solution

x1(t) = (t − τ)(2 + sign(t − τ)) , x2(t) = t + x20. (1.28)

Does sliding (σ̇ = σ = 0) occur on Σ (x1 = 0)? To find out solve

σ̇ = ẋ1 = 0 ⇒ λ = −2 ∉ (−1,+1) ⇒ no sliding. (1.29)

The value of λ that would give sliding along Σ lies outside of the allowed range(−1,+1), so no sliding modes exist.

R+x1=0R−

f+=(3,1)f−=(1,1)

Figure 1.17: A piecewise constant example of crossing. We will revisit this example later to
see it is not as trivial as it first appears.

Example 1.4.5 (Sliding). Consider the system

(ẋ1, ẋ2) = (−λ,1) , λ = sign(x1), (1.30)

so σ(x) = x1. Let τ > 0. See fig. 1.18.
Crossing is impossible, as both vector fields points towards Σ (x1 = 0).
So surely the only possible motion is sliding? Solve

σ̇ = ẋ1 = 0 ⇒ λΣ = 0 (1.31)

which lies inside (−1,+1), and substituting back into the original system

⇒ (ẋ1, ẋ2) = (0,1) . (1.32)

An example of a sticking orbit is

x1(t) = (τ − t sign(τ)) step(τ − t) , x2(t) = t + x20. (1.33)
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R+x1=0R−

f+=(−1,1)

fΣ
=
(0
,1
)

f−=(1,1)

Figure 1.18: A piecewise constant example of sliding.

1.4.3 The local singularities

Any of the constituent systems ẋ = f ±(x) may have an equilibrium where f ±(x) =
0, or in combination notation, where ẋ = f (x ;±1) = 0.

Two new singularities arise at a (simple) switching surface:

(i) Sliding (“pseudo”) equilibria are points where f ±(x) ≠ 0 but f Σ(x) = 0, i.e.
f (x ;λΣ) = 0 with σ(x) = 0 . (1.34)

In the convex combination these happen where f ± are in opposition, since
for some µ > 0

f + = −µf − ⇒ ẋ = f Σ = (f − ⋅ ∇σ)f + − (f + ⋅ ∇σ)f −(f − − f +) ⋅ ∇σ
= (f − ⋅ ∇σ)(−µf −) − (−µf − ⋅ ∇σ)f −(f − + µf −) ⋅ ∇σ = 0 . (1.35)

These are stationary points of the sliding flow on the switching surface.

(ii) Tangencies of the vector field to Σ are points where:

f + ⋅ ∇σ = 0 ⇒ ẋ = f + (1.36)

or similarly for f −. These are stationary points with respect to the switching
surface, of the flows outside the surface. It is easy seen using (1.11) or (1.12)
that they correspond to points where f (x ;±1) = 0, and so for example λΣ =
±1 in (1.18).

Example 1.4.6 (Sliding equilibria). In two dimensions consider λ = signx1 with

(ẋ1, ẋ2) = 1
2
(1 + λ)(−1,−x2) + 1

2
(1 − λ)(1, b) (1.37)
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or in three dimensions λ = signx1 with

(ẋ1, ẋ2, ẋ3) = 1
2
(1 + λ)(−1, x3 − x2,−x2) + 1

2
(1 − λ)(1, b, c) . (1.38)

Clearly the λ = +1 system in x1 > 0 and the λ = −1 system in x1 < 0 are non-
vanishing. In both cases, to find sliding modes we solve 0 = σ̇ = ẋ1 = 1

2
(1+λ)(−1)+

1
2
(1 − λ)(+1) = λ. Hence in (1.37)

λΣ = 0 ⇒ ẋ2 = 1
2
(b − x2) ,

with a sliding equilibrium at x2 = b, and in (1.38)

λΣ = 0 ⇒ (ẋ2, ẋ3) = 1
2
(b − x2 + x3, c − x2) ,

with a sliding equilibrium at (x2, x3) = (c, c − b); see fig. 1.19.

x1

x2

x1
x3

x2

Figure 1.19: Sliding equilibria in two or three dimensions. For (1.37) to (1.38) the x1

direction is vertical.

Note in the two systems that the directions of the upper and lower vector
fields (above and below x1 = 0), at the equilibria are given by (−1,−b) and (1, b) in
(1.37) and (−1,−b,−c) and (1, b, c) in (1.38), i.e. they are antiparallel there (their
magnitudes are not significant).

Example 1.4.7 (Tangencies). Figure 1.20 below shows quadratic tangencies of types
we call ‘visible’ (curving away from Σ) or ‘invisible’ (curving towards Σ).

In higher dimensions, sets of visible and invisible tangencies meet at higher
order tangencies, like the cubic tangency, called a ‘cusp’, illlustrated in fig. 1.21.

The examples shown in fig. 1.20 and fig. 1.21 are from the equations

(ẋ1, ẋ2) = 1
2
(1 + λ)(−1,−x1) + 1

2
(1 − λ)(0,1) , λ = sign(x2)(ẋ1, ẋ2) = 1

2
(1 + λ)(+1,−x1) + 1

2
(1 − λ)(0,1) , λ = sign(x2)(ẋ1, ẋ2, ẋ3) = 1

2
(1 + λ)(1,0, x2

1 + x2) + 1
2
(1 − λ)(0,0,1) , λ = sign(x3)

but we could also have cubic, quartic, etc. order.
At the simple (‘fold’) tangencies in fig. 1.20 we have that the upper (λ = +1

vector field) satisfies ẋ2 = −x1 which vanishes at x1, creating a tangency. The sign
of the second derivative determines its curvature, in the first example ẍ2 = −ẋ1 = +1
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visible

Σ Σ
invisible

Figure 1.20: Visible and invisible tangencies in the upper vector field. On the switching
surface Σ, the full line indicates the sliding region found using a convex combination, but
nonlinear dependence on λ can let this can bleed out as indicated by the dashed region, while
the remainder is crossing (dotted).

cusp

v
is.

inv.

Σ

Figure 1.21: A cusp in the upper vector field. On the switching surface Σ, the dark shaded
region indicates the sliding region found using a convex combination, but nonlinear depen-
dence on λ can let this can bleed out as indicated by the light shaded region, while the
remainder is crossing (unshaded).

implies the flow is curving upwards, creating a visible tangency, and in the second
example ẍ2 = −ẋ1 = −1 implies the flow is curving downwards, creating an invisible
tangency

At the cusp, for the upper vector field we have ẋ3 = x2
1 + x2 which vanishes

on x3 = 0 along a curve x1 = ±√−x2 (existing for x2 < 0). The second derivative is
ẍ3 = 2ẋ1x1 + ẋ2 = 2x1 = ±2√−x2, meaning the half-curve x1 = +√−x2 is a family
of visible folds while the half-curve x1 = −√−x2 is a family of invisible folds. The
point x1 = x2 = x3 = 0 where ẍ3 = 0 is the cusp.

Above we gave a necessary condition for crossing, but it does not guarantee
crossing (it is not necessary and sufficient). The region indicating by the full line
in fig. 1.20 and by shading fig. 1.21 on Σ shows where both vector fields point
towards the surface, f + ⋅ ∇σ < 0 < f − ⋅ ∇σ, so sliding must occur. In the remaining
region trajectories may cross through (and in Filippov’s convention they do cross
through), but in nonlinear combinations it is possible for the sliding region to
‘bleed out’ into the crossing region, indicated by the dashed/light-shaded region
on Σ.

We’ve hinted above that crossing or sliding on a switching surface depends
on convexity, i.e. whether the dependence on λ is linear. Most courses would
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assume linearity and hasten onward. Let’s hold back a little and consider nonlinear
dependence a little further.

1.4.4 Crossing and Sliding – examples II

Let’s revisit the crossing example in (1.27) above and add a ‘hidden’ term.

Example 1.4.8 (Nonlinear λ dependence and crossing). Consider

(ẋ1, ẋ2) = (2 + λ,1) + 2(λ2 − 1,0) , λ = sign(x1), (1.39)

so σ(x) = x1. Let τ > 0.
The obvious crossing solution is again x1(t) = (t− τ)(2+ sign(t− τ)), x2(t) =

t + x20, but turns out to be wrong in the presence of the nonlinear term.
Let’s look for sliding modes by solving σ̇ = σ = 0 on Σ (x1 = 0):

0 = σ̇ = ẋ1 = λ + 2λ2
⇒ λΣ = − 1

2
or 0 . (1.40)

Thus there are two sliding modes. It turns out that either modes gives sliding
dynamics (ẋ1, ẋ2) = (0,1) for this simple example.

Now we seem to have three possible solutions at Σ: the orbit may cross, or
it may follow one of two sliding modes. This kind of ambiguity leads to paradoxes
in physics if incorrectly handed. So which is right?

To find out we have to look closer at how λ varies on the interval −1 to +1.

1.5 Switching layers

1.5.1 The dynamics of λ

Switching layers resolve the jump in λ into a continuous (but infinitesimal time)
dynamics that takes place in an infintesimally short time, with invariant sets cor-
responding to the sliding dynamics σ̇ = 0. We define

ελ̇ = f ⋅ ∇σ for ε→ 0. (1.41)

The argument for (1.41) begins with noting that the multiplier λ is a function
only of σ, so it makes sense that λ̇ be determined by σ̇. Let λ = λ(σ/ε) for some
ε ≥ 0, then noting σ̇ = f ⋅ ∇,

λ̇ = λ′σ̇/ε = λ′f ⋅ ∇σ/ε ⇒ ε̃λ̇ = f ⋅ ∇σ (1.42)

defining ε̃ = ε/λ′. We assume that λ′ is sufficiently well behaved (non-vanishing on
an open interval ∣σ∣ < ε such that ε̃ → 0 as ε → 0, see [17]). Since only ε → 0 is of
interest, we then drop the tilde in (1.42).
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Letting ε→ 0 gives an instantaneous switch (instantaneous because the rate
of change λ̇ ∼ 1/ε is then infinitely large), so in piecewise-smooth systems, this is
the limit we’re interested in.

The equilibrium of (1.41) is just the sliding mode, since

λ̇ = 0 ⇔ σ̇ = 0 . (1.43)

Let us apply this now to the previous problem.

Example 1.5.1 (Nonlinear λ . . . continued). On x1 = 0 let

ελ̇ = 2 + λ + 2(λ2 − 1). (1.44)

This has two equilibria, at λ = λΣ = − 1
2
or 0. Since

∂λ̇

∂λ
∣
λ=λΣ

= 1 + 4λΣ = { −1 if λΣ = − 1
2+1 if λ = 0 (1.45)

the solution λΣ = − 1
2
is attractive (the other is repelling), so this is the solution

the flow follows.

1.5.2 The switching layer

When we take the dynamical equation on λ above, what we actually do is magnify
the surface σ = 0 into a layer over which λ ∈ (−1,+1) on σ = 0.

Take coordinates so that σ = x1, then:

Definition 1.5.2. The switching layer on x1 = 0 is

(λ,x2, . . . , xn) ∈ (−1,+1) ×Rn−1. (1.46)

Figure 1.22 shows the switching layer for (1.27), in which crossing occurs.

{

f+
f−

f+

f−

x1

x1=0
x1=0

x1

λ

Figure 1.22: A simple crossing region, showing the jump in the vector field (left), blown up
to reveal the switching layer (right).
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{

f+
f−

f+

f−

x1

x1=0
x1=0

x1

λ

Figure 1.23: A nonlinear sliding region, showing the jump in the vector field (left), blown
up to reveal the switching layer (right) with attracting and repelling sliding modes.

Figure 1.23 shows the corresponding picture for (1.44), in which crossing is
prohibited by hidden terms, determined by nonlinear dependence on the switching
multiplier λ.

For rigorous theory concerning switching layers see [26, 17]. The theory is at
an early stage of development, but has already begun helping resolve some of the
outstanding problems in piecewise-smooth dynamics, and we’ll see some examples
later.

Inside the switching layer the variation is given by the two timescale system
obtained by putting ẋ = f together with ελ = f ⋅∇σ on σ = 0. In coordinates where
σ = x1:

Definition 1.5.3. The switching layer system is

ελ̇ = f1(0, x2, . . . , xn;λ) , λ ∈ (−1,+1)
ẋi = fi(0, x2, . . . , xn;λ) , i = 2, . . . , n

in terms of an infinitesimal ε ≥ 0 in the limit ε→ 0.

1.5.3 Layer variables

The layer system allows us to stretch space to peer inside the discontinuity. But
it also gives something more, a way to extend certain local methods from smooth
dynamical theory, like linearization, to discontinuities. To do this we will need a
re-scaled variable, called the layer variable.

Definition 1.5.4. In a system where λ = sign(x1), the switching layer variable is
the vector

ξ = (ξ1, ξ2, . . . , ξn) = (ελ,x2, . . . , xn) (1.47)

(i.e. the vector ξ given by replacing x1 by ελ in coordinates where σ = x1).
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1.5.4 Layer variables – examples

Example 1.5.5 (I. Linearization). The planar system

( ẋ1

ẋ2
) = ( −λ

c − x2 − (c + x2)λ ) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

( −1−2x2
) if x1 > 0 ,

( 1
2c
) if x1 < 0 ,

has no equilibria for x1 ≠ 0. The switching layer system on x1 = 0 is

( ελ̇

ẋ2
) = ( −λ

c − x2 − (c + x2)λ ) . (1.48)

This has a sliding equilibrium at (λ,x2) = (0, c). Is it an attractor? What are it’s
eigenvalues and eigenvectors?

In layer variables on x1 = 0 we have

( ξ̇1
ξ̇2
) = ( −ξ1/ε

c − ξ2 − (c + ξ2)ξ1/ε ) . (1.49)

Let us find the Jacobian in the layer variables ξ = (ξ1, ξ2) = (ελ,x2), evaluated at
the equilibrium:

J = ( ∂ξ̇1
∂ξ1

∂ξ̇1
∂ξ2

∂ξ̇2
∂ξ1

∂ξ̇2
∂ξ2

) = −1
ε
( 1 0

c + ξ2 ξ1 + ε ) = −
1

ε
( 1 0

2c ε
) (1.50)

with eigenvalues νi and eigenvectors vi (solutions of Jvi = νivi) as ε→ 0:

ν1 = −1/ε→ −∞ ∶ v1 → (1,2c)T
ν2 = −1 ∶ v2 = (0, 1 )T ⇔ in line of Σ

(1.51)

Both are attracting (agreeing with this being a node, since detJ = 1/ε > 0).
Attraction along the (0,1)T direction is at unit rate x2 − c ∼ (x20 − c)e−t.
Attraction along the (1,2c)T direction is infinitely fast, ξ1 ∼ ξ10e−t/ε, so while

it takes a finite time to reach x1 = 0, once there, in any time instant t we find ξ1
contracts immediately to the equilibrium at e−t/ε → 0 as ε → 0.

Example 1.5.6 (II. Linearization). The planar system

( ẋ1

ẋ2
) = ( 1 − x2 − λ(1 + x2)

c − 1 − λ(c + 1) ) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2( −x2−1 ) if x1 > 0 ,
2( 1

c
) if x1 < 0 ,
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has no equilibria for x1 ≠ 0. The switching layer system is

( ελ̇

ẋ2

) = ( 1 − x2 − λ(1 + x2)
c − 1 − λ(c + 1) ) . (1.52)

This has an equilibrium at (λ,x2) = ( c−1c+1 ,
1
c
).

Is it an attractor? What are it’s eigenvalues/vectors?
Find the Jacobian in the layer variables ξ = (ξ1, ξ2) = (ελ,x2), evaluated at

the equilibrium:

J = ( ∂ξ̇1
∂ξ1

∂ξ̇1
∂ξ2

∂ξ̇2
∂ξ1

∂ξ̇2
∂ξ2

) = −1
ε
( 1 + ξ2 ξ1 + ε

c + 1 0
) = −1

ε
( 1 + 1

c
2cε
c+1

c + 1 0
) (1.53)

with eigenvalues and eigenvectors as ε→ 0:

ν1 = c+1+
√

R
−4cε → −∞ ∶ v1 → (1, c)T

ν2 = c+1−
√

R
−4cε → c2

c+1 ∶ v2 = (0, 1 )T ⇔ in line of Σ
(1.54)

where R = (c + 1)2 + 8c3ε.
Say c > 0. Then one of these eigendirections is attracting, and one repelling

(implying a saddle, agreeing with detJ = −2c/ε < 0).
Repulsion along the (0,1)T direction is as x2 − 1

c
∼ (x20 − 1

c
)e+tc2/(c+1), and

therefore takes infinite time to leave x2 = 1/c.
Along the (1, c)T direction the rate of attraction is infinitely fast, so the

contraction to ξ1 = 0 is instantaneous, and ξ1 − c−1
c+1 ∼ (ξ10 − c−1

c+1)e−t(c+1)/2cε gives
ξ1 → c−1

c+1 for ε→ 0.
We leave it for the reader to consider the case c < 0.

Example 1.5.7 (III. Linearization). The three dimensional system

⎛⎜⎝
ẋ1

ẋ2

ẋ3

⎞⎟⎠ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

−1
ax2 + bx3

cx2 + dx3

⎞⎟⎠ if x1 > 0 , ⎛⎜⎝
1
e

0

⎞⎟⎠ if x1 < 0 ,

has no equilibria for x1 ≠ 0. Taking the convex combination, the switching layer
system simplifies to

⎛⎜⎝
ελ̇

ẋ2

ẋ3

⎞⎟⎠ =
1
2

⎛⎜⎝
−2λ(1 + λ)(ax2 + bx3) + (1 − λ)e(1 + λ)(cx2 + dx3)

⎞⎟⎠ . (1.55)

This has an equilibrium at (λ,x2, x3) = (0,−d, c)e/(ad − bc). In layer variables,

⎛⎜⎝
ξ̇1
ξ̇2
ξ̇3

⎞⎟⎠ =
1
2ε

⎛⎜⎝
−2ξ1(ε + ξ1)(aξ2 + bξ3) + (ε − ξ1)e(ε + ξ1)(cξ2 + dξ3)

⎞⎟⎠ , (1.56)
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whose Jacobian at the sliding equilibrium is

J = 1
2

⎛⎜⎝
−2/ε 0 0−2e/ε a b

0 c d

⎞⎟⎠ (1.57)

with eigenvalues and corresponding eigenvectors as ε→ 0

ν1 = −1/ε→ −∞ ∶ v1 → (1, e,0)T
ν2 = −a+d

4
−√R ∶ v2 = (0,2ν2 − d, c)T ⇔ in plane of Σ

ν3 = −a+d
4
+√R ∶ v3 = (0,2ν3 − d, c)T ⇔ in plane of Σ

(1.58)

where R = ( a+d
4
)2 + bc − ad.

The eigenvalues ν2,3 are finite and confined to the (x2, x3) plane of Σ, where
the equilibrium is: a saddle if ad − bc < 0, a focus if ad − bc > 0 > R, a node if
ad − bc > 0 & R > 0, attracting if a + d < 0 and repelling if a + d > 0.

The eigenvalue ν1 tells us that the sliding region x1 = 0 is attracting with
an infinite rate (i.e. in zero time) along the direction (1/e,1,0), i.e. along the
directions of the two constituent vector fields f ± at the equilibrium.

We will now take a look at local analysis of a bifurcation of equilibria. First,
let us recall the basic bifurcation of equilibria in a smooth system.

Example 1.5.8 (A saddlenode bifurcation in the plane). Take a smooth system

( ẋ1

ẋ2
) = ( x2

1 − c−x2
) (1.59)

which has equilibria at (x1, x2) = (±√c,0), which exist only for c > 0.
The Jacobian is J = ( ±

√
c 0

0 −1 ) at (x1, x2) = (±√c,0), with
ν1 = −1 ∶ v1 → (0,1)T
ν2 = ±2√c ∶ v2 = (1,0)T (1.60)

The ‘+’ gives a saddle at (x1, x2) = (+√c,0) and the ‘−’ gives an attracting node
at (x1, x2) = (−√c,0), fig. 1.24.

c>0 c=0 c<0

Figure 1.24: A saddlenode bifurcation in a smooth system

A saddlenode bifurcation occurs as c changes sign: the two equilibria (for
c > 0) annihilate each other (at x = 0) and leave a non-vanishing flow (for c < 0).
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Let’s contrast this with a similar boundary equilibrium bifurcation.

Example 1.5.9 (A discontinuity-induced saddlenode bifurcation). Take a piecewise-
smooth system

( ẋ1

ẋ2
) = 1

2
(1 + λ)( 1

b
) + 1

2
(1 − λ)( − 1

2
x1−x2
) (1.61)

where λ = signσ and σ = x1 − x2 − c, the bifurcation parameter is c, and b is a
small nominal constant. For the layer system it helps to rotate coordinates, so let(y1, y2) = (x1 − x2 − c, x1 + x2)/4, giving

( ẏ1
ẏ2
) = 1

2
(1 + λ)( 1 − b

1 + b ) + 1
2
(1 − λ)( y2 − 3y1 − 3

4
c

y1 − 3y2 + 1
4
c
) (1.62)

in which the node lies at (y1, y2) = (− c
4
,0), with Jacobian

J = ( −3 1
1 −3 ) ⇒ ν1 = −4 ∶ v1 → (−1,1)T

ν2 = −2 ∶ v2 = (1,1)T (1.63)

The layer system on y1 = 0 is

( ελ̇

ẏ2
) = 1

2
(1 + λ)( 1 − b

1 + b ) + 1
2
(1 − λ)( y2 − 3y1 − 3

4
c

y1 − 3y2 + 1
4
c
) (1.64)

with an equilibrium at (λ, y2) = ( c+b−2c−b+2 ,
c(2+b)
4(2−b)), or in layer variables

( ξ̇1
ξ̇2
) = 1

2
(1 + ξ1/ε)( 1 − b

1 + b ) + 1
2
(1 − ξ1/ε)( ξ2 − 3ξ1 − 3

4
c

ξ1 − 3ξ2 + 1
4
c
) (1.65)

with Jacobian

J = ( ∂ξ̇1
∂ξ1

∂ξ̇1
∂ξ2

∂ξ̇2
∂ξ1

∂ξ̇2
∂ξ2

) = ⎛⎝
(b−1)(c−b+2)

2ε(b−2)
2−b

c−b+2
2+c+b+cb−b2

2ε(2−b)
3(2−b)
b−c−2

⎞
⎠ , (1.66)

whose eigenvalues and corresponding eigenvectors as ε→ 0 are

ν1 = 1
ε

(1−b)(c−b+2)
2(2−b) → +∞ ∶ v1 → (1 − b,1 + b)T

ν2 = 2(2−b)2
(b−1)(c−b+2) < 0 ∶ v2 = (0,1)T ⇔ in line of Σ

(1.67)

(for small c and b.)
Hence this equilibrium is a saddle, with an infinite rate of repulsion along

the (1 − b,1 + b) direction out of the switching surface, and asymptotic attraction
along the vertical inside the surface, fig. 1.25.

As in the previous example, the two equilibria exist only for c > 0, because
• the node exists in the region x1 < 0 since x1 = − c

4
< 0 for c < 0,

• the saddle leaves the λ ∈ (−1,+1) layer since λ = c+b−2
c−b+2

∈ (−1,+1) for c < 0.
As c becomes negative the two equ leave their domains of existence and disappear,
in a piecewise-smooth system analogue of the saddlenode bifurcation.
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c>0 c=0 c<0

Figure 1.25: A saddlenode bifurcation in a nonsmooth system.

1.6 Multiple switches

An important feature of these methods is that they extend directly to systems
that have multiple discontinuities at different thresholds.

1.6.1 Combinations for r switches

Recall that we wrote ẋ = f (x ;λ) for a single switch with λ = sign(σ). This expres-
sion is easy to extend to multiple switches.

Let the switching surface Σ be comprised of m transversally intersecting
sub-manifolds, Σ = Σ1 ∪Σ2 ∪ ⋅ ⋅ ⋅ ∪Σm, where

Σi = { x ∈ Rn
∶ σi(x) = 0 }

Σ = { x ∈ Rn
∶ σ(x) = σ1(x)σ2(x) . . . σm(x) = 0 }

in terms of smooth scalar functions σi. Transversality means the normal vectors
∇σi are linearly independent, so the surfaces σi = 0 may touch each other, but
never tangentially, see fig. 1.26.

The multiplier λ becomes a vector λ = (λ1, . . . , λm) where each λi = sign(σi).
The combination becomes

ẋ = f (x ;λ) ∶
λi = sign (σi(x)) for σi(x) ≠ 0
λi ∈ (−1,+1) for σi(x) = 0 . (1.68)

For example we can write f (x ;+1,−1,−1,−1) = f +−−−(x) and so on, where
smooth vector fields f i(x) apply in disjoint regions Ri.

If there are m surfaces σ1 = 0, . . . , σm = 0, intersecting transversally, these
result in 2m different vector fields f x ;±11, . . . ,±m1 = f ±1 ⋅⋅⋅±m(x) (on 2m regionsRi).

1.6.2 Canopy combination

Recall that, for a single switch, the combination was given simply by (1.11) if we
assumed linear dependence on λ, or (1.12) if we permitted nonlinear dependence.
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transversally intersecting

σ1=0
σ1=0

σ2=0

σ2=0

σ1

Δ

non-transversally intersecting

σ2

Δ σ2

Δ

σ1

Δ

σ1=0

σ1=0

σ2=0

σ2=0

σ1

Δ

σ2

Δ

σ2

Δ

σ1

Δ

Figure 1.26: In this section we will only consider transversally intersecting surfaces. Tan-
gential intersections occur only under special conditions, they do not persist under typical
perturbations, and some of these general methods then need adapting for such atypical sce-
narios.

What does the combination f (x ;λ) now look like as a function of x , of λ =(λ1, . . . , λm), and of the constituent vector fields f ++..., f −+..., . . . , (or in decimal
indices f 1, f 2, . . . )?

A very general extension of the convex combination to multiple switches is
the convex hull,

ẋ = f (x ;λ) =∑
i

λif
i (x) ,

summing over all the indices i labelling regions, and subject to a normalization
condition∑

i

λi = 1. This means typically that for m switching surfaces we have 2m

vector fields f i, and 2m − 1 unknown multipliers λi. If we seek sliding motion on
those surfaces (for one switch this meant solving σ̇ = 0) we will solve m conditions
σ̇1 = ⋅ ⋅ ⋅ = σ̇m = 0. Such a problem is only well posed if the number of unknowns
matches the number of conditions, hence if 2m − 1 = m, which is only satisfied in
the trivial case m = 1, i.e. a single switch. The convex hull, therefore, does not
give a well posed expression of the piecewise-smooth system. Fortunately there is
a resolution, but like the nonlinear combinations of (1.12), it requires giving up
the stipulation of convexity.

Theorem 1.6.1. If we assume ẋ depends multi-linearly on m independent switching
multipliers λ1, . . . , λm, it can be written uniquely as ẋ = f (x ;λ1, . . . , λm) using the
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canopy combination

ẋ = f (x ;λ) = ∑
i1=±
⋅ ⋅ ⋅ ∑

im=±
λ
(ij)
j λ

(i2)
2 . . . λ(im)m f i1i2...im (x) , (1.69)

using shorthand

λ
(±)
j ≡ 1

2
(1 ± λj) . (1.70)

So we can extend the combinations from earlier as the ‘canopy’ of f ... values
given by (1.69), introduced in its general form in [15].

We can think of this as a heirarchical application of Filippov’s convex com-
bination:

f = 1
2
(1 + λ1)f +... + 1

2
(1 − λ1)f −...

where f i1... = 1
2
(1 + λ2)f i1+... + 1

2
(1 − λ2)f i1−...

where f i1i2... = 1
2
(1 + λ3)f i1i2+... + 1

2
(1 − λ3)f i1i2−...

etc.

where, importantly, the final result is independent of the order in which we build
this heirarchy.

E.g. For m = 1: ẋ = f (x ;λ) = 1+λ1

2
f +(x) + 1−λ1

2
f −(x)

E.g. For m = 2: ẋ = f (x ;λ) = 1+λ2

2
{ 1+λ1

2
f ++(x) + 1−λ1

2
f −+(x)}

+ 1−λ2

2
{ 1+λ1

2
f +−(x) + 1−λ1

2
f −−(x)}

(1.71)

These are multi-linear in terms of the switching multipliers λ1, . . . , λm. We can
add to this nonlinear dependence on the λi’s. For a single switch we saw that we
could include these via a hidden term (λ2 − 1)g(x ;λ). The principle is the same
for multiple switches. We can add a hidden term k which satisfies

σ1(x) . . . σm(x) k(x) = 0 , (1.72)

and therefore vanishes from (1.69) outside of the switching surface, where f (x ;λ)
will reduce to one of the f ±⋅⋅⋅±. This implies that k consists of terms like (λ2

i −
1)gi(x ;λ), which automatically satisfies the orthogonality condition (1.72) for any
finite-valued vector fields gi.

1.7 Codimension r Switching layers

Taking a general system now in which there are m switches at different surfaces
σ1 = 0, . . . , σm = 0, we will see how to study what happens at a point where r ≤m
of these surfaces intersect.
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1.7.1 The switching layer for r switches

Extending the method for a single switch, we can magnify each sub-manifold σi = 0
into a layer over which λi ∈ (−1,+1).

Looking at the intersection of r switches in a system with m switches in n

dimensions, take coordinates so that σj = xj for j = 1, . . . , r, with 0 < r ≤m ≤ n:
Definition 1.7.1. The switching layer on x1 = x2 = ⋅ ⋅ ⋅ = xr = 0 is

(λ1, . . . , λr, xr+1, . . . , xn) ∈ (−1,+1)r ×Rn−1 . (1.73)

For each multiplier λj we introduce an infinitesimal εj → 0, and extending
directly what we had for one switch, for each i we have a (infinitely) fast system
εjλ̇j = f ⋅ ∇σj and λj ∈ (−1,+1). Putting this together with the system ẋ = f on
σ1 = ⋅ ⋅ ⋅ = σm = 0, in coordinates where σj = xj for j = 1, . . . , r, the variation inside
the layer is given by an r + 1 timescale system (made up of times t, ε1t, . . . , εrt):

Definition 1.7.2. The switching layer system inside (1.73) is

εj λ̇j = fj(0, . . . ,0, xr+1, . . . , xn;λ1, . . . , λm) j = 1, . . . , r
ẋi = fi(0, . . . ,0, xr+1, . . . , xn;λ1, . . . , λm) i = r + 1, . . . , n

in terms of (different) infinitesimals εj > 0, in the limit εj → 0.

Associated with these, for local analysis, we have:

Definition 1.7.3. In a system where λi = sign(xi) for i = 1, . . . , r, the switching
layer variable is the vector

ξ = (ξ1, ξ2, . . . , ξn) = (ε1λ1, . . . , εrλr, xr+1, . . . , xn) (1.74)

(i.e. the vector ξ given by replacing xi by εiλi in coordinates where σi = xi for
i = 1, . . . , r).

The fact that the εj’s need not be the same means, although they all tend
to zero, their ratios might not. This can have significance for the dynamics of the
layer system. One way to treat it is to let εj = κjε1 for j = 1, . . . , r with κ1 = 1, and
then assume that all κj are fixed non-vanishing constants, the ratios κj = εj/ε1.
When we let ε1 → 0 then all εj will tend to zero, but the constants κj will be
left behind in our expressions. It then becomes part of the modeling problem,
depending on the application for instance, to determine what the values of the
κj’s should be, based on a study of the dynamics they result in, so let’s begin
seeing what that dynamics might look like.

1.8 Codimension r sliding

On the switching surfaces we will have sliding dynamics if σ̇j = 0, which implies

λ̇j = 0 in the switching layer system. So we have:
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Definition 1.8.1. The (codimension r) sliding manifold is the set of points

M= { fj = 0 on xj = 0 for j = 1,2, . . . , r
with (λ1, . . . , λr) ∈ (−1,+1)r } (1.75)

in the switching layer where

0 = fj(0, . . . ,0, xr+1, . . . , xn;λ1, . . . , λm) ∀ j = 1, . . . , r
on which the sliding dynamics is given by the differential algebraic equations

0 = fj(0, . . . ,0, xr+1, . . . , xn;λ1, . . . , λm) j = 1, . . . , r
ẋi = fi(0, . . . ,0, xr+1, . . . , xn;λ1, . . . , λm) i = r + 1, . . . , n (1.76)

This extends the notion of sliding modes to multiple switches. The manifold is
invariant where it is normally hyperbolic, where

detB ≠ 0 & Re(eigenvalues B) ≠ 0 where B = ∂(λ̇1, . . . , λ̇r)
∂(λ1, . . . , λr) ∣M . (1.77)

If the eigenvalues of B have negative real part, thenM is attracting, generalizing
the concept of attracting sliding regions to the intersections of multiple switches.
If none of the eigenvalues have negative real part, then the sliding manifold is
repelling, and less likely to play a major role in the local dynamics. If only some
of the eigenvalues have negative real part then the manifold is attracting in some
directions and repelling in others.

If we have multi-linear dependence on the λj ’s, as in the general form of the
combination (1.69), we may find the algebraic conditions in (1.76) have up to r!
solutions (or even more if we have nonlinear dependence on the λj ’s). These cor-
respond to multiple branches ofM, meaning multiple independent sliding modes
existing at the same x coordinates on Σ, but separated by existing typically at
different values of the λj ’s, each with their own attractivity properties.

Example 1.8.2 (Sliding equilibrium). For a system with two switches, take coor-
dinates such that σi = xi, so λi = signxi, for i = 1,2, and consider vector fields

( ẋ1

ẋ2
) = ( a1

a2
) + ( b11 b12

b21 b22
)( λ1

λ2
)

where the ai and bij may be functions of x .
There is codimension r = 1 (i.e. ‘Filippov’) sliding:

• on x1 = 0: where 0 = ẋ1 = a1 + b11λ1 + b12 signx2 gives

λΣ
1 = −a1+b12 signx2

b11
⇒ ẋ2 = a2 − b21

b11
(a1 + b12 signx2) + b22 signx2 , (1.78a)
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• on x2 = 0: where 0 = ẋ2 = a2 + b21 signx1 + b22λ2 gives

λΣ
2 = −a2+b21 signx1

b22
⇒ ẋ1 = a1 − b12

b22
(a2 + b21 signx1) + b11 signx1 , (1.78b)

provided λΣ
1 and/or λΣ

2 lie in (−1,+1), and otherwise the flow crosses x1 = 0
and x2 = 0 transversally.

The intersection we must treat separately.

There is codimension r = 2 sliding where

( 0
0
) = ( λ̇1

λ̇2

) = ( ẋ1

ẋ2
) = ( a1

a2
) + ( b11 b12

b21 b22
)( λ1

λ2
)

giving λ
Σ = −B−1a , or

( λΣ
1

λΣ
2

) = 1

b11b22 − b12b21 (
b12a2 − b22a1
b21a1 − b11a2 ) (1.79)

which exists if it lies in (−1,+1)2.
The attractivity of the sliding mode can be derived either from the eigenvec-

tors and eigenvalues of
df

dλ
= ( b11 b12

b21 b22
) ,

and in simple cases from the directions of the flows along the manifolds x1 = 0 and
x2 = 0.

The attractivity of sliding equilibria can be derived from the layer system

( ε1λ̇1

ε2λ̇2

) = ( a1
a2
) + ( b11 b12

b21 b22
)( λ1

λ2
)

and considering the eigenvectors and eigenvalues in layer variables

( ξ̇1
ξ̇2
) = ( a1

a2
) + ( b11 b12

b21 b22
)( ξ1/ε1

ξ2/ε2 )
= ( a1

a2
) + ( b11 b12

b21 b22
)( 1/ε1 0

0 1/ε2 )(
ξ1
ξ2
) (1.80)

wth Jacobian
∂(ξ̇1, ξ̇2)
∂(ξ1, ξ2) = (

b11 b12
b21 b22

)( 1/ε1 0
0 1/ε2 ) . (1.81)

Example 1.8.3 (Sliding equilibrium in 3D). Eigenvectors of an equilibrium in codi-
mension 2 sliding.
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Consider the three dimensional system

⎛⎜⎝
ẋ1

ẋ2

ẋ3

⎞⎟⎠ =
⎛⎜⎝

a1
a2−x3

⎞⎟⎠ +
⎛⎜⎝

b11 b12 0
b21 b22 0
0 0 0

⎞⎟⎠
⎛⎜⎝

λ1

λ2

0

⎞⎟⎠
where λi = signxi, for nonzero constants ai, bij . The system outside Σ (which is
made up of x1 = 0, x2 = 0, and x3 = 0) is non-vanishing, so there are no equilibria
outside the switching surface.

Taking the intersection first, the switching layer system is

⎛⎜⎝
ε1λ̇1

ε2λ̇2

ẋ3

⎞⎟⎠ =
⎛⎜⎝

a1 + b11λ1 + b12λ2

a2 + b21λ1 + b22λ2−x3

⎞⎟⎠ on x1 = x2 = 0 . (1.82)

In layer variables this is

⎛⎜⎝
ξ̇1
ξ̇2
ξ3

⎞⎟⎠ =
⎛⎜⎝

a1 + b11ξ1/ε1 + b12ξ2/ε2
a2 + b21ξ1/ε1 + b22ξ2/ε2−ξ3

⎞⎟⎠ on x1 = x2 = 0 . (1.83)

This has a unique equilibrium at

(λ1, λ2, x3) = (a2b12 − a1b22, a1b21 − a2b11,0)
b11b22 − b12b21 , (1.84)

the first two components of which must lie inside (−1,+1), otherwise the equilib-
rium ceases to exist.

Where does it go if it ceases to exist? At least in smooth systems, one equi-
librium cannot simply vanish without colliding and annihilating with another, and
the same proves to be true for nonsmooth systems. We return to this question in
the next section.

The layer Jacobian of the equilibrium is

J = ⎛⎜
⎝

ε
−1
1 b11 ε

−1
2 b12 0

ε−11 b21 ε−12 b22 0

0 0 −1

⎞
⎟
⎠
=
⎛
⎜
⎝

b11 b12 0

b21 b22 0

0 0 −1

⎞
⎟
⎠

⎛
⎜
⎝

1/ε1 0 0

0 1/ε2 0

0 0 1

⎞
⎟
⎠

(1.85)

with eigenvalues and corresponding eigenvectors

ν1 = ( b11+κb222
+√R)/ε1 ∶ v1 = (ν1 − κb22, b21,0)T

ν2 = ( b11+κb222
−√R)/ε2 ∶ v2 = (ν2 − κb22, b21,0)T

ν3 = −1 ∶ v3 = (0,0,1)T
(1.86)

where κ = ε1/ε2 and R = ( b11+κb22
2
)2 + κb12b21 − κb11b22.

The eigenvector ν3 gives a finite rate of attraction along the intersection.
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The eigenvalues ν1,2 have a magnitude that is infinite as ε1,2 → 0, since they
describe dynamics in the plane transverse to the intersection, i.e. in the directions
out of the codimension 2 sliding region. Their eigenvectors, however, are finite,
assuming that the ratio κ = ε1/ε2 is finite and nonzero as ε1,2 → 0.

Thus the parameters bij and the ratio κ determine whether the equilibrium
is a node, focus, or saddle in the λ1,2 plane. This closely mirrors what happens
outside the intersection, and if κ = 1 it corresponds directly. Note however that
the trace of J ,

TrJ = b11 + κb22
ε1

, (1.87)

depends on the ratio κ = ε1/ε2 significantly — it changes sign if κ = −b11/b22,
meaning that the stability of the sliding equilibrium can change depending on
the ratio κ. (Certain consequences of this in the context of simulating nonsmooth
systems by smoothing the discontinuity can be found in [12]).

Take some values of the ai’s, Bij ’s, and κ and try it out for yourself.

1.9 Boundary equilibrium bifurcations

Recall that the layer system is defined only on λ ∈ (−1,+1)r (for r switches). If
any of the λj ’s satisfying fj = 0 (∀ j = 1, . . . , r) sits at λΣ

j = ±1, then the point lies
on a boundary of codimension r sliding.

Example 1.9.1 (Boundary equilibrium bifurcation between codimension 1 and 2
sliding). Consider again the three dimensional system above. There are no equi-
libria outside the switching surface, and we saw that an equilibrium exists inside
the intersection x1 = x2 = 0 at

(λ1, λ2, x3) = (a2b12 − a1b22, a1b21 − a2b11,0)
b11b22 − b12b21 , (1.88)

only for

∣ a2b12 − a1b22
b11b22 − b12b21 ∣ < 1 , ∣ a1b21 − a2b11

b11b22 − b12b21 ∣ < 1 . (1.89)

When the parameters lie outside this region, the equilibrium inside the intersection
no longer exists. Bifurcations occur at

∣ a2b12 − a1b22
b11b22 − b12b21 ∣ = 1 & ∣ a1b21 − a2b11

b11b22 − b12b21 ∣ = 1 . (1.90)

Where does the equilibrium go?

There are sliding regions on the switching manifolds x1 = 0 or x2 = 0 out-
side the intersection. The bifurcation that actually occurs at these values will be
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degenerate, with the entire sliding vector field along x2 = 0 and x1 = 0 vanish-
ing respectively at these two parameter values. A more generic system is easily
obtained, say by perturbing this system to

⎛⎜⎝
ẋ1

ẋ2

ẋ3

⎞⎟⎠ =
⎛⎜⎝

a1 + c1x1

a2 + c2x2−x3

⎞⎟⎠ +
⎛⎜⎝

b11 b12 0
b21 b22 0
0 0 0

⎞⎟⎠
⎛⎜⎝

λ1

λ2

0

⎞⎟⎠
which does not change the system on the intersection, hence our analysis so far
stands.

On the switching manifolds x1 = 0 or x2 = 0 outside the intersection, the layer
systems are

⎛⎜⎝
ε1λ̇1

ẋ2

ẋ3

⎞⎟⎠ =
⎛⎜⎝

a1 + b11λ1 + b12 sign(x2)
a2 + c2x2 + b21λ1 + b22 sign(x2)−x3

⎞⎟⎠ on x1 = 0 ≠ x2 ,

⎛⎜⎝
ẋ1

ε2λ̇2

ẋ3

⎞⎟⎠ =
⎛⎜⎝

a1 + c1x1 + b11 sign(x1) + b12λ2

a2 + b21 sign(x1) + b22λ2−x3

⎞⎟⎠ on x2 = 0 ≠ x1 .

(1.91)

Sliding (where the λ̇i subsystems vanish) occurs for λΣ
1 = −a1+b12 sign(x2)

b11
and λΣ

2 =
−a2+b21 sign(x1)

b22
respectively, giving dynamics

ẋ2 = c2x2 + a2b11−a1b21
b11

− b21b12−b11b22
b11

sign(x2) on x1 = 0 ≠ x2 ,

ẋ1 = c1x1 + a1b22−a2b12
b22

− b12b21−b11b22
b22

sign(x1) on x2 = 0 ≠ x1 .
(1.92)

We can see from these that, at the bifurcation values, as the equilibrium
vanishes from codimension two sliding on the intersection, it either passes into one
of these two systems, or collides with another equilibrium and the two annihilate
in another example of a discontinuity-induced saddlenode bifurcation. We leave it
as an exercise to explore the different scenarios.

1.10 Stability, equivalence, & bifurcation

The notions of equivalence between systems, and structural stability of a system
within a given class, are incredibly important in smooth systems, and are quite
easy to extend to piecewise-smooth systems, but use them with care.3

There are three notions of equivalence between systems that are often useful.

3And when ‘taking care’, we should all beware of the usage of the notion of ‘normal forms’

in nonsmooth systems. This is a very powerful concept from smooth systems that is not yet well

understood in nonsmooth systems. This can lead to confusion, because the strong associations

of normal forms with generality and universality in smooth systems have not been extended to

nonsmooth systems in many of the cases where they are employed.
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Definition 1.10.1. Orbital, differentiable, and topological equivalence:
(i) Orbital equivalence: If two vector fields f and f̂ are related by f (x ;λ) =

µ(x ;λ)f̂ (x ;λ) for some continuous positive definite scalar function µ(x ;λ), the
orbits of the systems ẋ = f (x ;λ) and ẋ = f̂ (x ;λ) are identical up to a time
rescaling. Their phase portraits are then identical.

(ii) q−Conjugacy: If two vector fields f and f̂ are related by a q-times differ-
entiable mapping h which takes orbits of ẋ = f (x ;λ) to those of ẋ = f̂ (x ;λ), pre-
serving direction but not necessarily scaling of time, then the vector fields f (x ;λ)
and f̂ (x ;λ) are said to be q-conjugate (or q-differentiably equivalent, sometimes
called Cq equivalence).

(iii) Topological equivalence: If q = 0 in (ii) and the switching surface is pre-
served, the vector fields f (x ;λ) and f̂ (x ;λ) are said to be topologically equiva-
lent. That is, topological equivalence between the vector fields f (x ;λ) and f̂ (x ;λ)
means that f and f̂ are related by a continuous mapping h which takes orbits
of ẋ = f (x ;λ) to those of ẋ = f̂ (x ;λ), preserving direction but not necessarily
scaling of time, and maps the switching surface of one system to that of the other
preserving orientation with respect to orbits.

It is important to include the switching surface explicitly in the definition of
topological equivalence, otherwise, for example, a system that crosses a switching
surface is equivalent to a smooth system with no switching surface at all.

A q-conjugacy with:

• q = 0 preserves spatial and temporal topology of orbits themselves, but does
not preserve eigenvalues,

• q > 1 preserves only the relative sizes of eigenvalues,

• q infinite preserves the eigenvalues associated with any equilibria.

So a node and a focus are topologically equivalent if they have the same
attractivity, fig. 1.27, but only on a region that does not include the switching
surface.

node focus

Figure 1.27: A node and focus are topologically equivalent.

At a switching surface, a node and a focus of the same attractivity are not
topologically equivalent, fig. 1.28, because all orbits hit the switching surface in
both forward and backward time around a boundary focus, while some orbits
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(shaded in figure) contact the switching surface only in one direction near a bound-
ary node.

boundary node boundary focus

Figure 1.28: A node and focus at a switching surface are not topologically equivalent. (We
may also call these a boundary-node and boundary-focus).

Note that systems may be equivalent but have very different functional ex-
pressions, and conversely, two systems that appear similar in their functional ex-
pressions may in fact not be equivalent. That is why these technical definitions of
equivalence are so important.

A system is considered robust in its behaviour — or structurally stable —
if small changes in its expression produce equivalent systems. Intuitively, a small
perturbation involves the addition of a small term in the equations, but does not
qualitatively alter the dynamics.

The precise definitions (see e.g. Guckenheimer & Holmes 2002) can be ex-
tended (see e.g. Filippov 1988) formally, for example:

Definition 1.10.2. If f ∈ Rn and σ ∈ R are r times partially differentiable (vector
and scalar valued resp.) functions, in which the level set σ = 0 is the switching
surface Σ of f , then for some 0 < q ≤ r and ε > 0, the functions f̃ and σ̃ are a
perturbation of f and σ of size ε, of differentiability class q, if there is a compact set
K ⊂ Rn+1 such that f = f̃ and σ = σ̃ on the complement set Kc = Rn+1 −K and for
all i1, i2, . . . , in, with i = i1+ i2+ . . . .+ in ≤ q we have ∣(∂i/∂xi1

1 . . . ∂xin
n ) (f − f̃ )∣ < ε

and ∣(∂i/∂xi1
1 . . . ∂xin

n ) (σ − σ̃)∣ < ε.
This is a useful definition, intuitive if technical looking, so it is more impor-

tant to understand what it means. Perturbing a piecewise-smooth systems is a
subtle act, but it is vital to our notion of ‘robustness’ of a system, or structural
stability.

Definition 1.10.3. A vector field f ∈ Rn is structurally stable if there is an ε > 0
such that all differentiable (q = 1) order ε perturbations of f are topologically
equivalent to f .

In a smooth system we typically consider only perturbations that are con-
tinuous or differentiable in x . We could insist on the same in piecewise-smooth
systems, and this will ensure that sliding is preserved, for example, but demanding
only perutbrations with some level of smoothness in a nonsmooth system seems



1.10. Stability, equivalence, & bifurcation 43

a little too safe. The way we have set things up in terms of combinations, we can
actually do somewhat better.

If we write

ẋ = f +(x) on R+, ẋ = f −(x) on R−, . . . (1.93)

then can we perturb in one region (say ẋ = f +(x)+µ for small µ) but not another?
This means introducing a perturbation of µ in R1 but no perturbation else-

where, i.e. the perturbation is discontinuous.
Normally we do not allow discontinuous perturbations. Even a simple smooth

system with a stable equilibrium is not structurally stable under discontinuous
perturbations. For example ẋ1 = x1 is equivalent to ẋ1 = x1 −µ (the equilibrium is
slightly shifted), but not to ẋ1 = x1 − µ signx1 (the equilibrium splits into three,
equilibria at x1 = ±µ and a sliding equilibrium at x1 = 0 !), even though these all
tend to the same thing as µ→ 0.

Even if we disallow such obviously absurd perturbations, what conditions
must we place on the perturbation at the switching surface to make sure sliding
dynamics is preserved? You’ll find partial answers to these in [10, 7, ?], which
seem to suggest only differentiable perturbations should be allowed — we cannot
perturb f + without perturbing f − the same amount.

Because we have expressed our system in the form ẋ = f (x ;λ), however, we
can do a little more, and allow perturbations that are at least partially differen-
tiable in x or λ.

Intuitively, small changes in the dependence on λ will make only small
changes in the equations for sliding, for example, and preserve equivalence. This
is despite the fact that adding, say, µλ, means adding a perturbation that is dif-
ferent in different regions. The discontinuity of the perturbation with respect to
x is implicitly hidden inside λ.

So if we want to perturb ẋ = x with respect to λ = signx, we must first
consider this to be a system ẋ = f(x;λ), i.e. so that the switching surface x = 0 is
part of the system’s definition (even if it doesn’t cause a jump in the vector field).

We can now see immediately that the system ẋ = x with λ = sign(x) is
structurally unstable, because x lies on the switching surface, and any small per-
turbation will kick it off, giving a non-equivalent system. The switching surface
matters even if we cannot see it in the vector field itself! This is because a switching
surface/multiplier is defined as part of the system.

Example 1.10.4.

1. The system defined as ẋ = x for x ∈ R is structurally stable as it has an
equilibrium on the distinguished point x = 0, but the system defined as

ẋ = x for x ≷ 0 (1.94)

about a switching surface Σ = {x = 0} is not structurally stable. A pertur-
bation ẋ = µ + x or ẋ = µλ + x when λ = sign(x) for small µ, creates a
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non-equivalent system, where the equilibrium (or equilibria) do not lie on
the distinguished point x = 0.

2. The system
ẋ = x − 1 with λ = signx (1.95)

is structurally stable. If we perturb to ẋ = x−1−µλ for small µ, the resulting
system is equivalent.

3. The system ẋ = −λ with λ = signx is structurally stable.

Both Filippov [10] and Teixeira [32] consider pseudo-orbits to be a deter-
mining factor in the equivalence of systems. It depends what you want to study
about a system, but I prefer to exclude them. A pseudo-orbit is a concatenation of
trajectories that does not preserve the direction of time, therefore its topological
existence seems to be of no dynamical (or as far as we know physical) significance,
though it would be interesting if examples were found where this proved not to be
the case.

Example 1.10.5 (Stable or not?).

• A fused centre is not structurally stable. It is comprised entirely of closed or-
bits that cross through a switching surface, formed by the piecewise-smooth
fusing of two parabolic systems.

• Perturbation of a fused centre results in a (repelling or attracting) fused
focus, which typically is structurally stable, possibly surrounded by one or
more isolated closed orbits.

• A pseudo fused centre (similar to the centre but the orbits travel the ‘wrong
way’ on one side of the surface) is typically structurally stable, and is dy-
namically no different from a . . .

• . . . pseudo fused focus.

(i)

fused centre pseudo fused centre pseudo fused focusfused focus

(ii)

Figure 1.29: (i) The fused centre (where every orbit is a closed cycle) and fused focus (where
every orbit spirals into a point) are not equivalent; the centre is structurally unstable while
the focus is stable. (ii) Whether the same is true for for the corresponding pseudo-singularities
is a matter of interpretation, but all trajectories slide from the right, may pass through the
upper or lower half plane, before sliding again to the left.
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The systems we will study generally depend on variables x = (x1, x2, . . . , xn),
switching multipliers λ = (λ1, λ2, . . . , λm), and parameters p = (a, b, c, . . . ). Struc-
turally unstable systems may occur at particular values of the parameters.

Definition 1.10.6. A bifurcation set is the set of parameters p = (a, b, c, . . . ) for
which the system ẋ = f (x ;λ;p) is structurally unstable. Any point x in a neigh-
bourhood of which the system is structurally unstable is a singularity (or singular
point).

A bifurcation of the system is a qualitative change that takes place as we
vary parameters through the bifurcation set.

Bifurcations can take place in a region where ẋ = f i is smoothly varying,
which may be outside the switching surface, or may be inside the surface if f i

is one of the sliding vector fields. These are covered by the bifurcation theory of
smooth dynamical systems.

Then there are a whole new array of bifurcations that cannot occur in smooth
dynamical systems, because they involve the discontinuity in a non-trivial way.

Definition 1.10.7. A bifurcation is said to be discontinuity-induced in a system
ẋ = f (x ;λ) if it involves a singular point on the boundary of a sliding region.

This tightens a definition given in [7], which would permit any bifurcation in a
discontinuous system to be considered discontinuity-induced. To our knowledge at
present, all bifurcations that involve the discontinuity in a non-trivial way appear
to involve the boundary of a sliding region. Still, the definition almost certainly is
still not perfect.

1.11 Discontinuity-induced phenomena

We end this course with a brief survey of some novel phenomena this course
provides the foundations to explore. Many of these are the starting points for
open problems.

1.11.1 Local bifurcation points: Tangencies

Above we looked a tangencies as the boundaries of sliding regions. We also de-
fined a discontinuity-induced bifurcation as one occurring at such a boundary. This
means that tangencies lie at the heart of most of the interesting phenomena in
piecewise-smooth flows.

Tangencies are a rich source of bifurcations. Already in a planar system they
have a number of cases, shown in the table in fig. 1.30 on the next page.

You can derive the fold cases shown from:

ẋ = f (x ;λ) = 1
2
(1 + λ)(a(x2 − 1) + bx1−1 ) + 1

2
(1 − λ)(α1 + α2x2

a
) (1.96)
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Figure 1.30: Codimension 1 tangencies and their unfoldings.
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and the cusp cases shown from:

ẋ = f (x ;λ) = 1
2
(1 + λ)( x2

2 + b±1 ) + 1
2
(1 − λ)( 1

0
) (1.97)

with λ = sign(x1), where a, b,αi, are constants. The system with b = 0 is struc-
turally unstable, and so a bifurcation takes place as b changes sign. These are
therefore one-parameter (or codimension one) bifurcations.

The simplest tangency between the upper vector field and the switching
surface occurs at a point where f + ⋅ ∇σ = 0, but (f + ⋅ ∇)2σ ≠ 0, implying that
f + ⋅ ∇σ will be non-zero nearby. Then either f + ⋅ ∇σ > 0 so the flow is away from
the surface in σ > 0, or f + ⋅ ∇σ < 0 so the flow is towards the surface in σ > 0.

Similarly the simplest tangency between the lower vector field and the switch-
ing surface occurs at a point where f − ⋅ ∇σ = 0, but (f − ⋅ ∇)2σ ≠ 0, implying that
f − ⋅ ∇σ will be non-zero nearby. Then either f − ⋅ ∇σ > 0 so the flow is towards the
surface in σ < 0, or f − ⋅ ∇σ < 0 so the flow is away from the surface in σ < 0.

We call these simplest tangencies folds — the flow folds parabolically away
from the switching surface. The point where the fold occurs for the upper and
lower vector fields will not typically be the same. When they are the same, the
system is not structurally stable, a small perturbation will push them to different
points, resulting in a bifurcation. A study of the different cases can be found in
[10, 20], we shall give only a brief description.

First, the flows may curve towards the surface on both sides, forming invisible
fold-folds, they may curve away from the surface on both sides, forming visible
fold-folds, or they may be a mixture of the two. Within these, the flows above
and below the surface may both point to the left (both pointing to the right is
just a reflection), or one may point to the left and the other to the right. For
the visible fold-fold and invisible fold-fold these give a complete classification. A
bifurcation occurs as the folds exchange relative position on the switching surface.
Some further analysis, of the kind shown in earlier sections, reveals the existence of
sliding equilibria. Closer thought about the geometry of the first invisble fold-fold
case also reveals that a limit cycle must exist on one side of the bifurcation.

For the mixed fold-folds things are complicated by the sliding dynamics. In
the case where one flow is pointing to the left and one to the right, carrying out the
analysis we have shown in earlier sections, we find that the sliding flow may contain
a node which changes attractivity as it transfers between branches of attracting
and repelling sliding, or a saddle which transfers between branches of attracting
and repelling sliding, or a saddle and node which annihilate.

The next highest order of tangency is a cusp, where the flow forms a cubic or
cusp-like intersection with the switching surface. A perturbation splits this into a
pair of folds, one visible and one invisible. The cases to consider then involve only
whether a region of sliding opens up between the folds (with crossing elsewhere),
or a region of crossing opens up between the folds (with sliding elsewhere). The
flow below the switching surface is assumed to be simple.
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Any other case of these fold-folds or cusps is either equivalent to those in
fig. 1.30, or else involves a higher degree of bifurcation that requires more than
one parameter to unfold it fully.

These become much richer still in three (or more) dimensions, of course, see
for example the ongoing work of Teixeira starting with [32], but in three or more
dimensions much remains to be discovered.

One particular singularity has caused much confusion and misunderstanding
over the last 30 years, yet in principle it could hardly be more simple. If we take
the fold-fold cases from the planar classification in fig. 1.30, and add a dimension,
each fold (tangency) occurs along a line rather than at a point, and typically these
will cross at a point on the switching surface, creating a generic singularity.

Example 1.11.1 (The two-fold singularity). Consider the piecewise linear system

(ẋ1, ẋ2, ẋ3) = { (−x2, a, v) if x1 > 0 ,( x3,w, b) if x1 < 0 . (1.98)

Exercise: see what you can find out about this. A short article [19] summa-
rizes what we understand about it, and the convoluted history that brought us
here. There are three main ‘flavours’ depending on whether each fold is visible
or invisible. Then there are lots of sub-cases depending on the sliding dynamics,
determined by v and w.

Tangencies are much more than singularities in their own right. Any object
— any attractor or orbit — that acquires or loses a connection with the switching
surface must do so via a tangency. We will see a few examples below.

1.11.2 Local bifurcation points: Boundary equilibria

Definition 1.11.2. An equilibrium of a vector field f i lying on the switching surface
(or of a codimension r sliding vector field lying on a codimension r + 1 switching
intersection) is a boundary equilibrium.

A boundary equilibrium is structurally unstable, and is typically a bifurcation
point.

A prototype for boundary equilibria is quite easy to write down. We take
a general equilibrium on one side of the switching surface, and a constant but
sufficiently general vector field on the other side. (The term in italics turns out to
be important). For example we can write

ẋ = f (x ;λ) = 1
2
(1 + λ)A.

⎛⎜⎜⎝
x1 − µ
x2

x3

⋮

⎞⎟⎟⎠ +
1
2
(1 − λ)

⎛⎜⎜⎝
1

d1
d2
⋮

⎞⎟⎟⎠ (1.99)

with λ = sign(x1), where the n × n matrix A and n-vector (1, d1, . . . , dn−1) are
constants.
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boundary saddle

boundary node boundary focus

Figure 1.31: Codimension 1 boundary equilibria and their unfoldings.

For a planar system the full classification of one-parameter boundary equlib-
rium bifurcations is shown in fig. 1.31. This can be recreated using the prototype
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above for two dimensions, and in fact it is sufficient to take, with λ = sign(x1),
ẋ = f (x ;λ) = 1

2
(1 + λ)( a(x1 − µ) + bx2

cx2
) + 1

2
(1 − λ)( 1

d
) . (1.100)

A boundary equilibrium occurs at µ = 0, when the equilibrium of the λ = +1
system lies at (x1, x2) = (0,0) on the switching surface x1 = 0.

As we change µ, a boundary equilibrium bifurcation occurs. For µ > 0 the
equilibrium lies in x1 > 0. For µ < 0 this equilibrium no longer exists in x1 > 0. Ap-
plying the methods from earlier sections, we can show either that the equilibrium
becomes a sliding equilibrium, or it collides with a coexisting sliding equilibrium
in a nonsmooth saddlenode bifurcation.

I promised you that tangencies lay at the heart of discontinuity-induced bi-
furcations. The tangency in the system above can only occur in the λ = +1 system
(hopefully you can see why very easily), so it lies where

x1 = ẋ1 = 0 & λ = +1 ⇒ a(−µ) + bx2 = 0 ⇒ x2 = µa/b . (1.101)

Is this a visible or invisible fold? A visible tangency curves away from the surface,
an invisible curves towards it. In x1 ≥ 0 this means ẍ1 > 0 for visible or ẍ1 < 0
for invisible (in x1 ≤ 0 the conditions are means ẍ1 < 0 for visible or ẍ1 > 0 for
invisible), so evaluate

ẍ1 = aẋ1 + bẋ2 = a{a(x1 − µ) + bx2} + bcx2 = µa2c . (1.102)

The tangency therefore switches between visible and invisible as µ changes sign,
i.e. as the bifurcation ‘unfolds’, and as the equilibrium contacts the boundary. The
curvature ẍ1 vanishes at µ = 0, so at the bifurcation point itself the tangency is
degenerate.

Each triplet shows the unfolding as µ changes sign. The middle portrait in
each shows the bifurcation point – the boundary equilibrium. You can find most of
these (some were missed!) in [20] and later references. You’ll find the bifurcation
points themselves (all of them!) only in Filippov’s book [10].

These unfold as a single parameter (µ) changes, so they are codimension one
bifurcations.

Filippov [10] also classified the bifurcation points of boundary equilibria, of
tangencies, and of more exotic things like line singularities. Little headway has been
made so far, however, in extending such bifurcation studies into higher dimensions.

1.11.3 Global bifurcations and tangencies

Global bifurcations consist of orbital connections between singularities, i.e. be-
tween equilibria, sliding equilibria, and tangencies. The latter of course come
into play only in piecewise-smooth systems, and give rise to global discontinuity-
induced bifurcations.
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These may arise when distinguished orbits (those already connected to an
equilibrium or periodic orbit, for example) have connections to visible or invisible
tangencies. In fig. 1.32, the ☀ denotes connection some general singularity, per-
haps another equilibrium, sliding equilibrium, or tangency. The connection need
not be simple, however, and could consist of orbit segments that cross or slide on
other switching surfaces.

Figure 1.32: Connections to a visible (left) or invisible (right) tangency are structurally
unstable.

Figure 1.33 shows various connections that give rise to bifurcations, though
many more are possible, particularly when we consider multiple dimensions, and
multiple switches.

(i)

(iv) (v) (vi)

(ii) (iii)

Figure 1.33: Codimension one connections: Heteroclinic connection between a saddle and
a visible tangency (i-ii), a saddle and invisible tangency (iii), a saddle and sliding saddle (iv).
Homoclinic connection via visible tangency to a saddle (vi) or a sliding saddle (vii).

Cases (i)-(iii) of fig. 1.33 show heteroclinic connections between an equilib-
rium outside the switching surface and a tangency, (iv) shows heteroclinic connec-
tion between an equilibrium outside the surface and a sliding equilibrium. The last
two cases (v)-(vi) show two ways that a visible tangency can facilitate a homoclinic
connection to an equilibrium or a sliding equilibrium.
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Under perturbation of any of these the connection typically will be broken,
and a bifurcation takes place. See [20, 7] for further examples.

A visible tangency may connect to itself, forming a periodic orbit. Let us
unfold this particular bifurcation, known as a grazing-sliding bifurcation, shown
in fig. 1.34. On one side of the bifurcation is a smooth limit cycle, on the other
side is a so-called “stick-slip” oscillation.

Figure 1.34: Unfolding of a grazing-sliding bifurcation.

When repelling sliding is involved, bifurcations can take another, more dra-
matic form, shown in fig. 1.35. We call these sliding explosions.

Figure 1.35: Unfolding of a grazing-sliding explosion [13].

1.12 Determinacy-breaking

An explosion is one example of determinacy-breaking, a general phenomenon that
occurs when the flow is somehow able to enter a region of repelling sliding.

The only robust way this can happen is when a sliding region changes at-
tractivity, so the flow passes from attracting sliding to repelling sliding. (Notice in
the grazing sliding explosion above that the explosion happens only at a special
parameter value, i.e. it doesn’t happen at a general parameter value, hence it is
not ‘robust’).

One way this can happen is at a two-fold singularity (see earlier example and
[13]).

A simpler way is at a switching surface made of two intersecting manifolds.
For example the scenario shown in fig. 1.36.



1.13. Hidden attractors 53

+1
+1(    )

(    )−1
−1

+1
+1(    )

 .
x

1
 .
x

2

=(    )

(    )−1
−1

Figure 1.36: Determinacy-breaking at a switching intersection. The system has two switches
creating four regions. The loss of determinacy at the intersection can be partially resolved
using layer analysis, see [16].

Because of the presence of determinacy-breaking points like these, piecewise-
smooth systems are almost deterministic, at best. The techniques of combinations
and switching layers that we have explored here resolve the non-uniqueness of dis-
continuous systems as far as possible and no further, leaving determinacy-breaking
points as an essentially new fundamental phenomenon in dynamical systems the-
ory.

1.13 Hidden attractors

A hidden attractor is one that exists inside the switching surface, but whose ex-
istence or behaviour is determined by nonlinear (or multi-linear) dependence on
switching multipliers, and therefore is revealed only by switching layer analysis.

This can lead to strange seeming behaviour in systems that, from outside the
switching surface, appear simple.

Consider
ẋ1 = 5(λ2 − λ1) − 75x1 ,

ẋ2 = −λ1 − 15λ1λ3 − 1
2
λ2 − 75x2 ,

ẋ3 = 15λ1λ2 − 4
3
− 4

3
λ3 − 75x3 ,

ẋ4 = λ1 − 75x4 ,

(1.103)

where λj = sign(xj) for j = 1,2,3.
This has three switches, and eight regions, but the dynamics is seemingly

almost trivial. Outside the switching surface each row looks like ẋi = const− 75xi,
the value of the ‘const’ term just jumps across the switching surfaces, giving strong
attraction towards 1

75
× const, which ultimately results in collapse towards the

origin. Once at (x1, x2, x3) = (0,0,0), where all three switches intersect, however,
things become interesting.

When (x1, x2, x3) = (0,0,0), the layer system, letting in this example εi = ε
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Figure 1.37: Hidden Lorenz attractor at the intersection of three switches. This example
was inspired by gene regulatory networks [24].

for i = 1,2,3, becomes the Lorenz system in (λ1, λ2, λ3),
ελ̇1 = 5(λ2 − λ1) ,
ελ̇2 = −λ1 − 15λ1λ3 − 1

2
λ2 ,

ελ̇3 = 15λ1λ2 − 4
3
− 4

3
λ3 ,

(1.104)

so the three switching multipliers behave chaotically inside the switching layer(λ1, λ2, λ3) ∈ (−1,+1)3. The variables x1, x2, x3, remain at zero. The chaotic dy-
namics does affect the global system, however. Since the variable x4 is coupled to
the λ1 switching multiplier, it will follow λ1’s chaotic trajectory.

1.14 Hidden bifurcations

Hidden attractors can undergo their own bifurcations, including any bifurcations
that are possible in smooth systems, and many more that remain to be discovered.
Consider

ẋ1 = 1
2
(1 − λ1λ2) − ν1(x1 + θ1)

ẋ2 = 1
4
(3 − λ1 − λ2 − λ1λ2) − ν2(x2 + θ2) (1.105)

where λj = sign(xj) for j = 1,2, shown in fig. 1.38.
This has two switches that intersect at the origin (0,0). There is attraction

towards (0,0) from some directions, either directly or via sliding, but also repulsion
from (0,0) via sliding. To find out what the flow does we must look inside the
switching layer, shown on the right of fig. 1.38.

The layer system for x1 = x2 = 0 undergoes a saddlenode bifurcation as ν1
changes value. There is an attracting focus for higher values of ν1, which traps
solutions at (0,0), but as ν1 decreases the focus collides with a saddle and anni-
hilates, leaving no attractor, so solutions pass through (0,0) onto the righthand
half line of the switching surface.
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γ1=0.6

γ1=0.4

Figure 1.38: Hidden saddlenode bifurcation at the intersection of two switches. This example
was derived from models of gene regulatory networks [8].

1.15 Moving forward

Piecewise smooth dynamics has a long history, but it is still a young, rapidly
growing and exciting area full of new ideas and open challenges. Let me just end
by picking out – quite arbitrarily – a few of the many highlights of recent years.

Two big breakthroughs from recent years:

• The two-fold singularity – Is it stable or not? Is it an attractor or not? For
the beginnings of the problem see Filippov 1988, Teixeira 1990, the CRM
Intensive Research Program on Complex Nonsmooth System 2007. This was
eventually solved around 2008-2011, extended to many dimensions in 2013,
and to many switches in 2015. See [19] for a summary.

• Naive ideas of extending Hilbert’s 16th problem to nonsmooth systems were
thrown wide open when it was shown in 2015 that infinitely many cycles are
possible even in a piecewise linear system [23].

Two big challenges outstanding:

• Regularization / Non-ideal switching – how do we deal with effects of smooth-
ing, hysteresis, stochastics, discretization, delay, and others we perhaps have
not yet considered. What do discontinuities in real systems, throughout
physics, chemistry, engineering and the life sciences, look like as we delve
deeper into their modeling?

• Higher dimensions – what new attractors/bifurcations/chaos or entirely new
phenomena appear in higher dimensions? What new concepts do we need to
describe them?

The major applications of piecewise smooth dynamics now include modeling
for:
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• engineering and environment — climate, power control, economy, process
engineering, earthquakes, biscuits, robotics, classical mechanics, chemical re-
actions, superconductors, friction/impact, etc. . .

• life sciences — cell biology, social behaviour, neuroscience, ecology, genetic
regulation, demography, etc. . . .

There are many more breakthroughs, open challenges, and emerging appli-
cations that could be listed here, but I will leave them for you to discover for
yourselves. When given at the CRM, this course ended with a discussion of why so
many systems involve discontinuities, why they are more than a crude modeling
tool and are in fact a subtle asymptotic phenomenon, and why so many systems
are well described by the piecewise-smooth model of switching. This discussion
has been summarized in the CRM Extended Abstract Series article titled Why
nonsmooth? [18].



Chapter 2

Piecewise Smooth Maps

2.1 Introduction to maps

This course is about piecewise-smooth maps. If the phase space (typically Rn)
is partitioned into N disjoint open regions such that the union of the closures
of these regions is the whole space, then a piecewise-smooth map is a map on
this partition which is defined by a different smooth function on each region. Note
that a piecewise-smooth map may be discontinuous across boundaries, or it may be
continuous but the Jacobian matrix is discontinuous. Other classes exist, but these
two form the basis for most studies. The decision about how to define dynamics
on the boundaries of the regions can be a bit awkward and will involve us in some
little technical issues later.

Given this description you may think that these maps are really rather special
and uninteresting, so the first question you should ask about the study of piecewise-
smooth maps is: why bother?

2.1.1 Piecewise-smooth maps are interesting

Piecewise-smooth maps are interesting. So interesting that the ideas, examples and
techniques involved in their study have been rediscovered by different groups at
different times. This is in some sense irritating (it is hard to know what has been
done, and the same phenomenon is called by a different name in different groups
making comparisons hard), but it also emphasises how central piecewise-smooth
systems are in the study of dynamics. Despite the range of modern applications
the area is still seen from the outside as quite a narrow interest group. On the other
hand, as Mike Field says, engineers (both mechanical and electronic) have spent
the last 50 years working with systems containing jumps, whilst the dynamical
systems community has spent the last 50 years perfecting the theory of smooth
dynamical systems. It is time for a change!

57
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The list below gives an idea of the groups that have been interested in
piecewise-smooth systems. It is neither complete, nor accurate (and I apologise
in advance to those who think I have put them in the wrong group), but it gives
an impression of the diversity of approaches and interests in the area.

• (Mechanics, 1990s) Budd, di Bernardo, Champneys, Dankowitz, Nordmark,
Hogan (from 1980s!).

• (Electronics, applied dynamical systems, 1990s) Banerjee, Grebogi, Nusse,
Ott, Yorke.

• (Ergodic Theory, 1980s, 1990s and 2000s) Young, Misieurewicz, Chernov,
Pesin, Jakobson, Newhouse; Buzzi, Keller, Saussol, Tsujii.

• (Classification of flows on manifolds and rational billiards, 1960s) Viana and
the interval exchange map community.

• (Non-invertible maps, 1980s) Avrutin, Gardini, Lozi, Mira, Schanz, Shushko.

• (Homoclinic bifurcations, 1970s) Gambaudo, Glendinning, Holmes, Lorenz,
Procaccia, Tresser.

• (Structure Theorems, 1970s) Alseda, Guckenheimer, Llibre, Milnor, Misi-
urewicz, Rand, Thurston, Williams.

• (Rotations, 1980s) Herman, Kadanoff, Keener, Lanford, Rhodes, Thompson.

• (Modern Nonsmooth, 2000s) Colombo, Granados, Jeffrey, Simpson.

I could go on, but you get the point.

2.1.2 Motivating examples

There are a number of standard examples that give a sense of the many models
that can be described via piecewise-smooth systems. Here are a few.

A bouncing ball
Suppose a ball is dropped and starts bouncing. Let vn be the speed (upwards)

immediately after the nth bounce at time tn. It will rise to height hn with 2ghn = v2n
after time vn/g and then return to the ground at time tn+1 = tn + 2vn/g with the
same speed vn. The collision with the ground instantaneously reverses the direction
of the the velocity and reduces its magnitude by a factor r ∈ (0,1), so vn+1 = rvn.

This impacting system therefore has a jump in the velocity at each collision
but the equations describing the change over each bounce are

vn+1 = rvn, tn+1 = tn + 2vn/g, 0 < r < 1.
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Thus although the dynamics is piecewise-smooth with jumps in phase space, the
modelling map is smooth and is not of the sort that will concern us here. Indeed,
they can be solved:

vn = rnv0,
tn = t0 + 2v0

g
(1 + r + r2 + ⋅ ⋅ ⋅ + rn−1) = t0 + 2v0(1−rn

g(1−r) .
(2.1)

As n → ∞, tn − t0 → 2v0
g(1−r) , i.e. there are an infinite number of bounces in finite

time for this model system.

A grazing bifurcation
Consider a differential equation in the plane defined so that in x < 0 the

system (extended into x > 0) has a circular stable periodic orbit of radius a bit
larger than 1 enclosing an unstable focus at (−1,0), whilst in x > 0 the system
is defined by a differential equation having trajectories that are locally parabolic
about of the form x = c−(y−ǫ)2 for some small ǫ > 0 and with the direction of time
chosen so that ẏ > 0. These systems are ‘glued’ together across the discontinuity
(switching) line x = 0. For example, this is the case for the differential equations

ẋ = (1 + a)(x + 1) − y − (x + 1)((x + 1)2 + y2)
ẏ = x + 1 + (1 + a)y − y((x + 1)2 + y2) if x < 0 (2.2)

and
ẋ = 2(y − ǫ)
ẏ = 1 if x > 0. (2.3)

Geometrically, an important point on the switching line is the grazing point at
which ẋ = 0. An elementary calculation shows that this is y∗ ≈ a when a is small.
Choose a return section y = y∗ near the origin. Solutions in x < 0 simply move up
(increasing x) until they strike the y-axis with y ≤ y∗ at which time they switch
to the parabolic flow, striking y = y∗ at some point in x > 0 and then pass back
into x < 0 with y > y∗ and then travel again round a loop in x < 0. This generates
a return map on x = 0 but with an interesting feature.

Let (x0, y∗), x0 < 0, denote the initial condition such that the next intersec-
tion of the trajectory through (x0, y∗) with y = y∗ is at the grazing point (0, y∗).
A solution with an initial condition a little to the left of (x0, y∗) on y = y∗ will
next intersect the return line just to the left of x = 0 without entering x > 0 and
do a further loop close to the grazing orbit in x < 0 before striking x = 0 an using
the parabolic flow to intersect the y = y∗ at some point x1.

However, a solution with an initial condition a little to the right of (x0, y∗)
on y = y∗ will strike x = 0 just below (0, y∗) and then the parabolic flow will lead to
an intersection with y = y∗ at some point x2. For appropriate choices of parameter
x2 < x1 and, assuming sufficient contraction near the periodic orbit of the x < 0
system, the return map will have slope less than on (attraction) and a jump at
x = 0 reflecting the two possible images of the grazing point.
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(a) (b)

Figure 2.1: Lorenz semiflow and the associated one-dimensional map, from [95].

In this case the return map derived on y = y∗ has a discontinuity at the due
to the geometry of the two flows that make up the nonsmooth flow defined in
(2.2,2.3).

The Lorenz semiflow

The Lorenz equations provide one of the early examples of differential equa-
tions with chaotic attractors (although the proof that the attractor really is chaotic
is relatively recent). Guckenheimer and Williams [75, 95] developed mathematical
abstractions of the equations, assuming that the flow lies on the branched man-
ifold of Figure 2.1a. In this case the chaos is due to solutions falling on one or
other side of the stable manifold of a saddle and being swept round a loop to the
left or to the right. The return map of the model flow takes the form shown in
Figure 2.1b. It has a discontinuity at the origin (the stable manifold of the saddle)
and the slope goes to infinity like ∣x∣α, 0 < α < 1 at the point of discontinuity. We
will return to maps like these in later sections.

2.1.3 Phenomenology

In many cases the interest is not in a particular map, but in a family of maps. Thus
many results aim to describe the structure of dynamics as a function of parameter,
i.e. the bifurcation theory of these maps. One feature that stands out in piecewise-
smooth systems because it is not present in smooth systems is period-adding. In
period-adding bifurcations there is a sequence of bifurcations in which a constant
is added to the period of the orbit at each bifurcation. Sometimes the bifurcations
are clean, in the sense that there are no intermediary bifurcations, and sometimes
more complicated, with bands of chaos separating the added orbits. Nordmark’s
square root map provides one such example ([83] and section 2.3.6) provides one
such example. The Nordmark (or square root) map is continuous everywhere and
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differentiable except at a single point:

xn+1 =
⎧⎪⎪⎨⎪⎪⎩
µ + axn if x < 0
µ − b√xn if x ≥ 0. (2.4)

This map is analyzed in section 2.3.6 and another way in which period adding
sequences can be generated is discussed in section 2.5b.

In many circumstances more than one parameter is present, and the sensi-
tivity to changes in the parameter can be mind-boggling. The results of careful
numerical simulations such as those by Avrutin et al [41] show very complicated
regions of dynamics in examples involving two parameters. This level of complexity
makes it hard to decide what feature is worth concentrating upon in any analysis.

These observations bring out an important feature of the non-smooth world.
The number of possible behaviours seems to be huge, and the complexity of the
bifurcation diagrams and their sensitivity to changes in other parameters can be
quite bewildering. For the mathematician used to tidy classifications this can be a
problem. One of the recurring themes of this lecture series is that ‘less is more’. In a
world of extraordinary complexity it may not be either useful or possible to obtain
a complete list of theoretical possibilities, and that a less complete description may
be more useful.

2.1.4 Less is more

The comments of section 2.1.3 and the results of e.g. [72] suggest that the level
of complexity of bifurcations in even quite simple piecewise-smooth systems is
much greater than that for smooth flows. In the theory of smooth systems it is
standard to give quite general bifurcation theorems which reflect the important
local features of the dynamics. It seems likely that there is a proliferation of cases
for piecewise-smooth systems which means that detailed bifurcation theorems are
much less useful, and it is then a matter of judgement about how much detail
should be given.

These lectures reflect this attitude. I will use some standard examples to il-
lustrate techniques rather than attempt to provide a detailed description of every
bifurcation in the literature. This might make the use of a small number of ex-
amples appear unbalanced, but (I hope) that the techniques described here can
be applied to many of the examples that might be met in applications. For more
detail of ‘less is more’ see [70, 71].

2.2 Smooth Theory

By definition a piecewise-smooth system is smooth in regions, so any dynamics
that does not interact with a boundary can be described using smooth theory. This
includes the existence and stability of fixed points and periodic orbits in smooth
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regions and their bifurcations (in section 2.3.5 we will look at some elementary
new bifurcations involving the boundary).

A smooth map is simply a smooth function f ∶ Rn → Rn which generates
dynamics via the difference equation

xn+1 = f(xn). (2.5)

Thus given a point x the orbit of x is generated by applying f , creating the
sequence

(x, f(x), f2(x), f3(x), . . . )
where

fn(x) = f(fn−1(x)), n ≥ 2.
Thus whenever we write fn we mean the nth iterate of f ,

fn = f ○ f ○ ⋅ ⋅ ⋅ ○ f (n rmtimes)
and not the nth power of f(x) which will be denoted by [f(x)]n.

One of the central ideas in dynamical systems is that of invariance.

Definition 2.2.1. Given a map f ∶ Rn → Rn, a set S ∈ Rn is invariant if f(x) ∈ S
for all x ∈ S (often written as f(S) ⊆ S).

This definition is sometimes called forwards invariance, and if f is a homeo-
morphism then a set S is both forwards and backwards invariant (often abbrevi-
ated to invariant if the context is clear) if f(S) = S, so x ∈ S implies f−1(x) ∈ S
and xf(x) ∈ S.

The simplest (geometrically) invariant sets are fixed points. A fixed point of
a smooth map f ∶ Rn → Rn is a solution of

x = f(x) (2.6)

and it is stable (or more accurately, linearly stable) if all the eigenvalues of the
Jacobian matrix

Df(x) =
⎛⎜⎜⎜⎜⎝

∂f1
∂x1

∂f1
∂x2

. . . . . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . . . . ∂f2
∂xn

⋮ ⋮ ⋮ ⋮ ⋮

∂fn
∂x1

∂fn
∂x2

. . . . . . ∂fn
∂xn

⎞⎟⎟⎟⎟⎠
(2.7)

evaluated at the fixed point lie inside the unit circle (i.e. have modulus less than
one).

A point is periodic of period p if

x = fp(x) (2.8)
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where fp(x) = f(fp−1(x)), i.e. it denotes the pth iterate of f ,

fp = f ○ f ○ ⋅ ⋅ ⋅ ○ f (p times),
and not the pth power of f(x) which we will denote by [f(x)]p or similar. If x is
a point of period p then the periodic orbit containing x is

{x, f(x), . . . , fp−1(x)}
and if all the points are distinct then it is sometimes worth emphasising that p

is the minimal possible period of the orbit (though usually this is left unstated).
Note that if x has period p then it also has period mp for all m > 1.

Since a periodic point can be viewed as a fixed point of fp, the linear stability
of a periodic orbit is determined by the eigenvalues of the Jacobian matrix

Dfp(x) =Df(fp−1(x))Df(fp−2(x)) . . . Df(x).
Bifurcations occur is an eigenvalue passes through the unit circle, so there

are three generic cases: a simple eigenvalue of +1, a simple eigenvalue of +1, or a
pair of simple eigenvalues e±iθ, θ ≠mπ, m ∈ Z.

The Centre Manifold Theorem implies that these cases can be classified in
the same way regardless of the dimension of the phase space, a feature that is
not true of piecewise-smooth bifurcations). An eigenvalue of +1 implies that for
small changes of parameter there is typically a saddle-node bifurcation in which
as a parameter is varied a pair of fixed points come together at the bifurcation
parameter and do not exist thereafter. Symmetries or the non-generic vanishing of
some derivatives of the Taylor expansion of the map can imply that a saddlenode
bifurcation does not happen and there may be a transcritical bifurcation (exchange
of stability) or a pitchfork bifurcation.

An eigenvalue of −1 leads to a period-doubling bifurcation: as parameters
vary a fixed point changes stability at the bifurcation value and an orbit of period
two is created. If this period two orbit is stable it is called a supercritical period-
doubling bifurcation.

A pair of eigenvalues e±iθ, θ ≠mπ, m ∈ Z leads to a Hopf, or Niemark-Sacker
bifurcation. The fixed point changes stability and an invariant curve bifurcates on
which there can be other attractors (e.g. periodic orbits) near resonances when θ

is a rational multiple of 2π.

2.2.1 Markov partitions and chaos

There are a number of results which make the analysis of one-dimensional systems
significantly easier than higher dimensional dynamics. The first result describes
the dynamics of monotonic maps.

Lemma 2.2.2. Suppose f ∶ R→ R is a continuous map. If f is increasing then every
bounded orbit is either a fixed point or tends to a fixed point. If f is decreasing
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then every bounded orbit is either a fixed point or a point of period two or tends
to a fixed point or a point of period two.

Proof: Suppose that f is increasing, i.e. x < y implies that f(x) ≤ f(y). Take
x ∈ R. Then either

f(x) = x, or f(x) > x, or f(x) < x.
In the first case x is a fixed point. In the second case x < f(x) implies that
f(x) ≤ f2(x) using the increasing property, and hence by induction (fk(x)) is
an increasing sequence. It is therefore either unbounded or bounded above. If it is
bounded above then the sequence tends to a limit, ℓ, and hence (fk+1(x)) tends to
f(ℓ). But the two sequences are the same (by continuity of f) and hence ℓ = f(ℓ),
i.e. ℓ is a fixed point. In the third case f(x) < x implies that f2(x) ≤ f(x) and so(fk(x)) is a decreasing sequence. It is therefore unbounded or bounded below, in
which case by the same argument as in the second case the limit is a fixed point.

If f is decreasing then x < y implies that f(x) ≥ f(y) and hence f2(x) ≤
f2(y). Hence f2 is increasing and since fixed points of f2 are either fixed points
or points of period two for f the second part of the lemma holds. ◻

Lemma 2.2.2 describes simple behaviour – we now describe how to treat some
chaotic dynamics. The first idea is the transition matrix. Throughout this section
f will be a continuous map f ∶ R→ R.

Definition 2.2.3. If J andK are is a closed intervals then J f -coversK ifK ⊆ f(J).
Lemma 2.2.4. If J f -covers itself then J contains a fixed point of f .

Proof: Let J = [a, b]. Since J f -covers itself there exist y and z in [a, b] such
that f(y) ≤ a and f(z) ≥ b. Let g(x) = f(x) − x which is also continuous and
g(y) ≤ 0 and g(z) ≥ 0. Applying the Intermediate Value Theorem to g on the
interval between x and y there exists u such that g(u) = 0, i.e. u is a fixed point
of f . ◻
Definition 2.2.5. Let J1, . . . , Jm be closed intervals with disjoint interiors. A Markov
graph of f is a directed graph with vertices 1, . . . ,m and a directed edge from i to
j iff Ji f -covers Jj . The transition matrix associated with this graph is the m×m
matrix T with

Tij =
⎧⎪⎪⎨⎪⎪⎩
1 if Ji f−covers Jj
0 otherwise.

A path in a directed graph is an ordered sequence of vertices a0a1 . . . ak such
that there is a directed edge from ai to ai+1 for each i = 0, . . . , k − 1. The length
of the path is the number of edges traversed (i.e. k in the example). Note that if
there is a path from a0 to ak of length k if and only if T k

a0ak
≠ 0.
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Lemma 2.2.6. If there is a path of length k from a0 . . . ak in the Markov graph then
there exists a closed interval L ⊂ Ja0

such that fk(L) = Jak
and f r(L) ⊆ Jar

.

Proof: The proof is by induction on k.
If f(Ja0

) ⊆ Ja1
then since f is continuous there exists L ⊆ Ja0

such that
f(L) = Ja1

. (If this is not obvious, look at the interior of Ja1
and note f−1 of an

open interval is a union of open intervals.)
Now suppose that the lemma is true for k =m and consider a path of length

m+1, a0 . . . am+1. By the induction hypothesis, since a1 . . . am+1 is a path of length
m there exists L′ ⊆ Ja1

such that fm(L′) ⊆ Jam+1
and f r(L′) ⊆ Jar+1

, r = 1, . . . ,m.
Since Ja0

f -covers Ja1
, Ja0

f -covers L′ and hence there exists L ⊆ Ja0
such

that f(L) = L′. A quick check confirms that fk+1(L) = fk(L′) and so L has the
desired property. ◻
Corollary 2.2.7. If a0a1 . . . ap is a path of length p with a0 = ap then f has a
periodic orbit of period p.

Corollary 2.2.8. If a0a1 . . . is an infinite path in the Markov graph then there exists
x ∈ Ja0

such that f r(x) ∈ Jar
for all r ≥ 0.

Proof: Take an infinite intersection of nested closed intervals L of Lemma 2.2.6
for each finite path a0 . . . ar. ◻

This is the basic tool for proving classic theorems such as Sharkovskii’s Theo-
rem. It also provides a motivation for the definition of a one-dimensional horseshoe.

Definition 2.2.9. f has a horseshoe if there exist closed intervals J0 and J1 with
disjoint interiors such that J0 f -covers both J0 and J1 and J1 f -covers both J0
and J1.

Theorem 2.2.10. If f has a horseshoe then for any sequence of 0s and 1s a0a1 . . .

there exists x ∈ Ja0
such that f r(x) ∈ Jar

for all r > 0.
This is sometimes described as f having dynamics equivalent to a full shift

on two symbols.
Note that these results only need f to be continuous on the intervals Jk; what

happens between these intervals is immaterial. This means that the methods are
often applicable in piecewise-smooth systems.

Definition 2.2.11. A continuous map of the interval f is chaotic if there exists n ≥ 1
such that fn has a horseshoe.

2.2.2 Continuous maps of the interval

A piecewise-smooth map without discontinuities is a continuous map of the interval
and hence any general result for continuous maps holds for piecewise-smooth maps
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I I
1 2

I I
1 2

Figure 2.2: The order of the period three points and the intervals I1 and I2 with
the transition graph.

without discontinuities. There is one remarkable result for such maps that is worth
recalling (we will not give the proof, though it only uses the ideas of Markov
partitions from chapter 2.2.1). Sharkovskii’s Theorem describes how the existence
of a periodic orbit of a given period can imply the existence of periodic orbits of
other periods.

Consider the complete order “≺” (the Sharkovskii order) on the positive
integers defined by

1 ≺ 2 ≺ 4 ≺ ⋅ ⋅ ⋅ ≺ 2n ≺ 2n+1 ≺ . . .
. . . 2n+1.11 ≺ 2n+1.9 ≺ 2n+1.7 ≺ 2n+1.5 ≺ 2n+1.3 ≺ . . .
. . . 2n.11 ≺ 2n.9 ≺ 2n.7 ≺ 2n.5 ≺ 2n.3 ≺ . . .
. . . 11 ≺ 9 ≺ 7 ≺ 5 ≺ 3

i.e. 1 followed by the powers of two ascending followed by . . . followed by 2n+1

times the odds descending to three followed by 2n times the odds descending to
three and ending with the odds descending to three.

Theorem 2.2.12. (Sharkovskii) Let f ∶ I → R be a continuous map of the interval
I. If f has an orbit of least period p then it has an orbit of least period m for all
m ≺ p in the Sharkovskii order.

A special case of Sharkovskii’s Theorem is easy to prove using the techniques
of chapter 2.2.1 and we include this as an example of the power of the methods.
A rather more detailed version of this result was proved by Li and Yorke in 1975
in a paper which includes the first use of the term ‘chaos’ [78].

Theorem 2.2.13. Suppose f ∶ I → R is a continuous map of the interval and f has
an orbit of period three. Then f has an orbit of period n for all n ∈ Z+ and f is
chaotic.

Proof: Let x1 < x2 < x3 be the points on the orbit of period three. Then either

f(x1) = x2, f(x2) = x3, f(x3) = x1 (2.9)

or

f(x1) = x3, f(x2) = x1, f(x3) = x2. (2.10)
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These are equivalent under the reversal of x-axis, x→ −x, and so we will consider
the first possibility (2.9) without loss of generality. Let

I1 = [x1, x2], I2 = [x2, x3].
Now, since f is continuous f(Ij) covers all points between the images of their
end-points and so

I2 ⊆ f(I1) and I1 ∪ I2 ⊆ f(I2)
and the system has the associated transition graph of Figure 2.2. From chap-
ter 2.2.1, f has an orbit of period p for every closed loop in this transition graph.
Hence it has a fixed point (I2), an orbit of period two (I1I2) and an orbit of period
three by assumption. For all n ≥ 4 it has a periodic orbit of period n by the closed
loop I1I

n−1
2 .

We leave it as an exercise to show from the transition graph that f2 has a
horseshoe and hence that f is chaotic by definition 2.2.11.

◻

2.3 Piecewise-smooth maps of the interval

The next four sections describe properties of one-dimensional piecewise-smooth
maps. In this section we describe some properties and analyse some simple exam-
ples. We need a technical convention about how to work with closed intervals if a
map has a discontinuity.

Let J = [a, b] be a closed interval and suppose that f is continuous on the
interior of J . Then define

f(a) = lim
x↓a

f(x) and f(b) = lim
x↑a

f(x).
Note that when applying this to an iterate of J we may effectively be using two
values of the map at the discontinuity.

2.3.1 Transitivity and chaos

We start with a generalization of a horseshoe for piecewise-smooth maps which we
will use to generalize the definition of chaos for continuous maps (definition 2.2.11)
for maps which may have discontinuities.

Definition 2.3.1. Suppose f ∶ I → I is a piecewise-smooth map of the interval I.
f is chaotic if there exist closed intervals J0 and J1 with disjoint interiors and
n0, n1 > 0 such that fnk ∣Jk is continuous and Jk fnk -covers J0 and J1.

Two further definitions will be useful.
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Definition 2.3.2. Suppose f ∶ I → I is a piecewise-smooth map of the interval I. f
is transitive if for every open interval J ⊆ I there exists N <∞ such that

I = cℓ ∪Nk=0 fk(U).
Note that this implies another definition of transitivity, that for all open

intervals U and V in I there exists k ≥ 0 such that fk(U) ∩ V ≠ ∅. Moreover it
can be used to prove that the non-wandering set of a map is the interval I itself.

Definition 2.3.3. Suppose f ∶ I → I is a piecewise-smooth map of the interval I. A
point is wandering if there exists an open set u with x ∈ U such that fn(U)∩U = ∅
for all n ≥ 1. If x is not a wandering point then x is a non-wandering point. The
non-wandering set of f , Ω(f), is the set of all non-wandering points of f .

Lemma 2.3.4. Suppose f ∶ I → I is a piecewise-smooth map of the interval I. If f
is transitive on I then Ω(f) = I.

Proof: If f is transitive then for any interval U there exists N <∞ such that
I = ∪N0 f r(U) and hence m ≤ N such that fm(U)∩U ≠ ∅; in other words no point
can be wandering.

◻

A stronger definition of the expansion of intervals makes all the consequences
easy to establish.

Definition 2.3.5. Suppose f ∶ I → I is a piecewise-smooth map of the interval I
with M continuous, monotonic branches on the open intervals J1, . . . JM .. Then f

is locally eventually onto (LEO) if for every open interval U ⊆ I there exist open
intervals Lk ⊆ U and nk ≥ 0 such that fnk ∣Lk is monotonic and continuous and
fnk(Lk) = Jk, k = 1, . . . ,M .

Note that the conditions that fnk ∣Lk are continuous imply that all the stan-
dard smooth dynamical results can be imported to the piecewise-smooth case.

Lemma 2.3.6. Suppose f ∶ I → I is a piecewise-smooth map of the interval I. If f
is LEO then it is transitive and chaotic.

Proof: Transitivity is obvious as for any open U there exist Lk ⊆ U , k =
1, . . . ,M as in the definition such that ∪M1 fnk(Lk) = ∪M1 Jk and by definition the
closure of the union of the monotonic branches is the whole interval.

For chaos (definition 2.3.1), take two disjoint open intervals U and V in
the same monotonic branch interval Jc. Then there exis L0 ⊆ U and L1 ⊆ V and
n0, n1 ≥ 1 such that fnk ∣Lk, k = 0,1, is continuous and fnk(Lk) = Jc. Since Lk ⊂ Jc,
f is chaotic by using the closed set convention to extend to the closures of Lk.

◻
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2.3.2 Tent maps

An interesting example is provided by the (symmetric) tent maps. This is a family
of continuous piecewise-smooth maps of the interval Ts ∶ [0,1]→ [0,1] defined for
s ∈ (1,2] by

Ts(x) =
⎧⎪⎪⎨⎪⎪⎩
sx if 0 ≤ x ≤ 1

2

s(1 − x) if 1
2
≤ x ≤ 1. (2.11)

Let the length of an interval U be denoted by ∣U ∣. There are three immediate
remarks worth making to start with:

(a) There are no stable periodic orbits (the slope of the map has modulus s > 1).
(b) For every open interval U ⊂ (0,1) there exists n > 0 such that 1

2
∈ T n

s (U) (if
not then T s is linear so ∣Ts(U)∣ = s∣U ∣ and by induction ∣T n

s (U)∣ = sn∣U ∣; but
since the interval must have length less than 1 this is a contradiction).

(c) Let I0 = [T 2
s ( 12), Ts( 12 ], then Ω(f) = {0} ∪Ω(Ts∣I0) (0 is a fixed point so in

Ω(Ts); the interval I0 is invariant and any opn interval outside I0 must map
into I0 eventually by (b)).

Lemma 2.3.7. If
√
2 < s ≤ 2 and I0 as in (c) above then

Ω(Ts) = {0} ∪ I0.
These sets are disjoint unless s = 2, when 0 is the left end-point of I0.

Proof: We will show that Ts∣I0 is LEO and hence that Ω(T ∣I0) = I0. By direct
calculation I0 = [x1, x2] where

x1 = s

2
(2 − s), x1 = s

2
. (2.12)

Note that if s = 2 then I0 = [0,1] and the last statement of Lemma 2.3.7 is shown.
Consider any open interval U ⊂ I0. If 1

2
∉ U then ∣Ts(U)∣ = s∣U ∣ and so (cf.

remark (b) above) there exists n0 such that 1
2
∈ T n0

s (U). Let T n0

s (U) = V0∪{ 12}∪V1

with V0 in x < 1
2
and V1 is in x > 1

2
. Then there exists α ∈ (0,1) such that

∣V0∣ = α∣T n0

s (U)∣, ∣V1∣ = (1 − α)∣T n0

s (U)∣.
Both intervals Ts(Vk) have Ts( 12) = x2 as their right end-point and so one contains
the other (or both are equal). Thus

∣T n0+1
s (U)∣ =max

k
{∣Ts(Vk)∣} = (max{αs, (1 − α)s}) ∣T n0

s (U)∣.
The maximum of αs and (1−α)s is greater than or equal to 1

2
s since if α ≠ 1

2
then

one of the two terms α or 1 − α is greater than 1
2
. Hence

∣T n0+1
s (U)∣ ≥ s

2
∣T n0

s (U)∣. (2.13)
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Choose U0 ⊆ U such that Vk where T n0

s (U0) = Vk is the interval with larger image,
so T n0+1

s ∣U0 is monotonic and T n0+1
s (U0) = T n0+1

s (U). If 1
2
∉ T n0+1

s (U0) then
∣T n0+2

s (U0)∣ ≥ s2

2
∣T n0

s (U0)∣ > ∣T n0

s (U)∣ (2.14)

and so the length continues to expand. This cannot continue indefinitely so after a
finite number of further passages including 1

2
(at which we define smaller intervals

U1, U2, . . . Um in U such that ∣T nr+1
s (Ur)∣ = ∣T nr+1

s (U)∣ and T nr+1
s ∣Ur is monotonic)

we arrive at an interval Um such that

1

2
∈ T nm+1

s (Um) and
1

2
∈ T nm+2

s (Um).
But the first of these implies that Ts( 12) ⊆ T nm+2

s (Um), so Um contains an open

interval Ũ such that T nm+2
s ∣Ũ is monotonic and T nm+2

s (Ũ) = ( 1
2
, s
2
). Thus T nm+3

s ∣Ũ
is monotonic and T nm+3

s (Ũ) = ( s
2
(2 − s), s

2
) and so Ts is LEO on I0.

◻

The next step is probably the most important in this course: it involves look-
ing at a higher iterate of Ts on a subinterval of [0,1]. This is the idea behind
renormalization and induced maps. We will make this explicit in the next subsec-
tion, but for the moment we will see it in action as we extend Lemma 2.3.7 to
1 < s ≤√2.
Theorem 2.3.8. If

√
2 < s2n ≤ 2, n ≥ 0, then

Ω(Ts) = {0} ∪ In ∪ ( n

⋃
k=1

Pk)
where the right union is empty if n = 0. The set Pk is an unstable periodic orbit of
period 2k, k = 1,2, . . . n and In is a union of 2n closed intervals. These intervals
are disjoint unless s2

n = 2 in which case they intersect pairwise on the periodic
orbit Pn.

Proof: If n = 0 the theorem is proved by Lemma 2.3.7. If s ≤ √2 consider
the second iterate of the map, T 2

s which has the form shown in Figure 2.3. It
has turning points at 1

2
and the two preimages of 1

2
, i.e. c± where sc− = 1

2
and

s(1 − c+) = 1
2
, solving gives

c− = 1

2s
, c+ = 2s − 1

2s
.

There is a non-trivial fixed point of Ts in x > 1
2
with at x∗ = s

s+1
and this has a

preimage in x < 1
2
, y−, where sy− = x∗, and this in turn has a preimage in x > 1

2
,

y+, with s(1 − y+) = y−. Direct calculation yields

y− = 1

s + 1 = 1 −
s

s + 1 , y+ = s2 + s − 1
s(s + 1) . (2.15)
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T(½)

Figure 2.3: s <√2: the tent map and its second iterate.

Consider T 2
s ∣[y−, x∗]. This is symmetric about 1

2
and the modulus of the slope is

s2. T 2
s maps the interval [y−, x+] into itself provided T 2

s ( 12) ≥ y− which is equivalent
to s2 ≤ 2 after some algebra. Thus if s2 ≤ 2 the map T 2

s ∣[y−, x∗] is equivalent by
an affine change of variable to Ts2 ∣[0,1].

Thus if
√
2 < s2 ≤ 2, Ω(T 2

s ∣[y−, x∗]) = {x∗}∪J0 where J0 is an interval disjoint
from x∗ except in the case s2 = 2 when x∗ is an endpoint of J0. Let I1 = J0∪Ts(J0)
and P1 = {x∗}. Then this establishes

Ω(Ts) = {0} ∪ I1 ∪P1,
√
2 < s2 ≤ 2,

where I1 is a union of two intervals joined pairwise on P1 if s2 = 2.
To complete the proof use induction on n. If s2 ≤ √2 then consider the

second iterate of T 2
s on [y−, x∗], which has slopes of modulus s4 = s2

2

and the
same structure provided

√
2 < s4 ≤ 2, and so on. We leave the details to the

reader. ◻
2.3.3 Renormalization and period-doubling

The idea of looking at the second iterate of a map is the simplest way of look-
ing at the standard phenomenon of period-doubling and the structure of smooth
unimodal (or one-hump) maps such as the logistic family

xn+1 = µx(1 − x), 0 < µ ≤ 4, x ∈ [0,1]. (2.16)

For the logistic map the choice of µ ∈ (0,4] ensures that the interval [0,1] is
mapped into itself; if µ ∈ (0,1) then a simple argument based on Lemma 2.2.2
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Figure 2.4: The attractor of the logistic map as a function of parameters.

implies that all orbits tend to the fixed point at x = 0. Above this value a new
fixed point, x∗ = (µ − 1)/µ, appears and it is initially stable. It loses stability at
µ1 by a period-doubling bifurcation creating a stable period two orbit which in
turn period-doubles at µ = µ2. It is not obvious, but it is true that this cascade
of period-doubling keeps going, accumulating at some value µ∞. If µ∞ < µ ≤ 4
then there are parameter values at which there appear to be strange attractors,
but also ‘windows’ of parameters which have stable periodic orbits. These orbits
appear to have their own period-doubling sequences and the attracting behaviour
as a function of parameter is shown in Figure 2.4. Understanding this picture and
the existence of strange attractors for a positive measure (but nowhere dense) set
of parameters was one of the achievements of dynamical systems theory of the
1980s.

An intuitive explanation of what is happening can be useful.
If µ = µ0 = 1 then the fixed point at the origin has f ′(0) = 1 and f( 1

2
) = 1

4
,

so f(x) < 1
2
for all x ∈ [0,1] and fn(x) < fn−1(x) for all n > 1, implying that all

solutions tend to zero (even though it is not linearly stable).
If µ = µ̃0 = 4 then f( 1

2
) = 1 and so f([0, 1

2
]) = [0,1] = f([1

2
,1]). Thus f has a

horseshoe and so it is chaotic.
If µ > 2 the nontrivial fixed point

x∗ = (µ − 1)/µ
lies in x > 1

2
where the derivative is negative. In this case the second iterate of

f , f2 will look something like the sketch in Figure 2.5, where the two boxes are
based on the fixed point, it’s preimage y− in x < 1

2
and the preimage of that point,

y+, in x > 1
2
(just like in the construction of T 2

s in the previous section).
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f

f2

R’L’

Figure 2.5: The map f and its second iterate f2 if 2 < µ < µ̃1.

Now, if µ = µ̃0 the f2( 1
2
) = 0 < y− and so the central box is not mapped into

itself (unlike the case sketched in Figure 2.5). Thus (by continuity) there exists
µ̃1 such that at this value of the parameter f2( 1

2
) = y− and if µ > µ̃1 f2 has a

horseshoe, whilst if 2 < µ < µ̃1 the boxes I0 = [y−, x∗] and I1 = [x∗, y+] are mapped
into themselves by the second iterate and permuted by the first iterate of f .

As µ increases from 2 there exists µ1 at which f ′(x∗) = −1 and the first
period-doubling bifurcation occurs, with (f2)′(x∗) = [f ′(x∗)]2 = 1 using the chain
rule and f(x∗) = x∗.

Thus as µ varies between µ1 and µ̃1, f
2 maps each of the intervals I0 or I1

into themselves and evolves essentially in the same way (see note below) as f for
µ ∈ [µ0, µ̃0]. If µ ∈ (µ0, µ1) then f has a stable fixed point whilst if µ ∈ (µ̃1, µ̃0) the
two intervals are not mapped into themselves by f2.

Hence there exist µ2 < µ̃2 in (µ1, µ̃1) which play the same role for f2 as µ1

and µ̃1 do for f . In particular

• if µ1 < µ < µ2 then f2 has a stable fixed point in each of the intervals I0 and
I1; a stable orbit of period two for f ;

• if µ̃2 < µ < µ̃1 then f2 maps the intervals I0 and I1 into themselves and
are permuted by f , i.e. any attractor lies in a union of two intervals (‘two
bands’);

• if µ2 < µ < µ̃2, the second iterate of the second iterate, f4 = f2
2

evolves on
two intervals in each of I0 and I1 as f2 does on µ1 < µ < µ̃1 which is the
same as how f evolves on µ0 < µ < µ̃0.

This self-similarity in the structure of the dynamics as a function of param-
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eters continues, yielding nested intervals

[µn+1, µ̃n+1] ⊂ [µn, µ̃n]
with

lim
n→∞

µn = lim
n→∞

µ̃n = µ∞
which is called the accumulation of period-doubling.

Moreover

• if µn < µ < µn+1 then f2
n

has a stable fixed point in each of 2n intervals; a
stable orbit of period 2n for f ;

• if µ̃n+1 < µ < µ̃n then there are 2n intervals mapped into themselves by f2
n

and permuted by f , i.e. any attractor lies in a union of 2n intervals or bands;

• if µn+1 < µ < µ̃n+1, the second iterate of the 2nth iterate, f2
n+1

evolves on
2n+1 intervals as f2

n

does on 2n intervals for µn < µ < µ̃n, as . . . , as f
2 does

on µ1 < µ < µ̃1 which is the same as how f evolves on µ0 < µ < µ̃0.

Important note: This argument rests on the assumption that all possible be-
haviour consistent with the constraints of a one-hump map actually does occur
in this family of maps. The proof of this (what Collet and Eckmann [50] call a
full family) relies on the family being C1 and for both f and f ′ to be close for
nearby values of µ; thus it does NOT necessarily hold for piecewise-smooth sys-
tems (though there are examples where it does hold).

A further feature of this period-doubling cascade is notable: the convergence
rate of µn and µ̃n is independent of the details of the map: for one-hump maps
with quadratic maxima or minima

lim
n→∞

µn−1 − µn

µn − µn+1

= lim
n→∞

µ̃n−1 − µ̃n

µ̃n − µ̃n+1

= δ (2.17)

where δ is the Feigenbaum constant, δ ≈ 4.669. For piecewise-smooth maps with
maxima or minima of the form ∣x∣r , r > 1, a similar scaling holds but the constant
becomes a function of r.

The explanation of Feigenbaum’s result is nice. At µ∞ the renormalization
process (looking at the second iterate restricted to a subinterval) can be repeated
infinitely often. This means that after rescaling and shifting so that the turning
point is at x = 0 and f(0) = 1 then the rescaled map is

− 1
α
f ○ f(−αx), α = −f(1) > 0.

This suggests viewing the process as a map in function space, f → T f where

T f = − 1
α
f ○ f(−αx). (2.18)
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It turns out that T , appropriately defined, has a fixed point f∗ with a one-
dimensional unstable eigenspace with eigenvalue δ. Functions on the stable man-
ifold of f∗ tend to f∗ under iteration and can be renormalized infinitely often,
i.e. they are at the accumulation of period-doubling. Codimension one surfaces of
period-doubling bifurcations converge one the stable manifold under T −1 at a rate
determined by δ−1 explaining (at least up to the many technical details that have
been avoided in this brief description) the exponential convergence (2.17).

One further feature of the period-doubling phenomenon is worth considering,
particularly as it will be useful in the study of an example later, and a similar
argument will be used in the next chapter when considering circle maps. Orbits
that avoid the turning point can be labelled by sequences of Rs and Ls according
to whether the nth iterate is on the left (L) or the right (R) of the turning point. At
the accumulation of period-doubling the sequence for f(c), where c is a maximum,
is

RLRRRLRLRLRRRLRRRLRRRLRLRLRLRRRLRLR . . .. (2.19)

This sequence can be generated by looking at Figure 2.5. The one-hump map in
the interval I1 can be described by symbols R′ and L′; these are the symbols for
f2 restricted to the right hand interval I1, and for f the symbol R′ actually means
RL (it is a decreasing branch of f2 on the right, so f(x) < c here); and L′ for f2

means RR for f . Thus the replacement operations

L→ RR, R → RL (2.20)

can be used to translate from f2 to f .
But this means that for f4 the replacement operation (2.20) to obtain se-

quences in terms of the original function f is obtained by repeating twice, i.e.

L→ RR → RLRL, R → RL→ RLRR.

Moreover, RLRR is the symbol sequence corresponding to the fixed point with
code R for f4, i.e. the period-doubled orbit of the period-doubled orbit for f .
At the accumulation of period-doubling the process repeats infinitely often and
applying this to the rightmost point at every stage we find (2.19).

Lemma 2.3.9. The number of Rs in the sequence associated with the period-doubling
orbit of period 2n is

rn = 2
3
2n + 1

3
(−1)n, (2.21)

and the asymptotic proportion of Rs at the accumulation of period-doubling is 2
3
.

Proof: Let (rn, ℓn) denote the number of Rs and Ls in the orbit of period
2n with code R for f2

n

. Then the code for the orbit of period 2n+1 is obtained by
replacing each of the rn Rs by RL and each of the ℓn Ls by RR using (2.20), so

rn+1 = rn + 2ℓn, ℓn+1 = rn
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and so
rn+1 = rn + 2rn−1. (2.22)

This is a linear difference equation and so if we pose solutions of the form sn we
find s2 − s − 2 = 0 and so s = 2 or s = −1 and the general solution of (2.22) is

rn = A2n +B(−1)n, (2.23)

for some constants A and B. Since the first two sequences are R (the fixed point)
and RL (period two), the initial conditions are r0 = 1, r1 = 1, i.e.

A +B = 1, 2A −B = 1
which imply that A = 2

3
and B = 1

3
proving (2.21). The asymptotic proportion of

Rs is obtained by taking the limit of rn/2n which is 2
3
. ◻

For completeness we should note that

ℓn = rn−1 = 1

3
(2n − (−1)n). (2.24)

The proof of this lemma was one of the exercises set during the Advanced Course
in Barcelona, 2016.

2.3.4 Renormalization and Induced maps

The previous example is our first sight of a really important idea: renormaliza-
tion, i.e. the consideration of induced maps. This will be central to much of the
theoretical analysis we do here and can be used to provide a detailed description
of the dynamics of piecewise-smooth maps.

Definition 2.3.10. Suppose f ∶ [0,1]→ [0,1] is a piecewise-smooth map and there
exists c ∈ (0,1) such that f is monotonic and continuous on (0, c) and on (c,1).
f is renormalizable if there exist positive integers n0 and n1 with n0 + n1 > 2 and
non-trivial intervals J0 = (x1, c) and J1 = (c, x2) such that fnk ∣Jk is continuous
and monotonic, k = 0,1 and

fnk(Jk) ⊆ J0 ∪ {c} ∪ J1, k = 0,1. (2.25)

In some sense, apart from stable periodic orbits, renormalization is the only
obstruction to transitivity in piecewise-smooth maps with two monotonic branches.

Theorem 2.3.11. Suppose f ∶ [0,1] → [0,1] is a piecewise-smooth map with two
monotonic branches separated by c ∈ (0,1). If there exists s > 1 such that ∣f ′(x)∣ ≥ a
for all x ∈ (0,1)/{c} then either f is transitive or f is renormalizable. If f is
renormalizable on an interval J containing c then Ω(f) = T∪R where T is described
by a Markov graph and R is the nonwandering set of the induced map on J and
its iterates under f .
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Proof: Without loss of generality assume that [0,1] is the smallest interval
mapped into itself by f . Note that f has no stable periodic orbits.

Take any open interval U . By the expansion argument of (b) above Lemma 2.3.7
there exists n0 ≥ 0 such that c ∈ fn0(U) = U0 and follow both branches to their
next intersection with c, i.e. let U0 = V0 ∪ {c} ∪V1 in the standard way and choose
the smallest mk, k = 0,1 such that c ∈ fmk(Vk), k = 0,1 (these exist by the
expansion argument). If fmk(Vk) ⊆ U0 then f is renormalizable. Otherwise set
U1 = fm0(V0) ∪ fm1(V1) ∪U0 and note U0 ⊂ U1.

Now repeat the argument using U1 and note that the equivalent of the return
times for U1 are less than or equal to the return times mk for U0. Either f is
renormalizable or there exists U2 with U1 ⊆ U2 which is a union of iterates of
subsets of U .

Either there exists m < ∞ such that Um = (0,1) and so U satisfies the
transitivity condition (but not necessarily all U satisfy the condition) or Un → U∞
as n →∞ and by continuity appropriate iterates of f map U∞ into itself.

Hence once again either f is renormalizable or U∞ = (0,1). But since the
return times are decreasing, they also tend to a limit, m∞k , k = 0,1, and these are
reached in finite steps. Thus if Un ≠ (0,1) for all n > N0 the minimality of (0,1)
implies that Un ∪ f(Un) = (0,1) for large enough n; the transitivity condition
again.

Thus for each U either U satisfies the transitivity condition or f is renormal-
izable. Hence either f is renormalizable or f is not renormalizable and every open
U satisfies the transitivity condition and hence f is transitive.

If f is renormalizable let Jk be the intervals as in the definition and choose
the maximal intervals satisfying (2.25). Let

K = J0 ∪ (∪n0

1 f r(J0)) ∪ {c} ∪ J1 ∪ (∪n1

1 f r(J1))
and let L = I/K. Then L is a (possibly empty) finite union of closed intervals and
since the sets K are mapped to themselves if f(Li) ∩Lj ≠ ∅ then Lj ⊆ f(Li), i.e.
Li f -covers Lj and so the dynamics in L can be described by a Markov graph.
Setting T = Ω(f)∩L and R = Ω(f) ∩ cℓ(K) produces the stated decomposition of
the non-wandering set. ◻

Whilst this result provides a clear description of the possible dynamics of
these maps, a description that can be extended to maps without uniform expan-
sion using the ideas of [76, 82] and which can be made unique by choosing the
shortest renormalization (smallest n0 +n1 at each stage), it does not describe how
to determine which of the many possibilities actually occurs in a given family. This
can be an extremely complicated question to answer in detail, and in the spirit of
‘less is more’ we believe that this level of general description is more useful than an
exhaustive description of cases in a particular family (which will change with the
details of the family) except in cases where that family has particular significance.
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(a) (b) (c) (d)

Figure 2.6: The four cases for elementary border bifurcations: (a) a < −1; (b)
0 < a < 1; (c) −1 < a < 0; (d) a > 1.

2.3.5 Boundary Bifurcations

In the previous sections we have been concerned with chaos and expansion. Now
we consider how periodic orbits can be created or destroyed by non-smooth effects.
To do bifurcation theory we need to consider families of maps, and this leads to
problems about how to talk about ‘continuous’ families of discontinuous mappings!
In the next section we will look at some more sophisticated approaches, but for
now we are concerned only with local phenomena and so we will work with locally
fixed families.

Definition 2.3.12. A family of piecewise-smooth mappings f(x,µ), f ∶ [0,1] ×R →[0,1] is locally fixed if there exists ǫ > 0 such that the set of discontinuities, dk,
and the set of critical points, ck are fixed for all µ ∈ (−ǫ, ǫ) and f is C2 functions
of both variables on the intervals Jk.

Thus for a locally fixed family, there exist fixed intervals bounded by the
discontinuities and critical points on which f is smooth. For most families this can
be achieved locally by a change of coordinates.

Theorem 2.3.13. If f ∶ I × (−ǫ, ǫ) → I be a locally fixed family of piecewise-smooth
maps and suppose that d is a point of discontinuity. If there is a neighbourhood
J = (d, d + δ), δ > 0, such that f is smooth (C2)

lim
x↓d

f(x,0) = d, lim
x↓d
∣f ′(x,0)∣ = a ≠ 1 (2.26)

then there exists δ, η > 0 such and b ∈ {+1,−1} such that if µ is between 0 and
bη then f has a fixed point in (d, d + δ) and no other locally recurrent dynamics,
whilst if µ is between 0 and −bη then f has no locally recurrent dynamics. The
fixed point is stable if a < 1 and unstable if a > 1.

Thus the effect of a boundary bifurcation is to create or destroy a fixed point.
Of course the same result holds for periodic orbits by replacing f by fp. Global
features of the maps can create more dynamics in the intervals – the theorem only
refers to dynamics locally, i.e. that remain in the interval J for all time. The proof
is elementary and is left as an exercise. The four cases are illustrated in Figure 2.6.
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(a) (b) (c) (d)

Figure 2.7: Parameter versus attractor for the Nordmark square root map with
logarithmic scale for the parameter.

2.3.6 The Square Root Map

Nordmark [83] introduced the square root map as a model for grazing in impacting
systems. We shall choose the parametrization so that it is

S(x) =
⎧⎪⎪⎨⎪⎪⎩
µ + bx if x < 0
µ −√x if x ≥ 0 , 0 < b < 1. (2.27)

The map is continuous (and hence all the results of chapter 2.2.2 hold) but it is
not differentiable at x = 0. If µ < 0 there is a stable fixed point in x < 0 which
attracts all solutions so we will restrict attention to µ > 0. As µ tends to zero a
sequence of stable periodic orbits can be observed numerically if b is small enough,
with period two being followed by period three and then four and so on as shown
in Figure 2.7. This is an example of a period adding sequence, although there
is a region of parameters where the orbits of period n and n + 1 coexist and
also that as soon as the period three orbit exists there are orbits of all periods
by Sharkovskii’s Theorem (Theorem 2.2.12) and so this does not give the whole
picture of the dynamics.

In this section a simplified version of Nordmark’s result will be proved relying
only on the bifurcation structure of the simplest periodic orbits, those with one
point in x > 0 and n in x < 0 (these are referred to as RLn orbits for obvious reasons
– one point to the right of the critical point and n to the left). In particular we
will not prove that these are the only stable periodic orbits, though this follows
from Nordmark’s more detailed analysis [83].

The classic theory of period-doubling bifurcations [50] states that if x∗ is a
fixed point of a smooth map xn+1 = f(xn, µ) at µ = µ∗ and fx(x∗, µ∗) = −1 then a
period-doubling bifurcation occurs (creating a period two orbit) if

u = 2fµx + fµfxx ≠ 0, v = 1
2
f2
xx + 1

3
f2
xxx ≠ 0. (2.28)

The bifurcating period two orbit is unstable if it coexists with the stable fixed
point, which occurs if

v < 0 (2.29)

in which case it is called a subcritical period-doubling bifurcation.
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Theorem 2.3.14. Consider the map S of (2.27). If 0 < b < 1
4
then there exist two

sequences µbc
n and µpd

n converging on µ = − from above such that if µ = µbc
n a stable

periodic orbit RLn is created in a border collision bifurcation at x = 0, whilst
if µ = µpd

n then this orbit loses stability by a classical subcritical period-doubling
bifurcation. Moreover

µbc
n > µpd

n−1 > µbc
n+1. (2.30)

Note that if µbc
n > µ > µpd

n−1 then there are stable periodic orbits RLn−1 and

RLn, whilst if µpd
n−1 > µ > µbc

n+1 the RLn−1 orbit has lost stability and the only
stable orbit is RLn.

Proof: First not that if xk = Sk(x0) < 0, k = 0,1,2 . . . , n−1 then by induction
or direct solution of the linear difference equation in x < 0

Sn(x0) = (1 + b + ⋅ ⋅ ⋅ + bn−1)µ + bnx0 = 1 − bn
1 − b µ + bnx0. (2.31)

A border collision bifurcation occurs if x = 0 lies on a periodic orbit. Now if µ > 0
then S(0) = µ and S2(0) = µ−√µ. Thus Sn+1(0) = 0 if Sn−1(µ−√µ) = 0 or, using
(refSxneg),

0 = (1 + b + ⋅ ⋅ ⋅ + bn−2)µ + bn−1(µ −√µ) = (1 + b + ⋅ ⋅ ⋅ + bn−2 + bn−1)µ − bn−1√µ.
Thus the border collision bifurcation occurs for µ = µbc

n where

1 − bn
1 − b

√
µ = bn−1 or µbc

n = b2(n−1)(1 − b)2
(1 − bn)2 . (2.32)

The orbit will be stable provided the derivative along the orbit has modulus less
than one at the bifurcation, i.e. provided

bn ( 1

2
√
µ
) < 1

and using (2.32) this condition becomes

bn
1 − bn

bn−1(1 − b) =
b(1 − bn)
1 − b < 1

which is clearly satisfied if b < 1
4
.

There is a period-doubling bifurcation if the slope of Sn+1 at the periodic
point is −1, and hence if x > 0 is the point on the orbit to the right of x = 0 then
for the RLn orbit

(Sn+1)′(x) = −bn 1

2
√
x

and so the periodic orbit RLn period-doubles if the point of the orbit in x > 0 is

x = 1

4
b2n. (2.33)
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If x > 0 is followed by n iterates in x < 0 and then closes to form a periodic orbit
then

x = Sn+1(x) = (1 + b + ⋅ ⋅ ⋅ + bn−1)µ + bn(µ −√x) (2.34)

and for the choice of x in (2.33) for a period-doubling equation this becomes

3

4
b2n = (1 + b + ⋅ ⋅ ⋅ + bn−1 + bn)µ

so

µpd
n = 3b2n(1 − b)

4(1 − bn+1) . (2.35)

To check whether this is supercritical or subcritical we need to check the coefficients
u and v defined in (2.28) with f replaced by Sn+1 from the right hand equality in
(2.34). Thus

fµ = 1−bn+1

1−b
, fx = − bn

2
√
x
, fµx = 0,

fxx = bn

4
x−

3

2 , fxxx = − 3bn

8
x−

5

2 .

Thus

u = 1 − bn+1
1 − b

bn

4
x−

3

2 > 0
and

v = 1

32
b2nx−3 − 1

8
bnx−

5

2 = bnx−3

32
(bn − 4√x) .

Substituting
√
x = 1

2
bn from (2.33) shows that the final term in brackets is −bn < 0

and so v < 0 and by (2.29) the bifurcation is subcritical as stated.
Finally we need to establish (2.30). From (2.32) and (2.35) the second in-

equality µ
pd
n−1 > µbc

n+1 is equivalent to

3b2(n−1)(1 − b)
4(1 − bn) > b2n(1 − b)2

(1 − bn+1)2
or

3(1 − bn+1)2
4(1 − bn) > b2(1 − b)

which is clearly true if 0 < b < 1
4
as the right hand side is greater than 3

4
(1−bn+1) >

9
16

whilst the left hand side is less than 1
16
. The interesting inequality is the first

of (2.30), µbc
n > µpd

n−1. From (2.32) and (2.35) this is equivalent to

b2(n−1)(1 − b)2
(1 − bn)2 > 3b2(n−1)(1 − b)

4(1 − bn)
or

1 − b > 3

4
(1 − bn)

i.e. b − 3
4
bn < 1

4
, which is true for all n ≥ 1 if 0 < b < 1

4
. ◻
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2.3.7 Topological Conjugacy and Unbounded domains

It should be obvious that if two systems are related by a change of coordinate
then we need not analyze them separately – understanding the dynamics of one of
the systems is enough to describe the dynamics of both systems after translating
between systems using the change of coordinates. Thus given xn+1 = f(xn) and
an invertible change of coordinates y = h(x),

yn+1 = h(xn+1) = h(f(xn)) = h(f(h−1(yn))).
Thus the dynamics of y is determined by a new map g where

g = h ○ f ○ h−1.
This idea is made formal by the definition of a topological conjugacy.

Definition 2.3.15. The maps f ∶ I → I and g ∶ J → J are topologically conjugate
if there exists a homeomorphism (continuous with continuous inverse) h ∶ I → J

such that
g ○ h = h ○ f. (2.36)

This is often described by saying that the following diagram commutes.

f

I → I
h ↓ ↓ h
J → J

g

As a simple example consider the tent map Ts ∶ [0,1]→ [0,1]
Ts(x) =

⎧⎪⎪⎨⎪⎪⎩
sx if x ∈ [0, 1

2
]

s(1 − x) if x ∈ [1
2
,1].

These could equally be rescaled to maps on the interval [−1,1]. To see how to do
this note the symmetry of Ts about the mid-point of the interval [0,1] so choose
a transformation that takes 0, 1

2
, 1 to −1, 0, 1. The easiest example of such a

transformation is linear:
y = h(x) = 2x − 1.

In these new coordinates
yn+1 = 2xn+1 − 1

i.e. yn+1 = gs(yn) where
gs(y) =

⎧⎪⎪⎨⎪⎪⎩
sy + s − 1 if y ∈ [−1,0]
−sy + s − 1) if y ∈ [0,1].
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Clearly this is just a change of scale; the alternative y = 1− 2x makes the function
a minimum instead of a maximum.

We have worked on finite intervals and there are some technical issues about
unbounded domains which we will ignore, but Gardini et al [62] have recently intro-
duced two classes of piecewise-smooth unbounded maps which have nice properties
that can be studied using the techniques introduced here.

The first is

G1(x) =
⎧⎪⎪⎨⎪⎪⎩
µ + bx if x ∈ (−∞,0]
µ − cx−γ if x ∈ (0,∞) (2.37)

with

0 < b < 1, c > 0, γ > 0 (2.38)

and µ > 0 as a parameter. Note that these inequalities imply that

G1(x) → −∞ as x ↓ 0, and G1(x) ≤ µ.
Hence we can think of G1 as acting on (−∞, µ]. Gardini et al [62] comment on the
existence of unbounded chaos in this example, and it is natural to ask what the
role of the unbounded domain might be. This suggests looking for topologically
conjugae systems on finite domains, and a natural change of variable is a (real)
Möbius transformation that brings

∞→ −1, 0→ 0, µ → µ, (2.39)

although it would have been just as natural to choose µ→ 1 so that the dynamics
is on the interval [−1,1] rather than [−1, µ].

The Möbius transform that achieves this is

h(x) = x

1 + µ − x
which is continuous for x ∈ (−∞,1 + µ) and hence on (−∞, µ) and

h′(x) = 1 + µ − x − (−x)
(1 + µ − x)2 = 1 + µ

(1 + µ − x)2 > 0
so h is strictly increasing and differentiable on (−∞, µ] and hence invertible (but
not a diffeomorphism as the derivative tends to zero as x tends to −∞). Let

g1 = h ○G1 ○ h−1
then

• g1(−1) = −1;
• g1(0−) = µ
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• g1 is strictly increasing with g(x) > x on (−1,0) ;
• g

(
10
+) = −1;

• g1(µ) > 0.
Only the last of these requires a little thought and we leave this as an exercise.

Lemma 2.3.16. g1 ∶ [−1, µ]→ [−1, µ] is chaotic.

Proof: g1([−1,0]) = [−1, µ] and [−1,0] ⊂ g1([0, µ]) and hence this induces
the same Markov graph as the period three orbit of Theorem 2.2.13. ●

The second example of [62] is even more interesting. Consider

G2(x) =
⎧⎪⎪⎨⎪⎪⎩
−µ − bx if x ∈ (−∞,0]
−µ + cx−γ if x ∈ (0,∞) (2.40)

with
b > 1, c > 0, γ > 1 (2.41)

and µ > 0 as a parameter. Gardini observes a strange sequence of bifurcations

3→ 6→ 11→ 22→ 43→ 86→ . . . . (2.42)

Understanding this sequence involves a nice application of the idea of induced
maps. Note that if µ > 0 there is a fixed point x∗ in x > 0:

x∗ = −µ + cx∗−γ .
For x ∈ (0, x∗),

G2
2(x) = −µ + c(−µ + cx−γ)−γ

and so in a neighbourhood of x = 0 with x > 0
G2

2(x) = −µ + c1−γx2γ(1 +O(xγ)). (2.43)

Thus the induced map on [−µ,x∗] defined by

G3(x) =
⎧⎪⎪⎨⎪⎪⎩
G2(x) if x ∈ (−µ,0]
G2

2(x) if x ∈ (0, x∗] (2.44)

is a unimodal map (with a minimum). The period-doubling sequence of chap-
ter 2.3.3 is (including the period-doubled orbit immediately after the bifurcation,
which has the same symbol sequence as the original orbit)

R → RR → RL→ RLRL→ RLRR→ RLRRRLRR→ RLRRRLRL→ . . . .
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For G3 the symbol R (the branch of the map with negative slope) is x < 0 and so
each R corresponds to a single iteration of G2 whilst each L a single iteration of
G3 in x > 0 i.e. two iterations of G2, so the sequence is

1→ 2→ 3→ 6→ 5→ 10→ 11 . . .

just as observed by Gardini. More generally, using Lemma 2.3.9, the orbit of period
2n for the unimodal map has rn Rs and ℓn Ls with

rn = 2
3
2n + 1

3
(−1)n, ℓn = 1

3
(2n − (−1)n).

The corresponding orbit for G2 has period pn = rn + 2ℓn, i.e.
pn = 4

3
2n − 1

3
(−1)n (2.45)

and the general bifurcation scheme is

⋅ ⋅ ⋅ → pn → 2pn → pn+1 → . . . . (2.46)

Note that
pn+1 − 2pn = (−1)n

so the effect is to double and then add or subtract one, i.e.

3→ 6→ (5→ 10)→ 11→ 22→ (21→ 42)→ 43→ 86→ . . . .

The sequence above corresponds to the sequence obtained via period-doubling, but
comparison with (2.42) show that it has more than the full sequence described by
Gardini et al [62]; the orbits in brackets are not observed. We conjecture that this
is due to the linear nature of the map in x < 0 which means that when this branch
is playing the leading role it cannot have a classical period-doubling bifurcation as
the branch is already unstable. This is a good example of a case where the induced
map is not of a standard form and hence does not have a complete period-doubling
sequence (an open exercise is to determine whether there is still an infinite sequence
of stable periodic orbits before the onset of chaos. A small change ensures that a
full period-doubling bifurcation does occur.

Theorem 2.3.17. The map

G4(x) =
⎧⎪⎪⎨⎪⎪⎩
−µ + b∣x∣1+ǫ if x ∈ (−∞,0]
−µ + cx−γ if x ∈ (0,∞) (2.47)

with b > 1, ǫ > 0, c > 0 and γ > 1 has a complete cascade of bifurcations creating
orbits of period pn in (2.45) with stable periodic orbits (2.46).

The proof relies on the induced map idea described above together with a
standard ‘full family’ argument (e.g. [50]).

This is a sequence very close to the anharmonic sequence of [64] though the
reason for it is directly related to the period-doubling bifurcations of the induced
map.
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2.4 Lorenz maps and rotations

This section is devoted to piecewise-smooth maps of the interval with a single
discontinuity such that both continuous branches are increasing. These include
Lorenz maps and rotations. If f ∶ [0,1] → [0,1] is a piecewise-smooth map with
increasing branches and a single discontinuity at c ∈ (0,1) with f(c−) = 1 and
f(c+) = 0 there are three separate cases:

• Rotations: f(0) = f(1).
• Gap maps: f(0) > f(1).
• Overlap maps: f(0) < f(1).
Rotations have a distinguished history going back to the classic results of

Julia and Denjoy in the early twentieth century. Gap maps have many similar-
ities and some beautiful general results are due to Keener [77] and Rhodes and
Thompson [87, 88]. Overlap maps allow the possibility of chaos and include the
many studies of Lorenz maps.

2.4.1 Rotations

A rigid rotation is a map rα ∶ [0,1)→ [0,1) with α ∈ [0,1) defined by

rα(x) = x + α (mod 1). (2.48)

The function Rα ∶ R → R defined by Rα(x) = x + α is an example of a lift of rα,
and Rα(x+1) = Rα(x)+1. The dynamics of the map rα can be recovered from Rα

by projecting modulo 1, hence rα has a periodic point of period q iff there exists
x ∈ R such that Rq

α(x) = x + p for some p ∈ Z (so x + p = x mod 1). But

Rq
α(x) = x + qα (2.49)

so x is periodic if and only if qα = p, or α = p

q
∈ Q, and in this case all points are

periodic. If α ∉ Q then the orbit is dense on the circle (see e.g. Devaney). Thus for
rigid rotations there is a simple dichotomy

• α ∈ Q and all points are periodic; or

• α ∉ Q and orbits are dense on the circle.

Note also that (2.48) can be seen as a map of the interval with a discontinuity:
given α ∈ (0,1) define fα ∶ [0,1]→ [0,1] by

fα(x) =
⎧⎪⎪⎨⎪⎪⎩
x + α if 0 ≤ x < 1 − α
x + α − 1 if 1 − α < x < 1 (2.50)
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with our usual convention about the discontinuity. We will exploit this connection
more in the next section, but first we describe some of the classic results for
homeomorphisms of the circle.

The generalization of α to homeomorphisms is the idea of a rotation number
which describes an average angular velocity around the circle. If fα is a circle map
then Fα

Definition 2.4.1. If f is a circle map with lift F then provided the limit exists

ρ(F,x) = lim
n→∞

1
n
(Fn(x) − x) (2.51)

is called the rotation number of x under F .

The following sequence of theorems describe the classic results of Julia and
Denjoy. Proofs use simple real analysis and can be found in Devaney.

Theorem 2.4.2. If F is the lift of a homeomorphism of the circle f then ρ(F,x)
exists and is independent of x.

It is usual to talk about the rotation number of f in this case, denoted ρ(f)
as ρ(F,x) modulo 1.

Theorem 2.4.3. Suppose f is a homeomorphism of the circle.

(a) If ρ(f) ∈ Q then f has at least one periodic orbit.

(b) If ρ(f) ∉ Q then f has no periodic orbits and if f is C2 then every orbit is
dense in the circle.

If f is not C2 then it is possible to create attracting Cantor sets with irrational
rotation numbers, these are the Denjoy counter-examples.

Families of circle maps can be defined via their lifts: a continuous family of
smooth circle maps is a family with lifts Fµ which can be chosen such that such
that

lim
µ→µ0

∣Fµ(x) −Fµ0
(x)∣ = 0

for all x ∈ R.
Theorem 2.4.4. If (fµ) is a continuous family of continuous circle homeomor-
phisms then ρ(fµ) = ρ(µ) varies continuously. If there exist µ1 < µ2 such that
ρ(µ1) < p

q
< ρ(µ2) then typically ρ(µ) = p

q
on an interval of parameter values.

Again, we will not give proofs for the circle maps case – see [51]. The contin-
uous variation of ρ(µ) implies that the irrational rotation numbers do appear in
examples. The interval of values with rational rotation numbers is often referred
to as mode locking. It is easy to see why this occurs typically. If ρ(µ) = p/q then
(Theorem 2.4.3a) there exists a periodic point, i.e a solution to F q(x) = x + p. If
ρ(µ) < p

q
then F q(x) < x + p for all x ∈ R whilst if ρ(µ) > p

q
then F q(x) > x + p
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(a) (b)

increasingm

Figure 2.8: Part of the graph of f as µ increases illustrating why there is (a) per-
sistency of intersections with the diagonal in the general case; and (b) degeneracy
in the slope one case .

for all x ∈ R. Thus (see Figure 2.8) either there is a range of parameters such
that the graph of F q(x) − x passes across p, or there is one parameter at which
F q
µ(x) − x ≡ p for all x. But this latter condition is very unlikely (the qth iterate

would be identically linear).

2.4.2 Rotation renormalization and codings

Suppose f ∶ [0,1]→ [0,1] is a rotation-like piecewise-smooth map, i.e. there exists
c ∈ (0,1) such that f is continuous and strictly increasing on (0, c) and on (c,1)
with

lim
x↑c

f(x) = 1, lim
x↓c

f(x) = 0, f(0) = f(1).
Then we can associate f with a circle homeomorphism with lift F defined by

F (x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(x) if 0 ≤ x < c
1 if x = c
f(x) + 1 if c < x < 1

(2.52)

and F (x+1) = F (x)+1. Thus we can talk about the rotation number of f , though
F is not necessarily C2 at integer values, so a little care needs to be taken about
bifurcations (this will be considered in the next subsection). The rotation number
can also be thought of as

ρ(f) = lim
n→infty

1
n
#{r ∣ f r(x) > c, r = 1,2, . . . , n}

since the lift moves solutions into the next interval (m,m + 1) if and only if x > c.
There is a natural renormalization for circle maps that can help describe the

dynamics of examples.
First note that there is a simple trichotomy:
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• f(0) = c; or
• f(0) > c; or
• f(0) < c.

If f(0) = c then f((0, c) = (c,1) and f(c,1) = (0, c) so ρ(f) = 1
2
.

If f(0) > c then f((0, c)) ⊂ (c,1) and hence f2∣(0, c) is continuous and mono-
tonic. Either f has a fixed point (and hence rotation number zero or one) or
consider the induced map

g(x) = ⎧⎪⎪⎨⎪⎪⎩
f2(x) if 0 ≤ x < c
f(x) if c < x ≤ f(0). (2.53)

This is has two monotonic continuous branches and the image of the left end point,
0, is g(0) = f2(0) whilst the image of the left end-point, f(0), is g(f(0)) = f2(0),
so the two end-points map to the same point. Rescaling back to the interval [0,1]
we obtain the renormalized (induced) map

f1(x) =
⎧⎪⎪⎨⎪⎪⎩

1
a
f2(ax) if 0 ≤ x < c

a
1
a
f(ax) if c

a
< x ≤ 1 (2.54)

where a = f(0).
This new map is in the same class as f and so has a well defined rotation

number. We would now like to relate the rotation number of f1, ρ1, with the
rotation number of f , ρ0.

Consider an orbit of f1 and suppose that in length n it has mn iterations in
x > c1 = c/a (and so n −mn iterates in x < c1). Then

ρ1 = lim
n→∞

mn

n
.

Now that same orbit translates to an orbit of f for which every iterate in x < c1
for f1 is two iterates, one in x < c and one in x > c for f , whilst every iterate in
x > c1 for f1 corresponds to one iterate in x > c1 for f . Hence the first n iterates
under f1 with mn iterates in x > c1 corresponds to and orbit segment of length
2(n −mn) +mn = 2n −mn of f with n iterates in x > c, giving

ρ0 = lim
n→∞

n

2n −mn

= lim
n→∞

1

2 − mn

n

.

Thus if ρ1 is known the rotation number of f can be recovered using the transfor-
mation

ρ0 = 1

2 − ρ1 . (2.55)
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If f(0) = a > c then f((c,1)) ⊂ (0, c) and hence f2∣(c,1) is continuous and
monotonic. Either f has a fixed point (and hence rotation number zero or one) or
we define

g(x) =
⎧⎪⎪⎨⎪⎪⎩
f(x) if a ≤ x < c
f2(x) if c < x ≤ 1. (2.56)

By the same argument as before this is in the same class as f but on the interval[a,1] and so we rescale

f1(x) =
⎧⎪⎪⎨⎪⎪⎩

1
1−a
(f(a + (1 − a)x) − a) if 0 ≤ x < c−a

1−a
1

1−a
(f2(a + (1 − a)x) − a) if c−a

1−a
< x ≤ 1 (2.57)

Now if ρ1 = limmn/n as before then each iteration in x > c1 = (c − a)/(1 − a)
corresponds to two iterates for f and so the length of the orbit for f is (n−mn)+
2mn but there is no change in the number of iterates in x > c and so

ρ0 = lim
n→∞

mn

n +mn

and equating limits gives

ρ0 = ρ1

1 + ρ1 . (2.58)

Renormalization has a very natural interpretation in terms of the continued
fraction expansion of the rotation numbers. Any number between 0 and 1 has a
continued fraction expansion

[a0, a1, a2 . . . ] = 1

a0 + 1

a1+
1

a2+...

with ai ∈ N. If a0 = 1 then the number is bigger than 1
2
and if a0 ≥ 2 then the

number is less than 1
2
.

Theorem 2.4.5. Suppose ρ(f) = [a0, a1, . . . ]. If a0 = 1 then ρ(f) > 1
2

and the
renormalized map f1 is as defined in (2.54) and

ρ(f1) =
⎧⎪⎪⎨⎪⎪⎩
[1, a1 − 1, a2, . . . ] if a1 ≥ 2
[a2 + 1, a3, . . . ] if a1 = 1. (2.59)

If a0 ≥ 2 then ρ(f) < 1
2
and (2.57) defines the renormalized map and

ρ(f1) = [a0 − 1, a1, a2, . . . ]. (2.60)

Proof: First note that if x = [a0, a1, . . . ] then x−1 = a0 + [a1, a2, . . . ]. Define
ρ0 = ρ(f) and ρ1 = ρ(f1).
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If ρ0 > 1
2
, i.e. a0 = 1 in the continued fraction expansion of ρ0 and

ρ0 = [1, n, a2, . . . ]
and (2.55) implies

ρ1 = 2 − ρ−10 .

Hence using the remark about the continued fraction expansion of x−1 at the start
of this proof

ρ1 = 1 − [n,a2, . . . ] = 1 − 1

n + s =
n − 1 + s
n + s (2.61)

where s = [a2, a3, . . . ]. If n = 1 then

ρ1 = s

s + 1 =
1

1 + s−1 =
1

1 + a2 + [a3, a4, . . . ] = [a2 + 1, a3, a4, . . . ]
as required. If n ≥ 2 then (2.61) implies that the claim of the theorem is that

n − 1 + s
n + s = [1, n − 1, a2, a3, . . . ].

The second term is
1

1 + 1
n−1+s

= 1
n+s

n−1+s

= n − 1 + s
n + s

establishing the required result.
If ρ < 1

2
, i.e. a0 = n ≥ 2 in the continued fraction expansion of ρ0 then (2.58)

implies that

ρ0 = 1

1 + ρ−11
and so if ρ1 = [b0, b1, b2, . . . ] then ρ0 = 1

1+b0+[b2,b3,... ]
and so ρ0 = [b0 + 1, b1, b2, . . . ].

Hence b0 = n − 1 and bk = ak if k ≥ 1, establishing the required relationship. ◻
This connection means that knowing the rotation number the set of renor-

malizations is determined and vice versa. This can often be useful when looking
at examples.

Another way of looking at the renormalization maps is that if ρ < 1
2
the

coding of orbits for the induced or renormalized map can be used to obtain the
coding for the original map by the replacement operation

0→ 0, 1→ 10.

In other words, every symbol 1 for the map is followed by a zero. Similarly if ρ > 1
2

then the replacement operation is

0→ 01, 1→ 1,
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i.e. every 0 is followed by a 1. This process continues and the symbol sequences
obtained in this way have many beautiful properties that have been discovered and
rediscovered many times. One particularly nice property is that these sequences
are minimax. Let Σp,q with 0 < p < q denote all the infinite sequences s of 0s and
1s with period q and which have p 1s in every q symbols, so it has rotation number
p/q. Let σ be the standard shift map. Now define

sp,q = min
s∈Σp,q

(max
1≤k<q

σks) . (2.62)

Such a sequence is called a minimax sequence of length q.
Then every periodic point with rotation number p/q has a symbolic descrip-

tion that is a shift of the minimax sequence sp,q. These sequences are sometimes
called rotation compatible sequences, and limits as p/q → ω for irrational numbers
ω can be taken to define rotation compatible sequences with irrational rotation
numbers.

2.4.3 Gap maps

Consider maps f ∶ [0,1] → [0,1] such that there exists c ∈ (0,1) such that f is
continuous and strictly increasing on 90, c) and on (c,1), and

lim
x↑c

f(x) = 1, lim
x↓c

f(x) = 1, f(0) < f(1). (2.63)

The final condition of (2.63) explains why these maps are called gap maps: there is
an interval (f(0), f(1)) which has no preimages under f . As with circle maps we
can associate f with a lift F as in (2.52), but this time there is a discontinuity at
integer values of x. (Note that as a map of the interval the discontinuity is at x = c,
but as a map of the circle it is the gap condition that creates the discontinuity:

lim
x↑1

F (x) = 1 + f(1) < 1 + f(0) = lim
x↓1

F (x).
However, although the lift of f is discontinuous, the function F is monotonic
increasing regardless of the choice made for the value at x = p between the two
limiting choices determined by continuity. It is therefore natural to ask whether
the results for standard circle maps holds for these discontinuous lifts.

Theorem 2.4.6. If F is the lift of a gap map then ρ(F ) exists and is independent
of both x and the choice of F (1) ∈ (1 + f(0),1 + f(1)).

Note that this result is no longer true for maps with gaps and plateaus
(intervals on which F is constant), but it remains true if F is strictly increasing
and has a countable set of discontinuities.

Definition 2.4.7. (fµ) is a continuous family of gap maps for µ ∈ (µ1, µ2) = M if
for all µ0 ∈M and all x ∈ R

lim
µ→µ0

∣Fµ(x) −Fµ0
(x)∣ = 0.



2.4. Lorenz maps and rotations 93

Rhodes and Thompson prove that the bifurcation structure in terms of conti-
nuity of rotation numbers and mode-locking is also retained for continuous families
of gap maps.

Theorem 2.4.8. If (fµ) is a continuous family of gap maps then ρ(fµ) = ρ(µ) varies
continuously. If there exist µ1 < µ2 such that ρ(µ1) < p

q
< ρ(µ2) then typically

ρ(µ) = p

q
on an interval of parameter values.

As before, this implies that if the rotation number varies then non-periodic
(irrational rotation number) behaviour is possible though this will be on a Cantor
set. These can be very hard to observe numerically, and there was at one stage
some confusion as to whether they exist or not.

2.4.4 Overlap Maps

An overlap map is a map satisfying the conditions for a gap map but for which
the last criterion of (2.63) is replaced by

f(0) < f(1). (2.64)

Thus rather than having a gap there is a set of points with two preimages under
f . These maps can be chaotic and the non-wandering set can be described by
kneading theory [82]. In this section we will continue the analogy with circle maps
to provide a different view of the effect of overlap. The analogy is with continuous
non-invertible circle maps. For these maps the idea of a rotation number is replaced
by a rotation interval.

Definition 2.4.9. The rotation set of a lift F is the set

ρ(F ) = {α ∣ρ(x, f) = α for some x ∈ R}.
The following theorem was proved by Alsedà et al [39] which is analogous to

the equivalent result for non-invertible circle maps.

Theorem 2.4.10. If f is an overlap map with lift F then ρ(F ) is a closed interval
(possibly a point).

Proof (sketch): First note that the lift of f jumps down at integers, for ex-
ample at x = 1 the jump is from 1 + f(1) to 1 + f(0), so it is no longer strictly
increasing and the previous results cannot be used. However, the graph is bounded
by two continuous monotonic (but not strictly monotonic) lifts:

F0(x) = inf
y>x

F (y), F1(x) = sup
y<x

F (x). (2.65)

Clearly (see Figure 2.9) F0(x) ≤ F1(x) and Fk(x) are increasing and continuous.
We will treat the simple case in which there is only one plateau in each period of
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F

FF

F

F
0

1

m

Figure 2.9: Part of the graph of the lift F showing the construction of the maps
F1, Fµ and F1 which differ from F only on the plateaus.
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the lift. Now, Fk can be seen as the inverses of gap maps, and hence (or by direct
verification) have well-defined rotation numbers with ρ(F0) ≤ ρ(F1). Moreover,

F0(x) ≤ F (x) ≤ F1(x)
implies that for all x such that ρ(x,F ) exists then ρ(F0) ≤ ρ(x,F ) ≤ ρ(F1) (indeed
we can take limsups and liminfs of 1

n
(Fn(x) − x) and these will both lie between

ρ(F0) and ρ(F1)). Thus
ρ(F ) ⊆ [ρ(F0), ρ(F1)].

To finish we need to show that for all y ∈ [ρ(F0), ρ(F1)] there exists x such that
ρ(x,F ) = y. We begin by interpolating between F0 and F1 creating a continuous
family Fµ, 0 ≤ µ ≤ 1 of monotonic circle maps as shown in Figure 2.9. Each of these
has a unique rotation number ρµ ∈ [ρ(F0), ρ(F1)] and ρµ varies continuously with
µ by Theorem 2.4.8. Thus for every r ∈ [ρ(F0), ρ(F1)] there exists µ ∈ [0,1] such
that ρµ = r. To complete the proof we will show that for each monotonic circle
map fµ with lift Fµ and plateau with open arc P there exists x ∈ T such that
fn
µ (x) ∉ P for all n ≥ 0 and hence, since f(x) = fµ(x) if x ∉ P then the orbit of x
under fµ is the orbit of x under f and since ρ(Fµ) = ρµ exists and is independent
of x, ρ(F,x) = ρµ.

Let
Γn = {x ∈ T ∣ fk(x) ∉ P, k = 0,1, . . . , n}.

Then since P is open and fµ and f−1µ are continuous on T/P , Γn is closed and
Γn+1 ⊆ Γn, hence provided Γn ≠ ∅ for some n, the limit ∩Γn is closed and non-
empty. Points in this countable intersection have precisely the required property.

So suppose that there exists m > 0 such that Γm = ∅, i.e for all x ∈ T

there exists k ≤ m such that fk(x) ∈ P . Now, fµ(P ) = y is a point, and hence∪k≥0fk
µ(P ) = P∪C, where C is a countable set of points, and in particular P∪C ≠ T.

But by assumption, for all x ∈ T, fm
µ (x) ∈ P ∪C, i.e. fm

µ (T) ⊆ P ∪C. But fµ is a
surjecttion, so fm

µ (T) = T, hence we have a contradiction. ◻
The bifurcation structure of these maps was investigated by Gambaudo et al

[57] in the 1980s for the case where the slope tends to zero at the discontinuity.
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Figure 2.10: Bifurcation structure from [57].

2.5 Gluing Bifurcations

Gluing bifurcations describe the dynamics of piecewise monotonic maps near codi-
mension two points for maps that are locally contracting. There are three cases
determined by the orientation of each continuous branch of the map. These codi-
mension two bifurcations have been described by various authors, e.g. [61, 74], in
recent years, but as a historical curiosity we will follow the account of Glendinning
[63] from 1985. This was work done with Gambaudo and Tresser intended to form
part of the sequel to [55], but which was never completed. The analysis was in the
context of homoclinic bifurcations related to the Lorenz semi-flows of section 2.1.2.

2.5.1 The three cases

Thus the remainder of this chapter is taken verbatim from [63]. Where there
is reference to work elsewhere in the dissertation, or where the context may be
unclear I have added commentary in italics inside square brackets [thus ].

START of excerpt from [63].

In the general case we have two parameters which, as usual, can be thought
of as parameterising the x-coordinate of the first intersection of the two branches
of the unstable manifold of the stationary point with a surface inside a small
neighbourhood of the stationary point. recall that the one dimensional map used
to model the flow is a piecewise monotonic function with a single discontinuity (at
x = 0):

x′ =
⎧⎪⎪⎨⎪⎪⎩
−µ + axδ x > 0
ν − b(−x)δ x < 0 (2.66)

[the assumption that δ > 1 was part of the chapter introduction; all the results
below depend upon is local monotonicity and contraction.] Note that the signs of
µ and ν have been changed so that the interesting behaviour arises when the
parameters are positive. Once again there are four cases depending on the signs of
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the constants a and b, i.,e. whether the global reinjections are orientable (positive
signs) or non-orientable (negative signs). Regardless of the signs of a and b we can
see from the graph of the map that µ < 0, ν < 0 there is a pair of stable fixed
points of the map and so, at least locally, these are the only periodic orbits of the
map. The remainder of the parameter space varies according to the signs of a and
b so the various cases will be treated separately.

(a) The Orientable case: a > 0, b > 0
The curve in parameter space given by µ = 0 (resp. ν = 0) corresponds to

a line of homoclinic orbits [i.e. border bifurcations as in section 2.3.5] involving
the positive (resp. negative) branch of the unstable manifold of the origin. Hence
(cf. section 2.1) we know that on crossing this curve a periodic orbit is generated.
From the graph of the model map it is clear that this periodic orbit corresponds
to the fixed point in x > 0 (resp. x < 0) which exists for µ < 0 (resp. ν < 0). Since
the slope of the map is always positive and less than one any orbit that enters
x > 0 when µ < 0 (resp. x > 0 when ν < 0) tends directly to the fixed point. Using
the standard coding of orbits, 0 for points in x < 0 and 1 for points in x > 0, these
facts imply that the only periodic orbits are

0 and 1 if µ < 0 and ν < 0
0 if µ > 0 and ν < 0
1 if µ < 0 and ν > 0

If µ and ν are both positive then situation is considerably more complicated. We
shall prove the following theorem.

Theorem 2.5.1. [Theorem 3.2] For µ > 0 and ν > 0 the periodic orbits of (2.66)
have the following properties:

(i) there is at most one periodic orbit

(ii) periodic orbits have codes which are rotation compatible, i.e. minimax

(iii) the rotation number of periodic orbits varies monotonically with one param-
eter when the other is held fixed.

Statements (i) and (ii) are a simple consequence of the theorems of section
3.1 [those of chapter 2.4 above]. The important new part is (iii). This statement
implies that there are parameter values in a neighbourhood of (0,0) for which the
system has a periodic orbit with any given minimax code, and also that there are
parameter values at which the rotation number of a periodic orbit is irrational,
i.e. there are aperiodic orbits which are stable (and so not chaotic). [That could
have been phrased better! ] From the geometry of the flow it is clear that the orbits
lie on a torus with a hole. This is precisely the property of Cherry flows which
have been studied by many pure mathematicians (e.g. Palis and de Melo, 1984
[86]). It is curious that these apparently abstract flows arise naturally near pairs
of homoclinic orbits.
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(a) (b)

Figure 2.11: (Fig. 65 of [63].) (a) The return map with µ, ν > 0 showing the region[−µ, ν] in which the orbits of 0+ and 0− remain. (b) The map gµ,ν for two values
of the parameter ν. The associated lift is monotonic.

To prove statement (iii) we begin by rescaling the map so that the important
dynamics (and in particular the orbits of 0+ and 0− [the limits as 0 is approached
from above or below respectively]) is contained in the interval [−1,1]. The iterates
of 0+ and 0− remain in the interval [−µ, ν] (see Fig. 65 [i.e. Figure 2.11 here] so
we look for a change of coordinates of the form z = p + qx such that

−1 = p − qµ
and

1 = p + qν
so that when x = −µ, z = −1 and when x = ν, z = 1. This gives

p = (µ − ν)/(µ + ν)
q = 2/(µ + ν)

i.e.
z = {µ − ν + 2x}/(µ + ν) (2.67)

In the new coordinates we have the map gµ,ν ∶ [−1,1]→ [−1,1] given by

gµ,ν = −1 + a[(z − µ−ν

µ+ν
)/2]δ if µ−ν

µ+ν
< z < 1

= 1 − b[(z − µ−ν

µ+ν
)/2]δ if − 1 < z < µ−ν

µ+ν
.

(2.68)

This new map has all the properties of fµ,ν and in particular orbits have the same
rotation number. Note that gµ,ν is piecewise increasing with a single discontinuity
and so it can be viewed as a discontinuous map of the circle to itself. Hence we
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can associate a lift Gµ,ν ∶ R→ R with gµ.ν and so define a rotation number in the
usual way. Viewing gµ,ν as an application [map in French] of the circle we have,
from Theorem 1 of Gambaudo and Tresser (1985) [59]

− to all x ∈ [−1,1] there is a unique rotation number ρµ,ν (this follows from
the piecewise monotonicity of the mapping)

− for all ρµ,ν there is a rotation compatible orbit with that rotation number

Given the uniqueness of the rotation number for given values of the parameters
and the existence of a rotation compatible orbit with this rotation number we
obtain (i) and (ii) of the theorem.

Gambaudo and Tresser (1985) [59] also show that if the lift of a map de-
pending on a single parameter is increasing with the parameter, then the rotation
number is increasing and continuous with the parameter [for continuous families
as shown described in chapter 2.4; obvious for this family (2.66) but needs stating
for the more general case]. A direct application of this result gives part (iii) of the
theorem noting that Gµ,ν is increasing with ν (Fig. 65) [Figure 2.11 here].

Q.E.D.
Outside the region of validity of this local analysis, outside some neighbour-

hood of the codimension two homoclinic bifurcation, the appearance of chaotic
behaviour can also be studied in a similar way. In the next section we shall discuss
the appearance of chaos and look at a simple example. However, first we shall
complete the local analysis for the remaining two cases.

(b) The Semi-orientable case: a > 0, b < 0.
Here the right hand reinjection (x > 0) is orientable whilst the other is non-

orientable. Using the techniques above we can show from the one-dimensional map
that

− in µ < 0, ν < 0 the only periodic orbits have codes 1 and 0

− in µ < 0, ν > 0 the only periodic orbit has code 1

− in µ > 0, ν < 0 the periodic orbit with code 0 exists throughout the quadrant,
and in ν > bµδ there is also a periodic orbit with code 10.

The final quadrant, with both µ and ν positive is more complicated. We shall
prove the following theorem:

Theorem 2.5.2 (Theorem 3.3). For a > 0, b < 0 in (2.66) and µ, ν > 0, there is
a neighbourhood of (µ, ν) = (0,0) in which the only periodic orbits are those with
codes 1n0, n ≥ 1 and further more, regions of parameter space in which orbits with
codes 1n0 and 1n+10 coexist, n ≥ 1.

[This statement is seriously ungrammatical: as the proof below shows it is
intended that there are regions with just code 1n0 and regions with the stated
coexistence.]
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Figure 2.12: (Fig. 66 of [63], with minor modification.) (µ, ν) parameter for the
semi-orientable case.

First note that the periodic orbits must have all their points in [−µ, ν − bµδ]
and that the map is decreasing and positive in x < 0, and increasing in x > 0. Let
N ≥ 2 be the first time that fN(x) < 0 for some x ∈ [−µ,0) and note that parameter
values can be found such that any given value of N (≥ 2) can be realised, with
N = 2 for µ/ν large and N →∞ as µ/ν → 0. Now consider the map

h(x) =
⎧⎪⎪⎨⎪⎪⎩
f(x) if x > 0
fN(x) if x < 0 (2.69)

Since f ′(x) > 0 in x > 0 and f(x) > 0 for x < 0 we have fN(0−) < fN(x) for x

in [−µ,0) and, by the definition of N , fN(0−) < 0. Hence h(x) looks like f(x)
(upside down) in the region of parameter space with µ > 0 and ν < 0. The remarks
made above for this quadrant of parameter space hold: there is a periodic orbit
with code 0 and, in some cases, a periodic orbit with code 10, for h. In terms of f
this translates into the existence of a periodic orbit with code 01N−1 and, in some
cases, a periodic orbit with code 01N coexists with this first orbit. It should be
clear that on a line in parameter space with ν constant both possibilities must be
realized, hence the theorem.

Now, the homoclinic orbit associated with a periodic orbit of code 10 occurs
when f(ν) = −µ + aνδ = 0, i.e. µ = aνδ. This gives the bifurcation diagram in
Fig. 66 [Figure 2.12 here], where the shaded regions indicate the coexistence of
two periodic orbits [note to younger self: you forgot to do any shading].



2.5. Gluing Bifurcations 101

Figure 2.13: (Fig. 53 of [63].) (µ, ν) parameter space showing the homoclinic curves
and the codes of periodic orbits for the orientable case [of the figure eight config-
uration].

(c) The Non-orientable Case: a < 0, b < 0.
When both the global reinjections are non-orientable the dynamics of the

local map is relatively simple and we obtain essentially the same diagram as Fig.
53 [Figure 2.13 here] for the orientable figure eight. It follows directly from the
one-dimensional map (2.66) that

− if µ < 0 and ν < 0 the only periodic orbits have codes 1 and 0

− if µ > 0 and ν < 0 the periodic orbit with code 0 exists throughout the region
and a periodic orbit with code 01 coexists with it if −µ > aνδ

− if µ < 0 and ν > 0 the periodic orbit with code 1 exists throughout the region
and a periodic orbit with code 10 coexists with it if −ν > bµδ

− if µ > 0 and ν > 0 the periodic orbit with code 01 exists throughout the
region and is the only periodic orbit of the local analysis.

This completes the local bifurcation pictures for the butterfly configuration
of homclinic orbits.

END of excerpt from [63].

The extract above is an early draft and could obviously be improved (it was
written to a deadline). But it does indicate the results we understood at that
time. Further details including diagrams for the orientable case and links with
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differential equations can be found in [56] and the cases were described again in
[54]. An excellent modern account can be found in [74].

2.5.2 Anharmonic Cascades

We have encountered a number of situations where there are infinite sequences of
bifurcations accumulating at some value of the parameter.

• Period-doubling cascades in smooth maps (a transition to chaos);

• Period-adding cascades in the square root map (noting that these refer to
stable periodic orbits only);

• Anomolous doubling in an unbounded map (noting that this reduced to a
version of period-doubling in an induced map);

• Continuous change of rotation number in gap maps (no chaos);

• Period-adding in gluing bifurcations (again, with no chaos).

2.6 Piecewise-smooth maps of the plane

The results in pervious sections rely heavily on the order property of the real line,
and maps in the plane are much harder to analyze. In many ways this section is a
list of results and techniques without a strong over-arching theory underpinning
it. We will start with some examples and phenomenolgy.

2.6.1 The Lozi map

The Lozi map is a natural extension of tent maps to the plane. If the family of
tent maps is written in the form

xn+1 = 1 − a∣xn∣, a ∈ (1,2] (2.70)

then the Lozi map is the map of the plane defined by

xn+1 = 1 − a∣xn∣ + yn
yn+1 = bxn.

(2.71)

If b → 0 then ∣yn∣ → 0 and so the x evolution is the tent map (2.70). If b ≠ 0 is
small then the attractor looks like a set of folded lines as shown in Figure 2.14.
The Lozi map has uniform expansion and contraction properties, and this makes
it a good example to test our ability to prove the existence of strange attractors.
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Figure 2.14: Numerically computed attractor of the Lozi map with a = 1.7 and
b = 0.3.
2.6.2 The border collision normal form

The border collision normal form (BCNF) is a generalization of the Lozi map that
describes the local behaviour of piecewise-smooth maps for which a fixed point of
one of the smooth systems defining the map hits a boundary on which that system
is defined as parameters are varied. It is usually written as

( xn+1

yn+1
) =
⎧⎪⎪⎨⎪⎪⎩
f0(xn, yn) if x < 0
f1(xn, yn) if xn > 0 (2.72)

with

fk(x, y) = ( Tk 1−Dk 0
)( xn

yn
) + ( µ

0
) , k = 0,1. (2.73)

The constants Tk and Dk are the trace and determinant of the matrix and µ is
the bifurcation parameter. Note that by scaling x and y the parameter µ can be
taken in the set {−1,0,+1} so the idea that µ varies continuously is unnecessary.

The BCNF is continuous, but (assuming that T0 ≠ T1 or D0 ≠ D1) the Ja-
cobians are different. Even so, the number of different phenomena that can be
observed is huge. Figure 2.15 shows a number of different possible bifurcations.
With all this complexity it can be very difficult to decide what to analyze math-
ematically. Rather than attempt a complete classification we will give examples
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Figure 2.15: From [42]. Some bifurcations of the BCNF (only attractors are men-
tioned): µ is plotted horizontally and the projection of attractors onto the x-axis
vertically. 1(a) no attractor to fixed point; 1(b) no attractor to chaos; 2 fixed point
to chaos; 3 fixed point to fixed point; 4 coexisting fixed point and period 3 to co-
existing fixed point and period 4; 5(a) fixed point to period two; 5(b) fixed point
and period 11 to period 2; 6 fixed point to period 5 and chaotic attractor.

of the sort of thing that can be done in each of the three cases: periodic, one-
dimensional and two-dimensional attractors in the next section.

2.6.3 Fixed points and the stability triangle

Fixed points, periodic orbits and linear stability of smooth maps can be treated
in the same way as the one-dimensional case, but the derivative is replaced by the
Jacobian matirx. Given

xn+1 = f(xn)
with f ∶ R2 → R2 a fixed point satisfies

x = f(x)
and assuming this is not on the boundary stability is determined (via a standard
small perturbation argument) by the eigenvalues of the Jacobian matrix

Df(x) = ⎛⎝
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

⎞
⎠

with partial derivatives eva,uated at the fixed point.
Eigenvalues of the Jacobian matrix satisfy the characteristic equation

s2 − Ts +D = 0
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where T is the trace of the Jacobian and D the determinant. The fixed point is
stable if the eigenvalues

s± = 1
2
(T ±√T 2 − 4D)

lie inside the unit circle. The boundary of the region of parameters in (T,D) space
for which the fixed point is stable has three components.

Complex conjugate eigenvalues If T 2 < 4D then s± are complex conjugates
and ∣s±∣2 = s+s− =D
as

s2 − Ts +D = 0.
Thus our first stability criterion is

T 2 < 4D, D < 1. (2.74)

Real eigenvalues: positive trace If T 2 > 4D then s± are real and if T > 0 the∣s+∣ > ∣s−∣ and so both are less than one if

s+ = 1
2
(T +√T 2 − 4D) < 1,

i.e. √
T 2 − 4D < 2 − T

so T < 2 and
T 2 − 4D < 4 − 4T + T 2, i.e. T < 1 +D.

Thus our second stability criterion is

0 < T < 2, T 2 > 4D, T < 1 +D. (2.75)

Real eigenvalues: negative trace If T 2 > 4D then s± are real and if T < 0 the∣s−∣ > ∣s+∣ and so both are less than one if

s− = 1
2
(T −√T 2 − 4D) > −1,

i.e. √
T 2 − 4D < 2 + T

so T > −2 and
T 2 − 4D < 4 + 4T + T 2, i.e. − T < 1 +D.

Thus the third stability criterion is

−2 < T < 0, T 2 > 4D, −T < 1 +D. (2.76)

Putting the three criteria (2.74)-(2.76) together we find
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T 2 < 4D, D < 1,
T 2 > 4D, 0 < ∣T ∣ < 2, ∣T ∣ < 1 +D.

which can be written more sccinctly as

D < 1, ∣T ∣ < 1 +D. (2.77)

Thiis descrbes three straight lines in the (T,D) bifurcation plane which bound a
triangle inside of which the fixed point is linearly stable.

More generally there are five generic linear types of fixed points in the plane

• stable/unstable foci (s± complex conjugate pair);

• stable/unstable node (s± real distinct, ∣s±∣ < 1);
• saddle.

Phase portraits are very similar to the analogous continuous time stationary
points, though solutions ‘jump’ along the continuous curves in discrete time. Neg-
ative real values of s allow solutions to jump between the integral curves of the
continuous time analogues and it changes the sign of the variable at each iteration.

As in the one-dimensional case periodic points can be thought of as are fixed
points of fp, and the linear stability of a periodic orbit is analyzed by looking at
the eigenvalues of Dfp.

Fixed points of continuous piecewise-smooth systems Choose co-ordinates
with the switching surface at x = 0 so

xn+1 = f(xn) =
⎧⎪⎪⎨⎪⎪⎩
f0(x, y) if x < 0
f1(x, y) if x ≥ 0 .

Then continuity implies that:

f0(0, y) = f1(0, y).
(This mild form of piecewise-smooth system is already complicated enough without
adding discontinuity.)

Fixed points with x ≠ 0 have same local structure as just described, and
fixed points on the switching surface are typically of codimension one and so an
exhaustive classification is not warranted.

However, as soon as one starts to consider one-parameter families of piecewise-
smooth maps, codimension one phenomena become typical and although a detailed
knowledge of what happens at this parameter may be unimportant, the effect of
the codimension one situation locally is important – this is precisely the point of
bifurcation theory. Thus, at least from the theoretical viewpoint learned in smooth
bifurcation, an analysis of the local effect of having a codimension one system
which has a fixed point on the switching surface should be considered. Such codi-
mension one systems give rise to border collision bifurcations, the two-dimensional
equivalent of the bifurcations described in chapter 2.3.5 for one-dimensional sys-
tems.
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2.6.4 Border collision bifurcations

Consider one-parameter families of continuous piecewise-smooth maps:

xn+1 = f(xn, µ) =
⎧⎪⎪⎨⎪⎪⎩
f0(x, y,µ) if x < 0
f1(x, y,µ) if x ≥ 0 (2.78)

so continuity implies that

f0(0, y, µ) = f1(0, y, µ). (2.79)

Assume that there is a fixed point on the switching surface x = 0 if µ = 0
f0(0,0,0) = f1(0,0,0) = 0, (2.80)

What happens locally?
Nusse and Yorke (1992) [85] show that the local behaviour can be described

(to lowest order terms) by the border collision normal form

( xn+1

yn+1
) =
⎧⎪⎪⎨⎪⎪⎩
f0(xn, yn) if x < 0
f1(xn, yn) if xn > 0

with

fk(x, y) = ( Tk 1−Dk 0
)( x

y
) + ( µ

0
) , k = 0,1.

This is such an important set of equations that we will show how it is de-
rived from the general forms (2.78), (2.79) and (2.80); this is also a good exercise
which demonstrates how coordinate transformations are constrained by keeping
the switching surface in a simple (i.e. unchanged in this case) form.

By Taylor expansion

fk(x, y) = ( ak s

bk t
)( x

y
) + µ( u

v
) , k = 0,1.

Where we have ignored quadratic terms and higher, and t, s, u, v are independent
of k by continuity. Then the general cooridinate transform which keeps x = 0
invariant is:

Y = αx + y, X = βx
with β ≠ 0 and the coefficient of y non-zero (so that the cooridnate transformation
is invertible, i.e. the coordinates are for independent) and thus can be chosen to
be unity by scale invariance.

Now we just go through the calculation!

fk(x, y) = ( Tk 1−Dk 0
)( x

y
) + ( µ

0
) , k = 0,1.

Note
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• By changing scale by a factor of ∣µ∣: without loss of generality µ ∈ {−1,0,1}.
• If D1 > 0 then right half-plane mapped to lower half-plane; upper half-plane
if D1 < 0.

• If D0 > 0 then left half-plane mapped to upper half-plane; lower half-plane
if D0 < 0.

• BCNF a homoemorphism if D0D1 > 0; non-invertible if D0D1 < 0.

2.7 Periodic orbits and resonance

Suppose that one fixed point of the border collision normal form exists and the
Jacobian has complex eigenvalues. In that case the motion on one side of the
switching surface is like a rotation, with orbits spiralling in or out of the fixed
point. It is then natural to look for periodic orbits that can be described by
sequences of 1s and 0s (reflecting iterates in x > 0 and x < 0 respectively) that
come from the order of rotations described in section 3. It turns out that this can
be carried out exactly, giving equations determining when these orbits exist.

2.7.1 Fixed points and period two

Before considering the more complicated orbits it clearly makes sense to look at
simplest orbits: fixed points and points of period two. For non-degenerate systems
solutions to linear equations are unique, and so the only period two orbits that we
will look for ar those with one point in x < 0 and one point in x > 0.

A fixed point exists in x > 0 if there is a solution to f1(x, y) = (x, y) with
x > 0, i.e. if

T1x + y + µ = x, −D1x = y, x > 0.
Solving these simple linear equations gives

x = µ

1 +D1 − T1

, y = − D1µ

1 +D1 − T1

(2.81)

and so provided 1+D1 −T1 ≠ 0 there is a fixed point for an appropriate sign of µ:
µ > 0 if 1 +D1 − T1 > 0 and µ < 0 if 1 +D1 − T1 < 0.

A precisely analogous manipulation shows that there is a fixed point in x < 0
provided µ > 0 if 1 +D0 − T0 < 0 and µ < 0 if 1 +D0 − T0 > 0. Moreover, a fixed
point is stable if the modulus of every eigenvalue of the Jacobian is less than one.
This translates to the conditions ∣D0∣ < 1 and ∣T0∣ < 1+D0 in x < 0. This condition
can also be written as

0 < 1 +D0 − ∣T0∣.
Precisely analogous conditions hold in x > 0.
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Putting the two branches of solutions together we see that if

(1 +D0 − T0)(1 +D1 − T1) > 0 (2.82)

then the two fixed points exist for opposite signs of µ whilst if

(1 +D0 − T0)(1 +D1 − T1) < 0 (2.83)

then the two fixed points exist for the same sign of µ (rather like a smooth saddle-
node bifurcation).

Except in the degenerate case that a Jacobian has an eigenvalue of −1, in
which case there can be a degenerate line of orbits of period two, an orbit of period
two has one point on each side of x = 0. The equations are a little more messy,
but still linear. Going through the detailed calculation period two points are at(x0, y0) with x0 < 0 and (x1, y1) with x1 > 0 and

x0 = µ + y1 + T1x1 y0 = −D1x1

x1 = µ + y0 + T0x0 y1 = −D0x0
(2.84)

which imply

(xk, yk) = ( 1 + T1−k +D1−k(1 +D0)(1 +D1) − T0T1

µ,−D1−kx1−k) , k = 0,1. (2.85)

These lie on the ‘correct’ sides of the y-axis for one sign of µ provided

(1 + T0 +D0)(1 + T1 +D1) < 0 (2.86)

and if this inequality does not hold then there are no non-degenerate points of
period two.

Stability is determined by the trace and determinant of the product of the
linear parts of the BCNF:

( T0 1−D0 0
)( T1 1−D1 0

) = ( T0T1 −D1 T1−D0T1 −D0
)

and the period two orbit is stable if the modulus of the trace and the modulus
of the determinant satisfy equivalent conditions as for the fixed points; i.e. it is
stable if

∣D0 +D1 − T0T1∣ < 1 +D0D1, ∣D0D1∣ < 1. (2.87)

So much for the equations – but what combinations of fixed points and peri-
odic orbits can be involved in bifurcations? This is not obvious from the equations.
We leave this question as an exercise for the moment, and will return to it in sec-
tion 2.10.2.



110 Chapter 2. Piecewise Smooth Maps by Paul Glendinning

2.7.2 Periodic orbits

Although a great deal was known about periodic orbits and the regions of param-
eter space for which they exist (and may coexist) from the works of Gardini and
others [60, 80], the more recent approach of Simpson and Meiss [92, 89] makes a
systematic approach possible.

Let s1, . . . sn be a sequence of 0s and 1s, and suppose we wish to look for
a periodic orbit of period n such that the kth point of the periodic orbit lies in
x < 0 if sk = 0 and in x > 0 if sk = 1. To find such an orbit it is necessary to solve
the fixed point equation for the nth iterate of the map, taking into account the
required sequece (sk), and then to determine whether the fixed point (ia periodic
orbit of f) is real, i.e. its orbit passes through the regions x ≤ 0 and x ≥ 0 in
the prescribed order, or virtual, otherwise, in which case the solution does not
correspond to an orbit of the BCNF.

At each iteration f(x) = Askx + µe and so by induction

fn(x) =Msx + µPse

where

Ms = Asn . . . As1 , Ps = I +Asn +AsnAsn−1 + ⋅ ⋅ ⋅ +Asn . . . As2 .

The point calculated on the orbit of period n in the half plane determined by s1
is a solution of the fixed point equation x1 = fn(x1), i.e.

x1 = µ(I −Ms)−1Pse. (2.88)

Of course, this exists and is unique if I −Ms is non-singular, or eqivalently if
det(I −Ms) ≠ 0.

The same process can be repeated for each point on the orbit: the image of
x1 is x2 which satisfies a similar equation but with s replaced by s1sn . . . s2. Define
the shift σ on these periodic sequences so that

σ(sn . . . s2s1) = s1sn . . . s2
then the n points on the orbit of period n corresponding to s are

xk+1 = µ(I −Mσks)−1Pσkse, k = 0,1, . . . , n − 1. (2.89)

Simpson and Meiss [93] show that the x coordinate of (2.89) can be written as

xk+1 = µ detPσks

det(I −Ms) , k = 0,1, . . . , n − 1, (2.90)

where we have used the fact that det(I −Mσks) is independent of k (to see this
simply note that As1(I −Ms)A−1s1 = I −Mσs). The remainder of the derivation is
far from trivial and details can be found in [93].

So far, so much manipulation. But is this solution real or virtual? The answer
is very similar to that in the case of the orbit of period two in section 2.7.1.
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Figure 2.16: Numerically computed regions of parameter with different rotation
type periodic orbits, from [93].

Lemma 2.7.1. Fix s = s1 . . . sn ∈ {0,1}n and suppose that det(I −Ms) ≠ 0 and
detPσks ≠ 0, k = 0,1, . . . , n − 1. If there exists g ∈ {−1,1} such that

sign(detPσk−1s) = −g if sk = 0
sign(detPσk−1s) = g if sk = 1 (2.91)

then the periodic orbit corresponding to s exists for µ > 0 if gdet(I −Ms) > 0 and
for µ < 0 if gdet(I −Ms) < 0.

The proof is straightforward from the definitions and (2.90). Note that at
this stage we have not used the assumption that the map is two-dimensional.

2.7.3 Resonance tongues and pinching

Lemma 2.7.1 and (2.90) show that the ways by which periodic orbits can be created
or destroyed as parameters vary must involve one or other of Ps or I−Ms becoming
singular as the parameters are varied.

One fairly general case of this has some interesting and immediately recog-
nisable features. Figure 2.16 shows regions in the parameter space of the BCNF in
which the map has periodic orbits of particular rotation type (i.e. they have rota-
tion numbers and order on a circle reflecting the order described in section 2.4.2
above). The parameters are chosen so that

TL = 2rL cos (2πωL) , DL = r2L, TR = 2
sR

cos (2πωR) , DR = 1

s2
R

and in the Figure,

rL = 0.2, µ = 1,
and ωR = ωL is the parameter on the horizontal axis, and sR is the parameter on
the vertical axis. The resonant tongues in which the periodic orbits exist have a
‘sausage’ shaped pinched structure which can be understood using the methods of
the previous section.
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Figure 2.17: Part of the pinched tongue of rotation number 2/7 showing the differ-
ent border collision bifurcations. This shows the orbit with ℓ = 3 interacting with
the ℓ = 2 case (upper lobe) and ℓ = 4 case (lower lobe). From [92].

The analysis of these bifurcations involves two ingredients. First, the rotation
order of the periodic points implies that the points on the periodic orbit can be
arranged on a circle (with no self-intersections) so that the order on the circle is
x1, . . . ,xn and the effect of the map f is

f(xk) = xk+m (2.92)

where the index k +m is interpreted modulo n with the convention that 0 ≡ n.
However, this order does not indicate where the switching surface lies, so the
second ingredient specifies the position of the switching surface with respect to the
periodic points. Assume that the switching surface separates the periodic points
into two consecutive sets of points on the circle with ℓ points in x < 0 and n − ℓ in
x > 0. The orbit is therefore specified by three positive integers: n, m and ℓ, and
the labelling can be chosen so that x1, . . . ,xn−ℓ lie in x > 0 and xn−ℓ+1, . . . ,xn lie
in x < 0. This information is enough to specify the symbolic description s of the
orbit (note that it is NOT the rotation-compatible sequences of section 2.4.2 as
the position of the switching surface which determines s is not the same as the
coding of the rotations). We shall refer to these orbits as (n,m, ℓ)-orbits.

If this periodic orbit undergoes a border collision bifurcation itself, then one
point intersects the switching surface and by continuity this must be either x1 or
xn or xn−ℓ or xn−ℓ+1.
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Figure 2.18: Schematic view of the generalized saddlenode bifurcations with ℓ = 2,
m = 1 and n = 5. (a) At the bifurcation parameter with x1 on the switching surface;
(b) the two periodic orbits created; (c) at the bifurcation parameter with x3 on the
switching surface; (d) the two orbits created by nonsmooth saddlenode bifurcation
in this case.

Suppose that it is x1 as shown in Figure 2.18a. Then if there is a nonsmooth
saddlenode bifurcation, as suggested by the results of section 2.7.1, the bifurcation
will involve two periodic orbits: one with code s and the other with code 0s, defined
to be s with the initial symbol 1 replaced by 0 whilst the rotation type of both
orbits are the same. In other words, the ‘partner’ orbit has is a (n,m, ℓ + 1)-
orbit. Similarly, if the border collision point is xn−ℓ+1 then it crosses at the border
collision creating another code with one of the 1s in s replaced by a zero – the two
orbits involved are again the (n,m, ℓ) orbit and the a (n,m, ℓ + 1)-orbit as shown
in Figure 2.18d.

It turns out (see Figure 2.17) that the boundaries of the tongues are indeed
generalized saddlenode bifurcations, so there is a lobe in which a (n,m, ℓ)-orbit
coexists with a (n,m, ℓ + 1)-orbit as shown in Figure 2.19 for (n,m, ℓ) = (5,1,3);
note that ℓ = 2 in Figure 2.18.

The regions (lobes) are thus defined by orbits whose ℓ description differs by
one. At the shrinking point (for the piecewise affine BCNF) there is a degenerate
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Figure 2.19: Schematic view of the generalized saddlenode bifurcations with ℓ = 3,
m = 1 and n = 5 as the parameter changes through the tongue.

invariant circle. This beautiful structure does not persist for typical nonlinear
perturbations of the BCNF: the codimension two pinching point has a natural
unfolding, see [93] for details. This is shown schematically in Figure 2.20 which
combines Figure 2.19 with the change occuring through the codimension two point
at which two points on the orbit are on the switching surface at the generalized
saddlenode bifurcation.

2.7.4 Infinitely many sinks

The previous section might give the impression that periodic orbits exist in splen-
did isolation. However, it has been recognised for many years that complicated
regions of multistability exist in the border collision normal form [60]. More re-
cently Simpson [89] has shown that there are parameter values for the BCNF at
which there are infinitely many stable periodic orbits. We will not go into the de-
tails here – but Figure 2.21 show numerically computed basins of attraction at an
approximation of the critical parameter. Note that a similar example is explored in
[52]. A picewise smooth (but not piecewise linear) example was described by Gam-
baudo and Tresser [58], and the fixed point involves in their construction satisfied
the same area-preserving condition on its linearization as imposed by Simpson ont
he pretiod three orbit of Figure 2.21. It would be interesting to understand the
reason for this constraint (or convenience) in greater detail.
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Figure 2.20: Schematic view of parameter space for the unfolding of a codimen-
sion two point at which two points on the bifurcating periodic orbit intersect the
switching surface.

Figure 2.21: Basins of attraction of the lowest period orbits in an example with
infinitely many sinks. From [89].
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2.8 Robust chaos

The intersection of stable and unstable manifolds of a fixed point (a homoclinic
tangle) is one of the classic mechanisms to create chaotic solutions in smooth
systems. The mechanism also applies to piecewise-smooth systems, and Banerjee
et al (1998) use this idea to show that there are robust chaotic attractors in the
BCNF, a phenomenon they dubbed ‘robust chaos’. Banerjee et al [43, 42] provide
a brief plausibility argument for the proof of the chaotic attractor, here we will
use results of Misieurewicz [81] which provide a more direct demonstration of the
phenomenon.

2.8.1 The Lozi map and trapping regions

Consider the restricted problem of the border collision form with

T0 = −T1 = a > 0, D0 =D1 = −b, 0 < b < 1. (2.93)

Taking µ = 1 (i.e. µ > 0 by scaling) we recover the Lozi map (2.71). Note that
the map is a homeomorphism and the left half plane maps to the lower half plane
whilst the right half plane maps to the upper half plane. The y-axis, x = 0, maps
to the x-axis, y = 0.

If the constraints of (2.93) hold and a + b > 1 then the system has two fixed
points,

Y = (− 1

b + a − 1 ,−
b

b + a − 1) , X = ( 1

1 − b + a ,
b

1 − b + a)
as shown in Figure 2.22. Both are saddles; the Jacobian at Y has an stable neg-
ative eigenvalue with an eigenvector of negative slope, and an unstable positive
eigenvalue with an eigenvector of positive slope whilst the Jacobian at X has an
unstable negative eigenvalue with an eigenvector of negative slope, and a stable
positive eigenvalue with an eigenvector of positive slope. The stable and unstable
manifolds of X will be particularly important.

A great deal of the argument used to show the existence of a strange attractor
for the Lozi map (2.71) relies on brute force calculation. We shall keep this to a
minimum and try to emphasize the conceptual framework being developed.

The eigenvalues of the Jacobian at X are s± = 1
2
(−a±√a2 + 4b) with eigenval-

ues ( s±
b
), so by a little elementary geometry the stable direction (with eigenvalue

s+) intersects the y-axis at T where

T = (0, 2b − a −
√
a2 + 4b

2(1 + a − b) ) . (2.94)

Since T is on the y-axis f(T ) is on the x-axis and since T is on the stable manifold
of X , f(T ) will be the intersection of TX with the x-axis.
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Figure 2.22: Schematic view of the bounding region and geometry of iterates for
the Lozi map, after [81].
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Similarly, the unstable direction of X intersects the (positive) x-axis at Z

where

Z = (2 + a +
√
a2 + 4b

2(1 + a − b) ,0) . (2.95)

The local unstable manifold of X thus contains the line segment f(Z)Z.

Since f(Z) is in x < 0, f2(Z) lies in the lower half plane. There are thus
two cases depending on whether f2(Z) lies on the left or right of the y-axis. In
what follows below we consider only the case for which f2(Z) is on the left of the
y-axis; the argument in the other case is a little more complicated (see [81]), and
we leave it to the reader to find the details if they are interested.

So, by assumption (restricting the cases being considered) f2(Z) lies in the
lower half plane with x < 0, and so f3(Z) can be calculated explicitly. This calcu-
lation can be used to show the following lemma from [81].

Lemma 2.8.1. Consider the Lozi map (2.71) with parameters as described above.
If f3(Z) lies in the triangle △ = Zf(Z)f2(Z) then f(△) ⊂△.

Proof: The geometry is shown in Figure 2.22. Let S denote the intersection
of f2(Z)Z with the y-axis and note that f(S) is on the x-axis to the left of Z as
S lies below the origin which is below f−1(Z). It is an elementary calculation to
show that the x-coordinate of f2(Z) is larger than that of f(Z) and so the slope of
f(Z)f2(Z) is negative as shown in Fig. 2.22. Let f2(Z) = (p1, p2) and S = (0, s2).
Then p1 < 0 by assumption and p2 < s2 by construction. The x-coordinate of f(S)
is 1 + s2 and the x-coordinate of f3(Z) is 1 + p2 + ap1 which is clearly less than
1 + s2 and hence f(S) is to the right of f3(Z) as shown.

△ is composed of two parts:

△1 = f−1(Z)ZS in x ≥ 0 and △2 = f−1(Z)f(Z)f2(Z)S in x ≤ 0
(note that △2 is not a triangle!). Thus

f(△1) = Zf(Z)f(S) ⊂△
and

f(△2) = Zf2(Z)f3(Z)f(S) ⊂△
and so f(△) ⊂△ as required. ◻

Thus △ is a compact invariant set and hence contains an attractor provided
f3(Z) is contained in △. Brute calculation establishes that this is true provided a
further condition is put on a and b.

Lemma 2.8.2. If a > 0, 0 < b < 1, a > b + 1 and 2a + b < 4 then f(△) ⊂△.



2.8. Robust chaos 119

2.8.2 Strange attractors

Banerjee et al [43, 42] provide a plausibility argument for the existence of strange
attractors (albeit at different parameters of the border collision normal form,
though they also discuss the case here) based on (a) the existence of transverse
homoclinic intersections; and (b) the existence of heteroclinic connections between
the unstable manifold of Y and the stable manifold of X . Misieurewicz [81] takes
a more direct route, and whilst this is more transparent we should say something
about the ideas of Banerjee et al [43, 42] before continuing.

Since X is a saddle it has stable and unstable manifolds. Suppose that C is
curve segment that crosses a part of the stable manifold ofX ,W s(X), transversely,
then under iteration the intersection point will converge on X and the part of the
remainder of the curve near the intersection point will move close to X and then
expand close to the unstable manifold of X , Wu(X). The Lambda Lemma [38]
states that this idea can be stated precisely: in any neighbourhood of any point in
Wu(X) there exist a point in the image of C.

In particular, if C is itself a part of Wu(X), so the intersection is a point in
Wu(X) ∩W s(X), i.e. a transverse homoclinic point, then images of Wu(X) lie
arbitrarily close to any point in Wu(X), giving a form of recurrence. Similarly,
if there is a transverse intersection between Wu(Y ) and W s(X) then images of
Wu(Y ) also lie arbitrarily close to any point in Wu(X). Banerjee et al [43, 42]
use this, together with the fact that in x < 0 iterates are attracted to Wu(Y ) and
in x > 0 they are attracted to Wu(X) to deduce that the closure of Wu(X) is a
chaotic invariant set.

In the case considered here we can have a transverse homoclinic point.

Lemma 2.8.3. If S lies above T on the y-axis than the Lozi map has a transverse
homoclinic point.

Proof: If S lies above T then there exists an intersection point P between
XT (part of the stable manifold of X) and f2(Z)Z (part of the unstable manifold
of X). ◻

The precise condition is messy and will not be pursued here. Misieurewicz
[81] proves the following.

Theorem 2.8.4. Suppose that a > 0, 2a + b < 4, a
√
2 − 2 − b > 0 and b < a2

−1
2a+1

.
Then the attractor of the Lozi map (2.71) is the closure of Wu(X) and the map
is topologically transitive on this set.

Remark: A subset A of R2 is topologically transitive if for all open Uk k = 0,1
with Uk ∩A ≠ ∅ there exists n such that fn(U0) ∩U1 ≠ ∅.

Sketch Proof: The proof is split into a number of stages which will simply be
sketched here.
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Step 1: By Lemma 2.8.2 △ contains an attracting invariant set. It is not
conceptually hard (but not an easy calculation) to construct a closed set G such
that △ is contained in the interior of G and such that the attracting set

G̃ = ∩∞0 fn(G) = ∩∞0 fn(△) = △̃.
So for any x ∈ △ (and in particular, for any x in the attractor) there is an open
neighbourhood of x in G.

Step 2: Let H0 =XZP and H = ∪∞0 fn(H0). Then the boundary of H , ∂H is
contained in XP ∪Wu(X), f(H) ⊂H , and H̃ = ∩fn(H) = △̃.

Step 3: That △̃ is the closure of the unstable manifold of X is shown by
using G and G̃ to show that cℓ(Wu(X)) ⊆ △̃ and H and H̃ to show that △̃ ⊆
cℓ(Wu(X))△̃.

Step 4: Finally a hyperbolicity argument for expansion on the unstable man-
ifold is used to show that f is topologically mixing on △̃. ◻
2.8.3 Young’s Theorem

Young’s Theorem [96] provides an alternative approach to the chaotic attractors of
border collision normal forms and their generalizations using invariant measures.
This is not the place to give a detailed technical description of the theorem, but
it is nonetheless useful to know that such techniques exist and can be applied to
examples.

A measure µ on a space is essentially a way of assigning size or probability
to subsets (strictly speaking, measureable subsets) of the space. Thus if X is a
compact subset of the plane a (probability) measure is a map from (measureable)
subsets U of X to the [0,1] such that

• µ(∅) = 0, µ(X) = 1,
• µ(U ∪ V ) ≤ µ(U) + µ(V ) with equality if U ∩ V = ∅,

and a measure is an invariant measure of a map f ∶ X →X if for all U ⊆X
µ(f−1(U)) = µ(U).

Invariant measures provide ways of linking spatial and temporal averages: if g ∶
X → R is a nice (integrable) function then we would like a result of the form

1

n

n−1

∑
0

g(fn(x))→ ∫
X
gdµ

as n→∞ (for µ almost all x). This is true for ergodic measures: i.e. invariant prob-
ability measures with the property that for every invariant set E (i.e. measureable
sets with f−1(E) = E) either µ(E) = 0 or µ(E) = 1.
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Young’s Theorem provides a way of proving that nice measures exist for
robust chaos.

Let R = [0,1] × [0,1] and let S = {a1, . . . , ak} × [0,1] be a set of vertical
switching surfaces with 0 < a1 < ⋅ ⋅ ⋅ < ak < 1. Then f ∶ R → R is a Young map if
f is continuous, f and its inverse are C2 on R/S and f = (f1, f2)T satisfies the
expansion properties (H1)-(H3) below on R/S.

(H1) inf {(∣∂f1
∂x
∣ − ∣∂f1

∂y
∣) − (∣∂f2

∂x
∣ − ∣∂f2

∂y
∣)} ≥ 0,

(H2) inf (∣∂f1
∂x
∣ − ∣∂f1

∂y
∣) = u > 1, and

(H3) sup{(∣∂f1
∂y
∣ + ∣∂f2

∂y
∣) (∣∂f1

∂x
∣ − ∣∂f1

∂y
∣)−2} < 1.

Young’s Theorem describes measures that project nicely onto one-dimensions.
Technically this is expressed as having absolutely continuous conditional measures
on unstable manifolds. Intuitively this means that the measure projects nicely onto
one dimension.

Let Jac(f) denote the Jacobian matrix of f and recall that u is defined in
(H2).

Theorem 2.8.5. [96] If f is a Young map, ∣Jac(f)∣ < 1 for x ∈ R/S, and there
exists N ≥ 1 s.t. uN > 2 and if N > 1 then fk(S)∩S = ∅, 1 ≤ k < N , then f has an
invariant probability measure that has absolutely continuous conditional measures
on unstable manifolds.

Since the result is for piecewise C2 maps and the conditions only depend
on derivatives this result has the important corollary that results for the piece-
wise linear border collision normal form, which should more correctly be called a
truncated normal form, persist when small nonlinear terms are added.

Historical note: The theorem as actually published [96] has uN > 2 and
fk(S) ∩ S = ∅, 1 ≤ k ≤ N (note the non-strict inequality in the last expression).
However, no extra conditions on images of S are required if N = 1 and if N > 1
then the requirement is that fN has similar geometry on vertical strips, which
only requires non-intersection up to the (N −1)th iterate, so we are confident that
Theorem 2.8.5 is what was intended.

The criteria for the theorem to hold are easy to verify numerically making it
possible to determine regions on which Young’s Theorem holds and compare these
with theoretical bounds in [43], see [65] for details.

2.9 Two-dimensional attractors

The BCNF can also have robust two-dimensional attractors. These results use
some beautiful theory for general piecewise linear maps due to Buzzi and Tsujii.
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Figure 2.23: (a) Schematic view of the Markov partition; (b) numerical solution
for parameters given below.

These will be described in the second section – first we describe another context
in which the existence of two-dimensional attractors can be deduced from first
principles. Note that the existence of two-dimensional attractors implies expansion
in all directions, so the only way this can occur is through folding, i.e. the map
must be non-invertible: D0D1 < 0.

2.9.1 A Markov Partition

In section 2.2.1 we saw that Markov partitions and their associated graphs provide
a good way to analyze dynamics. The idea in this section is to construct an example
with a two-dimensional Markov partition and then show that the map (or an
iterate of the map) is uniformly expanding on each region defining the Markov
partition.

Consider the BCNF with D0 < 0, D1 > 0 and µ = 1. We shall start by
constructing a simple bounding region and then try to describe the dynamics in
this region. Note that the conditions on Dk, k = 0,1, imply that the images of
both the left and the right halsf planes map to the lower half plane.

Let O = (0,0) so P1 = f(0,0) = (1,0). Suppose that P2 = f(P1) is in x > 0
and P3 = f(P2) lies on the y-axis. so P4 = f(P3) lies on the x-axis and we shall
assume this can be chosen so that P4 is in the left half plane as shown in Fig. 2.23a.
To achieve this will require only one real constraint (that P3 lies the y-axis), the
remainder are open conditions.

Next, choose the parameters such that f(P4) = P2 (two conditions; these will
fix T0 and D0) and finally arrange it so that the straight line P4P2 intersects the
y-axis at V0 = (0,−1), the preimage of O (one real condition). This gives four real
conditions for the four parameters Tk, Dk, k = 0,1. We will show that these can
be solved below, but before verifying this let us consider the consequences (see
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Fig. 2.23a again).
Let V1 be the intersection of P1P3 with V0P2, so its image will lie on the

intersection of P2P4 and OP3, i.e. f(V1) = V0. Similarly let V2 be the intersection
of P1P3 and OP2 so f(V2) = V1. The lines connecting the points O, P1, . . . , P4, V0,
V1 and V2 divide the trapping region OP1P2P3P4 into eight sectors

R1 = OV2P1, R2 = P1V2P2 R3 = P2V1V2 R4 = P2V1P3

R5 = P3V1V0, R6 = OV0V1V2, R7 = P3V0P4 R8 = P4V0O.
(2.96)

These have been chosen so that

f(R1) = R2 ∪R3, f(R2) = R4, f(R3) = R5,

f(R4) = R4 ∪R7, f(R5) = R8, f(R6) = R1 ∪R6,

f(R7) = R3 ∪R6 ∪R8, f(R8) = R1 ∪R2.

(2.97)

This is therefore a two-dimensional Markov partition and the symbolic description
of orbits is easy to describe using a Markov graph in precisely the same way as in
section 2.2.1. A little more work is required to show that the map is transitive on
the invariant region, see [73] for details.

Let us check that this is possible. By direct calculation

P2 = (T1 + 1,−D1), P3 = (T1(T1 + 1) −D1 + 1,−D1(T1 + 1))
and hence the first constraint is that

D1 = T1(T1 + 1) + 1. (2.98)

In this case set t = T1 so D1 = t2 + t + 1 and

P3 = (0,−D1(t2 + t + 1)), P4 = (1 −D1(t + 1),0)
and P4 is in x < 0 provided D1(t + 1) > 1 and note that this is certainly true if
D1 > 1 and t > 0. Now the line P2P4 intersects the y-axis at V2 = (0,−1) if (by
similar triangles)

1

D1(t + 1) − 1 =
D1

D(t + 1) + t
and after a little algebra (involving factorization of a quintic in t) this holds if

t3 + t2 + t − 1 = 0, D1 = 1
t
. (2.99)

A simple root finding method shows that this has a positive solution with

T1 = t ≈ 0.543689, D1 ≈ 1.839287
and solving the equations for T0 and D0 gives

T0 = −t2 ≈ −0.295598, D0 = −1.
Figure 2.23b shows a numerically calculated solution for these parameter values.
Glendinning and Wong [73] show that an expansion condition holds on iterates
of the map which implies transitivity on the whole region OP1P2P3P4. They also
derive conditions for a sequence of other parameters having a similar Markov
property.
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2.9.2 Piecewise linear maps

A number of general results were proved in around 2000 proving the existence of
two-dimensional attractors for piecewise linear maps. These all rely on expansion
of each individual map, but the technical assumptions are more general than the
BCNF as continuity across boundaries is not assumed. Here we follow Buzzi [49]
and Tsujii [94].

Let D be a polygonal region in R2, i.e. a compact connected region whose
boundary is a finite union of straight line segments. Let P be a finite collection of
non-intersecting open polygonal regions {Pi}mi=1 such that the union of the closures
of these polygons is D. Then a map F ∶ ∪Pi → D is a piecewise affine map if F ∣Pi

is an affine map, i = {1, . . . ,m}. If in addition there exists λ > 1 and a metric
d ∶ R2 → R such that for each i ∈ {1, . . . ,m} F ∣Pi

is expanding, i.e.

d(F (x), F (y)) ≥ λd(x, y) for all x ∈ Pi

i = 1, . . . ,m, then F is a piecewise expanding affine map. The main result that can
be applied to the BCNF shows that there are two-dimensional attractors. Like
Young’s Theorem it uses the idea of invariant measures to describe the dynamics,
but it is the existence of open sets in the attractor which implies that the attractor
has topological dimension two rather than simply Hausdorff dimension equal to
two.

Theorem 2.9.1. [48, 49, 94] Suppose F is a piecewise expanding affine map of a
planar polygonal region D. Then there exists an attractor in D such that F has an
absolutely continuous invariant measure on the attractor and the attractor contains
open sets.

Unfortunately, the BCNF is not expanding (at least in the standard Eu-
clidean metric), so a little more work needs to be done in order to apply this
result.

2.9.3 Robust bifurcations to two-dimensional attractors

The examples of section 2.9.1 can be proved to have two-dimensional attractors,
but they exist at special values of the parameters. The results of Buzzi and Tsujii
of section 2.9.2 make it possible to prove the existence of such sets for open sets
of parameters. It is even possible to construct open conditions so that the border
collision bifurcation has a stable fixed point if µ < 0 and a two-dimensional attrac-
tor if µ > 0 [69]. The proof follows the rather easier path of [68]. An example of a
two-dimensional attractor with

TL = −0.1, DL = −8/11, TR = 0.05, DR = 1.99
and µ = 1 is given in Figure 2.24.



2.9. Two-dimensional attractors 125

0−1 1−1.2 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.2

0

−2

−1

−2.2

−1.8

−1.6

−1.4

−1.2

−0.8

−0.6

−0.4

−0.2

Figure 2.24: Numerically calculated attractor for the BCNF with parameters as
given in the text.

Theorem 2.9.2. [69] There exists an open region D ⊂ R4 such that if

(T0,D0, T1,D1) ∈ D
then the BCNF (2.72,2.73) has a stable fixed point if µ < 0 and a fully two-
dimensional attractor if µ > 0.

Proof: From the results of section 2.7.1 the choices 1 + D0 − T0 > 0 and
1 +D1 − T1 > 0 imply that there is a fixed point in x < 0 if µ < 0 and a fixed point
in x > 0 if µ > 0. The fixed point in x < 0 is stable (when it exists) provided the
eigenvalues of the Jacobian have modulus less than one, i.e. if

∣D0∣ < 1 and ∣T0∣ < 1 +D0. (2.100)

Now consider µ > 0, so by scaling we can assume that µ = 1. The pattern
will be similar to proofs of chapter 2.8: we begin by constructing an absorbing
region for well-chosen parameters. Fix ǫ > 0 (to be chosen small enough later) and
suppose that

∣Tk ∣ < ǫ, k = 0,1, −D0 ∈ ( 6
11

,
10

11
), D1 ∈ (2 − ǫ,2). (2.101)

Clearly (2.100)) is satisfied for small ǫ, so if µ < 0 there is a stable fixed point. If
µ = 1 consider the rectangular region with

−(1 + 0.05 − 4ǫ) ≤ x ≤ 1 + 4ǫ, −(2 + 0.05 − 2ǫ) ≤ y ≤ 2ǫ. (2.102)
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If (x, y) is in this rectangle then the image is (x′, y′) with x′ = 1 + y + Tkx and so
taking maximum and minimum values

1 − (2 + 0.05 − 2ǫ) − ǫ(1 + 0.05 − 4ǫ) ≤ x′ ≤ 1 + 2ǫ + ǫ(1 + 4ǫ)
i.e.

−(1 + 0.05 − c1ǫ − 4ǫ2) ≤ x′ ≤ 1 + 3ǫ + 4ǫ2
and so provided ǫ is sufficiently small x′ satisfies the same rectangle constraint as
x in (2.102).

Similarly, y′ = −D0x if x < 0, so y′ is is negative in this case and takes
a minimum value of around − 10

11
which is small in modulus compared with the

boundary of the rectangle and so y′ comfortably satisfies the constraints of the
rectangle for ǫ small. If x > 0 then y′ = −D1x and so again y′ is negative and

−2(1 + 4ǫ) ≤ y′.
Hence, provided 0.05 − 2ǫ > 8ǫ this will again lie in the region defined by (2.102).
Thus for small enough ǫ > 0 the region (2.102) is invariant.

To prove expansion and hence apply results of the preceeding section, sec-
tion 2.9.2, we need to know a little more about the dynamics in this region.

Suppose (x, y) lies in the rectangle defined by (2.102) with x < 0. Then the
image point (x′, y′) has y′ = −D0x < 0 and hence the second iterate will have x-
coordinate less than 1−D0x+ ǫ∣x′∣ which is greater than zero for sufficiently small
ǫ as the maximum of x is close to 1.05 so ∣D0x∣ ≤ 21

22
up to terms of order ǫ. Thus

if x < 0, the x-coordinate of f2(x, y) is in x > 0.
Note that the linear matrices of the BCNF with ∣Tk∣ ≈ 0 have the form

( 0 1
α 0

), α ∈ {−D0,−D1}, suppose we multiply four of these together with

α1, . . . , α4 as the bottom left coefficients. Straightforward calculation show we
obtain

( α2α4 0
0 α1α3

) .
Now, the Jacobian of f4, Df4, is just a product of BCNF matrices along

the orbit, so if α1 = −D0 then the second iterate is in x > 0 and so α3 = −D1 and
similarly for α2. Thus the only combinations possible are D2

1 which is close to 4,
and D0D1 which is close to − 12

11
or larger. Adding in the order ǫ corrections will

not change the fact that thes Jacobian of f4 is expanding and hence f4, defined
on regions on which it is linear, is an expanding piecewise linear map and has a
two-dimensional attractor by Theorem 2.9.1. It is straightforward to show that
this implies that f itself has a two-dimensional attractor and the result is proved.◻
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2.10 Challenges

There are many possible generalizations of th results presented here, and other
directions that could have been taken. Here we mention just a few.

2.10.1 Other classes of maps

In section 2.1.3 we mentioned Nordmark’s square root map [83]. Square root maps
appear in many contexts in piecewise-smooth systems [45] and so it would be
natural to put more attention into the phenomena that can arise in these cases
(e.g. [40]). Once again though, the issue should be to understand what can be said
usefully. It may be that the classes are too large, or the bifurcation phenomena
too complicated, to give complete descriptions and therefore the skill is to find
useful but finite statements: less is more (cf. section 2.1.4).

The square root map introduces a particular singularity in the derivative
of the map. But in the piecewise-smooth world it is always possible (at least in
principle) to introduce more discontinuities. When is this useful? When is it inter-
esting? What about infinitely many discontinuities? Mathematicians can always
think of generalizations, but it is probably best (in general) to allow applications
to suggest what is most worthwhile.

The work on the border collision normal form uses the fact that the map
is piecewise linear in a number of ways: it means quite a lot of features can be
computed by brute force (section 2.7.2 for example) and it means that iterates of
straight lines are straight lines, simplifying geometric arguments considerably (this
is key to Buzzi’s proofs for piecewise expanding maps in section 2.9.2). However,
apart from Young’s theorem (section 2.8.3) and the original robust chaos argument
of [43] relatively few results seem to cary over easily. The effect of nonlinear terms
and more generally, higher order terms in normal forms, seems an important topic
for future research.

The final area, and the one which will occupy the remainder of these lectures,
is the effect of higher dimensions. As argued in [72, 70, 71] the number of cases
can multiply hugely as the dimension of the phase space increases, but there are
still examples of results that are either independent of the dimension.

2.10.2 Higher dimensions: periodic orbits

In section 2.7.1 it was possible to compute precise criteria for the existence of
fixed point and orbits of period two for the border collision normal form in two
dimensions, and to give criteria for their stability. This is also possible for the
BCNF in Rn, where the normal form is (2.72) with constant µ(1,0, . . . ,0)T and
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the matrices A0 and A1 are in observer canonical form [44]

Ak =
⎛⎜⎜⎜⎜⎜⎝

rk1 1 0 0 . . .

rk2 0 1 0 . . .

rk3 0 0 1 . . .∶ . . . . . .

rkn 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠
, k = 0,1. (2.103)

Without going through the details, we will state the result, which depends on the
index of the matrices A0 and A1.

Definition 2.10.1. The index σ±k of the matrix Ak of (2.103) is defined by σ+k (resp.
σ−k is the number of real eigenvalues of Ak greater than 1 (resp. less than 1),
k = 0,1.

The index gives information about the fixed points and points of period two
[46, 91].

Theorem 2.10.2. Consider the BCNF in Rn. Let xk denote a fixed point of the
BCNF in x < 0 if k = 0 and x > 0 if k = 1.

• If σ−0 +σ−1 is even and σ+0 +σ+1 is even then x0 and x1 exist for different signs
of µ and there are no period two orbits if µ ≠ 0.

• If σ−0 +σ−1 is even and σ+0 +σ+1 is odd then x0 and x1 exist for the same sign
of µ and there are no period two orbits if µ ≠ 0.

• If σ−0 +σ−1 is odd and σ+0 +σ+1 is even then x0 and x1 exist for different signs
of µ and an orbit of perioi two orbits exists for one sign of µ.

• If σ−0 + σ−1 is odd and σ+0 + σ+1 is odd then x0 and x1 and an orbit of period
two orbits exists for one sign of µ.

If x0 and x1 both exist for the same sign of µ then σ+0 + σ+1 is odd and so at
least one of them is non-zero. Hence at least one of the matrices A0 and A1 has
an eigenvalue with modulus greater tha one.

Corollary 2.10.3. The BCNF cannot have coexisting stable fixed points.

In fact, with a little more work it can be shown that if the period two orbit
if it is stable then the fixed point that coexists with it is unstable [91].

Most of the analysis of section 2.7.2 was actually independent of the dimen-
sion of phase space, so the analysis can be used to describe periodic orbits, mode
locking and shrinking points in higher dimensional systems. See [91] for details.



2.10. Challenges 129

2.10.3 Higher dimensions: n-dimensional attractors

The results of Buzzi and Tsujii described in section 2.9.2 hold in Rn, n > 2, but
with a slight caveat: the attractors may not have topological dimension n, i.e. they
may not contain open sets, though they always have Hausdorff dimension n and
topological dimension n on a generic set of parameters. This makes it possible to
prove results analogous to Theorem 2.9.2 but with that technical restriction.

Theorem 2.10.4. [68] There exists an open set U ⊂ R2n such that if

(r01, . . . , r0n, r11, . . . , r1n) ∈ U
then the border collision normal form in Rn with matrices (2.103) has a stable
fixed point if µ < 0 and an attractor with Hausdorff dimension equal to n if µ > 0.
This attractor has topological dimension equal to n generically in U .

It appears harder to generalize Young’s results of section 2.8.3, though a
recent result of Zhang [97] extends her result to R3 with two-dimensional unstable
manifolds. It would be very interesting to see this extended to higher dimension,
and higher dimensional unstable manifolds.
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* Bibliography items [1-37] for Part I, items [38-97] for Part II.
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