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Differential equations that switch between different modes of behaviour across a surface

of discontinuity are used to model, for example, electronic switches, mechanical contact,

predator-prey preference changes, and genetic or cellular regulation. Switching in such sys-

tems is unlikely to occur precisely at the ideal discontinuity surface, but instead can involve

various spatio-temporal delays or noise. If a system switches between more than two modes,

across a boundary formed by the intersection of discontinuity surfaces, then its motion along

that intersection becomes highly sensitive to such non-idealities. If switching across the

surfaces is affected by hysteresis, time delay, or discretization, then motion along the in-

tersection can be affected by erratic variation that we characterize as ‘jitter’. Introducing

noise, or smoothing out the discontinuity, instead leads to steady motion along the inter-

section well described by the so-called canopy extension of Filippov’s sliding concept (which

applies when the discontinuity surface is a simple hypersurface). We illustrate the results

with numerical experiments and an example from power electronics, providing explanations

for the phenomenon as far as they are known.

1. INTRODUCTION

Discontinuities are increasingly used to model abrupt features of dynamic systems, from the

position of electrical switches [1], the mode of contact between physical objects [2, 3], resistivity of

superconductors across the critical temperature [4], reflectivity of surfaces such as across ice-lines

in climate models [5], or changes in predatory, social, or regulatory behaviours of living organisms

[6–8]. In many such systems it is possible for the dynamics to evolve along the locus of discontinuity,

a phenomenon called sliding. Given the ever more general contexts in which discontinuities arise,

a particular question of interest is how robust sliding motion is to perturbations. In applications,

switching between values across a discontinuity may involve time delays, hysteresis, and noise, all

features whose effects are difficult to derive both analytically and numerically.

This paper revisits results from [9] that have taken on new significance recently in the light of

growing interest from both applications and fundamental theory. In studying motion along the
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boundary of several open regions Q1, Q2, . . . , given that evolution inside those regions is given by

ẋ = {fi(x) if x ∈ Qi , i = 1, 2, . . . } , (1)

Alexander and Seidman discussed in [9, 10] two alternative ways of deriving the solutions x(t).

While in [10] they predicted steady determinable motion, in [9] they uncovered an instability that

causes sliding motion to vary erratically, a phenomenon we call here jitter.

Jitter is distinct from another phenomenon associated with discontinuities called chatter. A

system may chatter back and forth across a boundary as it is kicked by a pair of vector fields that

point towards the boundary from either side. Typically this averages out in the long term into

steady motion along the boundary. Jitter is instead a series of sharp changes in that long term

motion, induced by small scale perturbations (of which chatter is an example).

The outcome of the Alexander-Seidman work was a conflicting pair of predictions for how

solutions x(t) evolve along a set on the boundary of the regions Q1, Q2, . . . . Steady determinable

motion along the intersection is predicted if the equations are ‘blended’ (or interpolated) across

the boundaries between regions Qi. Jittery motion is instead predicted if solutions x(t) slightly

overshoot the boundaries before switching to the field fi appropriate in each regionQi. It is assumed

that the fi are unrelated vector fields that point towards the boundary, and that the boundary

consists of transversally intersecting smooth hypersurfaces, such that, local to their intersection, q

hypersurfaces (e.g. coordinate planes x = 0, y = 0, . . . ) divide space into 2q regions Q1, . . . , Q2q ,

as shown in fig. 1 for q = 2.
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FIG. 1: A vector field that is discontinuous across the surfaces x = 0 and y = 0, and smooth in

Q1, Q2, Q3, Q4,. Sliding motion is possible along the discontinuity surfaces. A trajectory is shown

flowing from Q4, to the surface y = 0, to the intersection x = y = 0; our interest is in the latter portion of

this motion.
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The problem of interest is then simply to determine the speed of motion along x = y = 0 in

fig. 1, for a system in coordinates x = (x, y, z) where space is divided into quadrants Q1, Q2, Q3,

Q4, by the coordinate planes x = 0 and y = 0. The unshaded region in fig. 2 indicates the set

(or ‘hull’) of all possible speeds of motion if x(t) evolves in increments along each field fi, e.g.

∆x = fi∆t. The simplest analytical approach is to blend the vector fields across the discontinuity

surfaces, which results in steady motion along x = y = 0 (dashed curve). In fact the speed along

x = y = 0 depends on the fine details of how the system switches between the fields fi. If that

switching involves hysteresis, for example, the result is more erratic motion (full curve); the abrupt

kinks in this curve are what we call jitter.
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FIG. 2: Speed of sliding ż along the intersection of the discontinuity surfaces x = 0 and y = 0 at different

values of z, for an example of the piecewise-smooth system (1) (example follows in section 2), showing the

two Alexander-Seidman alternatives with hysteresis (full curve) or blending (dashed curve), and the set of

all possible sliding speeds (unshaded region).

The particulars of this example and the simulation methods will be given in section 2, including

how they fit into Filippov’s theory of differential inclusions, and adding generalizations of the

phenomenon if switching involves other sources of spatial or temporal delays or stochasticity. The

latter point the way to a generalization of the phenomenon of jitter with wide-reaching practical

significance. We outline the conditions that make jitter possible in section 3. A rigorous explanation

for the phenomenon is only known in the case when it is induced by hysteresis, connected to

nonsmooth circle maps, which we describe in section 4. A testable physical application from

electronics is described in section 5, and we make some concluding remarks in section 6.

To those who have dealt with discontinuous or ‘stiff’ systems, either numerically or experimen-

tally, it might not be surprising that simulating a set of equations across a discontinuity results in

some irregular or unpredictable behaviour. Jitter, however, reveals a particularly erratic and yet
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structured pattern to such unpredictability. A brief explanation is that when a non-ideal system

evolves approximately along a discontinuity surface, the dynamics finds an attractor that approx-

imates, in some ε-neighbourhood, ideal sliding exactly along the surface. The same is true a an

intersection of discontinuity surfaces, but the attractor can be sensitive to parameters of the vector

field or the switching method, undergoing numerous bifurcations that affect the speed of sliding

motion (ż in fig. 2), manifesting as jitter (the abrupt change in gradient along the hysteresis graph

in fig. 2).

The problem of motion along the intersection of discontinuity surfaces was left open in Filippov’s

influential work [11], and has recently been taken up from a variety of perspectives based on

practical considerations of how to model dynamics around discontinuities, see e.g. [9, 10, 12–16],

or on more theoretical considerations such as equivalence classes and stability, see e.g. [17, 18] and

references therein. The Alexander-Seidman result, and its extensions discussed here, reveal much

greater intricacy in the applied problem than anticipated elsewhere in the literature.

2. JITTER: NUMERICAL EXPERIMENTS

We begin with a sample of numerical simulations illustrating the phenomenon of jitter.

Consider a set of ordinary differential equations

ẋ = f(x) = {fi(x) for x ∈ Qi , i = 1, . . . ,m} , (2)

which is smooth except on a set of hypersurfaces Σ that partition the space of x into regions

Q1, . . . ,Qm. Let f1, . . . fm be independent smooth vector fields, each of which is smooth in a neigh-

bourhood of the closure of Qi (which ensures that our implementations of switching, introduced

later, are well-defined).

To simulate solutions of (2) we take an initial condition in one of the quadrants Qi in mode

M = i, then follow the algorithm:

(A.i) Solve the system ẋ = fi(x) in mode M = i and evolve forward in time.

(A.ii) Detect when a condition Imp(x,M) is satisfied, and update the mode M = i to M = i′.

(A.iii) Repeated steps (i)-(ii), updating the mode M each time.

The condition Imp(x,M) ideally represents a switch between modes as the state x(t) crosses a

discontinuity surface between regions Qi and Qi′ , but its precise conditions define an implementa-

tion of the switch. This may involve spatial or temporal delays or stochasticity, in detecting the
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discontinuity surface or in enacting the switch. A number of implementation conditions Imp(x,M)

will be considered in section 2B-2 F.

Following this algorithm we then carry out simulations to find the speed of sliding along a

discontinuity surface between regions Q1, Q2, . . . , as follows.

Let x(t) evolve along an ε-infinitesimal neighbourhood of the discontinuity surfaces for a time

interval [0, T ], switching between modes M = 1, 2, . . . ,m, at a sequence of times t1, t2, . . . , tr, where

0 = t0 < t1 < t2 < · · · < tr = T . Thus x(t) evolves along a different vector field fi in mode M = i

on each time interval (tj−1, tj) for some i = {1, . . . ,m} and j ∈ {1, . . . , r}. Let γi denote the total

proportion of the time T spent in mode i,

γi =
1

T

r
∑

j=1

{

tj − tj−1 if M = i,

0 if M 6= i ,
(3)

then the total change in x(t) over the time increment T is

∆x

T
=

{

∑

i=1

γifi(x) : γi ≥ 0,

m
∑

i=1

γi = 1

}

. (4)

We will use this to find the coefficients γi from simulations. We describe (4) as the effective vector

field followed by the trajectory of x(t), since in the limit T → 0 this gives an effective equation of

motion,

ẋ = feff(x) =

{

∑

i=1

γifi(x) : γi ≥ 0,

m
∑

i=1

γi = 1

}

. (5)

If x lies inside a region Qi far from any discontinuity surface, then γi = 1 and γj = 0 for all

other i 6= j, hence feff(x) = fi(x). If x lies on the boundary between just two modes, say Q1 and

Q2, then (5) simplifies to feff(x) = γ1f1(x) + (1− γ1)f2(x), and any motion along that boundary is

then well determined, as γ1 must take a particular value that keeps x(t) in a neighbourhood of the

boundary between Q1 and Q2. If x lies on the boundary between several modes then the space of

{γ1, . . . , γm} is larger than the tangent space of the boundary, so the γi are under-determined and

become sensitive to other particulars of the simulation, such as the implementation of switching

Imp(x,M).

To find the effective motion eq. (5) along a discontinuity surface, we need to numerically find

the constants γi for any given simulation, which we obtain using (4) as follows.

Let us take the simplest case of two hypersurfaces cutting space into four regions Q1,Q2,Q3,Q4.

Without loss of generality we can take the hypersurfaces to be the coordinate hyperplanes x = 0

and y = 0 in coordinates x = (x, y, z) (as in fig. 1), as three dimensions will suffice to observe
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motion along the intersection x = y = 0, and so let

Q1 = {(x, y, z) : x > 0, y > 0} , Q2 = {(x, y, z) : x < 0, y > 0} ,

Q3 = {(x, y, z) : x < 0, y < 0} , Q4 = {(x, y, z) : x > 0, y < 0} .
(6)

Assuming motion along an ε-neighbourhood of the intersection x = y = 0, define scaled coordinates

u = x/ε, v = y/ε, and time τ = t/ε. Denoting the time derivative with respect to τ by a prime,

and the vector field components as f = (f, g, h), then if motion is given by (5) we have

u′ = feff(εu, εv, z) , v′ = geff(εu, εv, z) , z′ = O(ε) . (7)

Since z is then slow-varying and (u, v) = O(ε) for small ε, we shall simulate (7) from an initial point

(u, v) = (0, 0), for different values of z treated as a static parameter. We then evolve the system for

a long time ∆τ and calculate the coefficients γi from (3). The time ∆τ should be sufficiently long

that ∆(u, v)/∆τ reaches a steady value, hence the γi reach steady values, corresponding to the

dynamics in x and y having settled upon an attractor in the neighbourhood of x = y = 0. (Provided

the vector fields fi point outward from every region Qi, solutions are confined to a neighbourhood

of the boundary and such an attractor is guaranteed to exist, but may not be unique).

With the coefficients γi having been calculated, the expression (5) then gives the effective speed

of sliding along x = y = 0 on the original timescale t. The third component defines the speed of

sliding,

ż = hslide(x) = γ1h1(x) + γ2h2(x) + γ3h3(x) + γ4h4(x) (8)

along the intersection, with γ1 + γ2 + γ3 + γ4 = 1.

A. Numerical example

We now set up an example on which to perform simulations. To observe jitter we need assume

only that the vector fields fi push solutions of (2) onto some portion of the discontinuity surfaces

and their intersections.

Let us take the simplest case for the directions of the vector fields fi, namely that they point

outwards from all of the regions Qi (and therefore in towards the intersection). Expanding the

vector fields fi about the intersection x = y = 0,

fi(x) = f̂i(z) +O(x, y) (9)
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and writing f̂i = (f̂i, ĝi, ĥi), this implies that the components of f̂i satisfy

f̂1, f̂4 < 0 < f̂2, f̂3 & ĝ1, ĝ2 < 0 < ĝ3, ĝ4 . (10)

For all of the implementations considered below, these conditions guarantee that solutions are

trapped in a neighbourhood of x = y = 0, since each fi produces decreasing values of |x| and |y|.
For genericity we also assume that the four vector fields f̂i = (f̂i, ĝi, ĥi), are linearly independent.

As we discuss in section 3, any piecewise-smooth vector field so defined will typically exhibit jitter,

depending on how the equations are solved (or simulated) at the discontinuity.

Thus overall we simulate

ẋ = f(x) =































f1(x) for x > 0, y > 0,

f2(x) for x < 0, y > 0,

f3(x) for x < 0, y < 0,

f4(x) for x > 0, y < 0,

(11)

where fi = (fi, gi, hi), and we neglect higher order terms from (9). As an example for demonstration

we take

fi(z) = ai +Aiz, gi(z) = bi +Biz, hi(z) = ci + Ciz, (12)

where ai, bi, ci, and Ai, Bi, Ci, are randomly generated constants taken in the range (−1,+1),

subject to the conditions (10) for 0 ≤ z ≤ 1. We will use:

ai Ai bi Bi ci Ci

i = 1 −0.5822 0.0384 −0.318 0.0994 −0.0410 −0.1498

i = 2 0.5408 0.1803 −0.1192 0.0135 0.2788 −0.382

i = 3 0.8700 −0.3475 0.9399 −0.8302 0.0896 −0.3578

i = 4 −0.2647 −0.7290 0.6456 −0.582 0.2948 0.2324

(13)

In section 2B-2 F we simulate motion along x = y = 0 as described above, using different

implementations Imp(x,M) where the manner of switching across the surfaces x = 0 and y = 0 is

perturbed by hysteresis, time delay, numerical discretization, smoothing, or noise. The key results,

namely the speeds of sliding ż = hslide for each implementation, are gathered together in fig. 3.

There are both disagreements and correlations between the different outcomes, which will re-

quire explanation. Here let us note only that all graphs lie within, and yet explore widely, the

unshaded region of fig. 3. This unshaded region is the set of all possible speeds of sliding given by

(8) as the γi take all allowed values, varying over in 0 ≤ γi ≤ 1 subject to γ1 + γ2 + γ3 + γ4 = 1.



8

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

smoothing
h
u
ll

noise

hysteresis

discretization

delay

z

hslide

FIG. 3: The speed of sliding hslide along x = y = 0 at different values of z for the piecewise-smooth system

described above. The curves show the values of hslide obtained if the switch is implemented as described

in section 2B-2F: hysteresis (black), time-delay (blue dotted), discretization (green), smoothing (dashed),

and white noise (red). The unshaded region is the convex hull formed by (8).

The results that follow are independent of the small parameter ε due to the simplicity of the

example (11)-(12). In general this is not the case (as studied for example for the smoothing

implementation in [16]).

B. Hysteresis

A common method for regularizing a switch between modes is hysteresis, used widely in elec-

tronics (see e.g. [1, 19–21]), and used as justification in [11] where the notion of sliding along a

discontinuity was formally introduced.

Let switching occur with spatial delays α and β about x = 0 and y = 0 respectively. The

implementation rule Imp(x,M) then corresponds to updating the mode M ∈ {1, 2, 3, 4} when

x(t) = ±α or y(t) = ±β, according to:

• at x = +α, M updates as 2 7→ 1 or 3 7→ 4,

• at x = −α, M updates as 1 7→ 2 or 4 7→ 3,

• at y = +β, M updates as 3 7→ 2 or 4 7→ 1,

• at y = −β, M updates as 2 7→ 3 or 1 7→ 4.

(14)
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The constants α and β are assumed to be small, and it will be convenient to define

α = ε cos(φπ/2), β = ε sin(φπ/2), (15)

for 0 < ε ≪ 1 and 0 < φ < 1. The ratio of α and β, now given by tan(φπ/2), will prove to be

important in simulations.

Note that if both |x(t)| = α and |y(t)| = β at some time t, then two updates from (15)

happen simultaneously, but this causes no ambiguity. For instance if an orbit in mode 1 reaches

(x(t), y(t)) = (−α,−β) then the orbit changes to mode 3 (either via i : 1 7→ 2 7→ 3 or i : 1 7→ 4 7→ 3).

Using this implementation we then simulate the system (11)-(13), calculating the coefficients γi

in (4), which provides the effective speed hslide along the intersection as given by (8). As described

in section 2 we simulate from an initial condition near x = y = 0 treating z as a parameter,

running each simulation sufficiently long that each γi reaches a steady value, which corresponds to

the dynamics in x and y reaching an attractor.

As we simulate the system, we obtain a trajectory in (x, y) space that bounces around inside the

box [−α,+α] × [−β,+β], following straight line segments along the directions of the vector fields

fi. These settle to a unique attractor after a sufficient time, two examples of which are shown in

fig. 4 at different values of z (more precisely showing part of a numerically computed forward orbit

with transient dynamics removed). In panel A the attractor has six switches per period. In panel

B the attractor is either quasi-periodic or has such a high period that we were unable to detect it.
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1

4

3 2 η ≈ 0.97

η ≈ 0.80

η ≈ 0.35

B

x

y

−α α

−β

β

FIG. 4: Attractors in the chatterbox Ω (29) of the system (11)-(13) implemented with hysteresis. In panel

A, z = 0.3; in panel B, z = 0.5. Both panels use φ = 0.5, and the value of ε is arbitrary. In panel A the

mode along different sections of the orbit is indicated, and at alternate vertices we give the value of η for

the circle map defined later in section 4B.

As discussed in section 2A, the value of each γi in the speed of sliding (8) is defined as the
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fraction of time that an orbit following the attractor spends in mode i. For the attractor shown in

fig. 4-A, for example, we have γ1 = 0.35, γ2 = 0.38, γ3 = 0.08 and γ4 = 0.19, giving hslide = 0.10

(to two decimal places).

By carrying out such a simulation at different values of z we obtain a graph of hslide, shown

in fig. 3. The attractor corresponding to the point z = 0.3 on the hysteresis graph in fig. 3, for

example, is the orbit shown in fig. 4-A.

We can also fix z and calculate hslide as the ratio α/β = tan(φπ/2) varies. This is plotted for

two different z values in fig. 5.
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FIG. 5: The sliding vector field hslide as a function of φ for the system (11)-(13) implemented with hysteresis,

with z = 0 in panel A and z = 1 in panel B. The values of the graph at φ = 0 and φ = 1 are highlighted

by circles, to be calculated later in proposition 4.3. The shaded upper and lower borders indicate the hull

of all possible motions (see end of section 2A). The dashed line indicates the result predicted by blending,

which will be described in section 3.

The key features to note are the abrupt changes in the gradient of the graphs in both fig. 3 and

fig. 5. Each smooth portion of the graph corresponds to a different attractor, two of which are

illustrated in fig. 4. At the kinks of these graphs, one attractor is destroyed and another is born,

causing a change in the time proportions γi spent in each mode, resulting in the corresponding

sudden change in the sliding speed hslide. We look more into these bifurcations in section 4.

C. Time-delay

An important feature of many mechanical control systems is time delay, where a control action

taken in a system is based on information not of the current state x(t), but of the state some time
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ε in the past, x(t− ε).

Here we consider the implementation Imp(x,M) of switching to occur when x(t− ε) or y(t− ε)

pass through the discontinuity surfaces x = 0 or y = 0, where some small ε > 0 represents a

constant time-delay. This scenario was also considered briefly in [22]. More generally one could

consider different delays across each discontinuity surface, but a single delay is sufficient here.

Simulating the system (11)-(13), and calculating the coefficients γi in (4) then provides the

effective speed hslide along the intersection x = y = 0 as given by (8), treating z as a parameter. As

before we run each simulation sufficiently long that the γi reach steady values, when the dynamics

in x and y reach an attractor.

The attractors at two different values of z are shown in fig. 6. If the trajectory crosses a surface

x = 0 and y = 0 only once during the delay time ε then mode switching occurs along the dashed

lines, otherwise the locus of switches is more complicated.
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FIG. 6: Attractors of the system (11)-(13) implemented with time-delay, with z = 0 in panel A and z = 0.9

in panel B. The value of ε is arbitrary. In panel B there are two attracting periodic orbits. The modes along

different portions of the orbit in B are indicated.

As with hysteresis, we observed that typically the attractor is periodic. By varying z and finding

hslide we produce the ‘delay’ graph in fig. 3.

A particular behaviour occurs for 0.74 . z . 0.83, where we find γ4 = 0, hence the attractor

involves only the modes i = 1, 2, 3, and lies on the boundary of the unshaded region in fig. 3 whose

significance we will describe in section 3.

Unlike with hysteresis, the time-delayed system can have multiple attractors (which remain

distinct for ε → 0), each corresponding to a distinct sliding speed of sliding along x ≈ y ≈ 0. With

z = 0.9, for example, two distinct attractors have been identified as seen in fig. 6-B.
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The presence of multiple attractors could allow for interesting (e.g. periodic) sliding dynamics in

the full system (i.e. including variation in z), if motion is able to transfer between those attractors

as z varies. This could lead, for example, not just to jittery motion along the intersection, but

jitter-induced periodicity or chaos in the sliding dynamics. The potentially complex study of such

phenomena is left for future work.

D. Discretization

Arguably the most important factor to understand in simulating dynamics with discontinuities

is the effect of numerical discretization. There are some hints such as [23] of non-trivial dynamics

resulting from discretizing a solution around a discontinuity surface when bifurcations are involved,

but their effects remain as small perturbations of the ideal analytic (non-discretized) dynamics.

We shall see here that jitter has much stronger implications.

Let us consider solving the system (11)-(13) using forward Euler iteration with step-size ε, that

is, iterating the discrete system

xi+1 = xi + εf(xi) . (16)

About a single attracting discontinuity surface (x = 0 or y = 0), this generates a solution that

rapidly switches or ‘chatters’ back-and-forth across the surface. (Moreover as ε → 0 this solution

converges to Filippov’s solution, see for instance [24], which we describe in section 3).

The implementation Imp(x,M) of switching now becomes to switch mode M : i 7→ i′ whenever

a sign change is detected between two steps xi to xi+1, or yi to yi+1, in coordinates xi = (xi, yi, zi).

The switch therefore suffers a spatio-temporal delay similar to those in section 2B-2 C, but depen-

dent on the distance of the point xi from the ideal discontinuity surface.

As before we run a simulation treating z as a parameter, over sufficiently many iterations that

the γi reach steady values, when the dynamics in x and y reach an attractor. Calculating the

coefficients γi in (4) then provides the effective speed hslide along the intersection x = y = 0 as

given by (8).

The discretization (16) is a two-dimensional piecewise-smooth map, made up of four continuous

translations with discontinuities between them. The forward orbits are typically aperiodic and

evenly fill a dense subset of some patterned region, let us call it Ψ. Figure 7 shows Ψ from

simulations at two different values of z.

Our numerical investigations reveal that Ψ is often, but not always, unique. In this case Ψ
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appears to be the closure of the ω-limit set of every initial point in the (x, y)-plane. The γi are

then given by the fraction of Ψ contained in each quadrant of the (x, y)-plane. The region Ψ

changes smoothly with z, except where it undergoes fundamental changes due to interactions with

x = 0 and y = 0.
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FIG. 7: Attractors Ψ of the system (11)-(13) discretized using (16). The value of ε is arbitrary. Shown at

z = 0 in panel A, and z = 1 in panel B.

Figure 3 shows the resulting graph (labelled ‘discretization’) for hslide as z varies. The sliding

speeds generated are the most erratic of all the implementations, and therefore the greatest source

of jittery dynamics.

A further study of the properties of the discrete map, the attractor Ψ, and the highly erratic

jitter it generates, remains a challenge for future work.

E. Smoothing

Perhaps the simplest way to implement a discontinuity is to smooth it. The most common

method is to smooth across the discontinuity surfaces x = 0 and y = 0 independently.

We first define a smooth transition function φ(u) that satisfies

φ(u) ∈



























1 for u ≥ +1 ,

0 for u ≤ −1 ,

(0, 1) for |u| ≤ 1 ,

(17)

such that φ′(u) > 0 for |u| < 1. The smoothing of (11) is then given by a bilinear interpolation
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between the four vector fields fi,

ẋ = fsm(x) = [u1f1(x) + (1− u1)f2(x)]u2 + [(1− u1)f3(x) + u1f4(x)](1 − u2) (18)

where u1 = φ(x/ε1) and u2 = φ(y/ε2).

Such smoothings are a particular topic of interest as so-called Sotomayor-Teixeira regulariza-

tions, see e.g. [10, 15–17].

The implementation Imp(x,M) in this case is a smooth transition from one mode M = i to

another M = i′ modulated by the transition function. Applying this to solve the system (11)-(13),

simulating for sufficient time that the γi reach steady values, the dynamics in x and y reach an

attractor which in this case is a unique point.

The effective speed hslide along the intersection x = y = 0 as given by (8) is shown in fig. 3. The

result is independent of the values of ε1 and ε2. This graph, unlike any of the implementations so

far, exhibits a steadily varying sliding speed hslide showing no jitter. This result will be explained

in section 3.

F. Noise

Any physical system in which a discontinuity occurs may suffer systemic or environmental

sources of noise. To study the effect of such perturbations, the ordinary differential equation

ẋ = f(x) can be converted to a stochastic differential equation by adding white noise of order ε,

or by perturbing the discontinuity surfaces x = 0 and y = 0 themselves to some x = εξx(t) and

y = εξy(t) where ξx(t) and ξy(t) are stochastic process. We will describe results for the former of

these, but both yield similar results.

The addition of noise to a sliding solution was studied for some simple examples exhibiting

symmetry in [22], and the idea of using noise to resolve ambiguity in forward evolution has been

used previously for non-Lipschitz points of continuous vector fields [25–27], as well as two-folds of

discontinuous vector fields [28, 29]. As we shall see, the effect of noise is counterintuitively more

regular than other implementations considered so far.

Let us consider perturbing (11) to form a stochastic differential equation

dx(t) = f(x(t)) dt + εD dW(t) , (19)

whereW(t) is a standard two-dimensional vector Brownian motion, and D is a non-singular matrix

that allows for different noise magnitudes in different directions. The implementation Imp(x,M)
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is then a switch in mode whenever crossing of the discontinuity surfaces x = 0 or y = 0 is detected,

but the state x(t) = (x(t), y(t), z(t)) is stochastic. Despite the discontinuities in f , the system

(11)-(13) with (19) has a unique stochastic solution [30, 31].

Simulating as usual (but using the Euler-Maruyama method to solve the stochastic equations),

for sufficient time that the γi reach steady values, and varying z as a static parameter, we obtain

the ‘noise’ graph of the sliding speed hslide shown in fig. 3. This sliding solution appears to be a

smooth function of z, thus, similar to the smoothed system, not displaying jitter.

To further understand the origin of this sliding solution, rather than simply plotting the dis-

tribution of x and y points around their attractor in the ε-neighbourhood of x = y = 0, we use a

probability density function. Let ptrans(x, t;x0) denote the transitional probability density function

for (11) with (19). That is, given x(0) = x0, for any measurable subset E ⊂ R
2 and any t > 0,

the probability that x(t) ∈ E is
∫

E ptrans(x, t;x0) dx. If each fi is directed inwards, then ptrans

converges to a steady-state density p(x) as t → ∞, see fig. 8.
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FIG. 8: Steady state probability density functions for the system (11)-(13) implemented with noise by (19)

using D = I. The value of ε is arbitrary. In panel A, z = 0; in panel B, z = 1. The value of the probability

density is indicated by shading (dark red = maximum value, dark blue = zero).

Since (11) with (19) is ergodic [32–34], the fraction of time γi spent in Qi is equal to the spatial

fraction of p over Qi. That is,

γi =

∫

Qi

p(x) dx , i = 1, . . . , 4 . (20)

Finally, we formulate a boundary value problem for p. It is a steady-state solution to the Fokker-

Planck equation of (11) with (19), that is

−∇ · (fp) + ε2

2
∇ ·DDT∇p = 0 , x 6= 0 , y 6= 0 . (21)
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Along x = 0 and y = 0 the density p is continuous and the ‘flow of probability’ across these

boundaries is the same on each side. That is, the left and right limiting values of the probability

current

J = nT

(

fp− ε2

2
DDT∇p

)

, (22)

are equal, where n is a unit normal vector to the boundary. This condition specifies the jump in

the derivative of p at x = 0 and y = 0. Also p → 0 as |x| → ∞.

Despite having a piecewise-constant drift vector f and a constant diffusion matrix D, we have

been unable to obtain an analytical solution to this boundary value problem. This problem remains

for future work.

3. NECESSARY CONDITIONS FOR JITTER

The previous section reveals that jitter occurs for some implementations of switching and not

others. Moreover in fig. 3 it appears that jittery behaviour (from hysteresis, delay, discretization)

may be contained within some definite range, while the jitter-free behaviour (from smoothing or

noise) generate steady curves of a similar value. These basic observations, and certain necessary

conditions for jitter, are easy to explain.

Returning to the general system (2), let us consider ideal switching across the discontinuity

surfaces that bound the regions Qi. By ideal we mean that switching takes place at precisely the

boundaries of the Qi, following infinitesimal increments of motion along each of the modes fi.

To define a solution of such an ideal system it is necessary to extend the dynamical equations (2)

across the boundaries between the regions Qi. Following Filippov’s theory of differential inclusions

[11], this is achieved by taking the convex hull of f in an ε-neighbourhood of x.

Definition 3.1. The convex hull of f(x) is the set

fconv(x) =
⋂

ε>0

Conv
(

f
(

Bε(x)
))

, (23)

where Bε(x) is the closed ball of radius ε centred at x and Conv(F) denotes the convex hull of a

set of vector fields F .

A solution x(t) can then be defined as lying in the inclusion formed by the set-valued vector

field (23).

Definition 3.2. A Filippov solution to ẋ = f(x) is an absolutely continuous function x(t) for

which ẋ(t) ∈ fconv(x(t)) for almost all t.
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Applying this to the system (11)-(13) yields the set of allowed values of the sliding speed hslide

shown by the unshaded region in fig. 3. To show this, and to describe Filippov solutions in detail,

a more explicit expression for the convex hull is required.

Since the hull is spanned by the vector fields fi, we can express fconv as

ẋ = fconv(x) =

{

m
∑

i=1

γifi(x) : γi ≥ 0,

m
∑

i=1

γi = 1

}

. (24)

We recognise this as precisely the set of effective equations of motions (5). Hence the coefficients

γi have the interpretation of being the proportions of time spent following each vector field fi over

an infinitesimal interval of time.

We have seen in section 2 that the coefficients can be calculated a posteriori once a solution has

been simulated. We can alternatively ask whether the coefficients γi are determined a priori if we

assume a certain qualitative form of motion. The simplest case is if we assume x(t) ∈ Qi for some

interval of time, then γi = 1 and all other γj vanish for j 6= i, hence fconv(x) = fi(x).

The next simplest motion occurs if x lies on the boundary between just two modes, say Q1

and Q2, then (24) simplifies to fconv(x) = γ1f1(x) + (1 − γ1)f2(x) (with γ3 = γ4 = 0 and γ2 =

1− γ1). Assuming both vector fields point towards the boundary, the motion must proceed along

it, implying fconv(x) lies in the tangent space of the boundary. This provides one condition that

is sufficient to find γ1. For example if the boundary is x = 0, this implies the first component of

fconv(x) vanishes, which we write as fconv(x) = γ1f1(x) + (1− γ1)f2(x) = 0, so that sliding motion

along x = 0 is given by γ1 = f2(x)/(f2(x)− f1(x)). The motion then obtained along x = 0 is

the standard concept of sliding along a discontinuity surface due to Filippov [11]. One can easily

obtain similar expressions for motion along x = 0 > y, x > 0 = y, and x < 0 = y.

Since the γi are determined in these cases, sliding motion follows a steady, determinable function

hslide, given by (8) for the system (11). It is known that small perturbations of such sliding, via

smoothing, spatio-temporal delays or noise, cause only small perturbations of hslide, see e.g. [17, 28].

This fails when we consider motion along x = y = 0, where switching occurs between all four

vector fields f1, f2, f3, f4. Motion along x = y = 0 implies ẋ = 0 and ẏ = 0. Applying these two

conditions to (24) determines two of the coefficients γi (a third being determined since they sum

to unity), leaving one of the γi undetermined. Hence the speed of sliding hslide given by (8) along

x = y = 0 takes a one-parameter family of possible values.

The set-valuedness of the convex hull (24) creates the freedom for solutions to explore a range

of possible sliding motions, if switching is implemented in a manner that is well described by (5).

This applies to implementations dominated by hysteresis, time delay, or discretization, as they
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evolve in definite increments along each of the vector fields fi. The results of fig. 3 and fig. 5

appear to suggest that small perturbations of the implementation, such as changing the relative

spatio-temporal delays associated with each discontinuity surface, producing graphs of hslide that

explore the convex hull in vastly different ways.

An alternative to the indeterminate result obtained from the convex hull (24), is to consider

the convex canopy [10, 13]. This is a lower dimensional set of possible behaviours obtained by a

bilinear interpolation or ‘blending’ across each discontinuity surface independently,

ẋ = fcan(x) =







µy[µxf1(x) + (1− µx)f4(x)] +

(1− µy)[µxf2(x) + (1− µx)f3(x)]
: µy, µx ∈ [0, 1]







. (25)

The two conditions for sliding along x = y = 0, namely fcan = gcan = 0, are then sufficient to

uniquely determine µx and µy, and uniquely predict the speed of sliding

ż = hcan(x) =







µy∗[µx∗h1(x) + (1− µx∗)h2(x)] +

(1− µy∗)[µx∗h3(x) + (1− µx∗)h4(x)]
: µy∗, µx∗ ∈ [0, 1]







(26)

where µy∗ and µx∗ are solutions of the conditions fcan = gcan = 0.

When graphed on fig. 3 (or fig. 2), the canopy is found to coincide precisely with the sliding

speed hslide obtained from the smoothed simulation in fig. 3. In fact an equivalence is known

to exist between the canopy and smoothings or ‘regularizations’, see e.g. [17, 18] and references

therein. The correspondence to (18) is evident by replacing µx 7→ u1 and µy 7→ u2, hence when

simulated, the smoothed system in section 2E evolves to an attractor with steady values of x and

y, resulting in steady values of u1 and u2, which correspond to steady values of the coefficients

µx and µy. The reason for the noisy simulation in fig. 3 lying close to the same curve (a trend

observed in numerous other simulations run by the authors), is less obvious.

More insight is provided by understanding the relation between (24) and (25). The coefficients

µx and µy can be interpreted as proportions of time spent in x > 0 and y > 0 respectively. Hence

by (6), µx is the proportion of time spent in mode Q1 or Q4, and µy is the proportion of time spent

in mode Q1 or Q2, implying

µx = γ1 + γ4 , µy = γ1 + γ2 . (27)

Substituting these into (24) we can then eliminate γ2 and γ4, and use the fact that the γi sum to

unity to eliminate γ3, then fconv becomes (omitting the argument x)

fconv = γ1f1 + γ2f2 + γ3f3 + γ4f4

= γ1f1 + (µy − γ1)f2 + (1− µx − µy + γ1)f3 + (µx − γ1)f4 . (28)
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Like (24) this still has three unknown coefficients µx, µy, and γ1. However, if the proportions of

time µx and µy are independent, then their product gives the proportion of time spent in mode

i = 1 as γ1 = µxµy. Substituting this into (28) yields (25), with only two unknown coefficients, µx

and µy.

Hence the canopy (25) applies in cases where the rates of switching across the discontinuity

surfaces x = 0 and y = 0 are independent, providing well defined coefficients µi and hence well

defined motion for sliding along a discontinuity boundary. The hull (24) applies otherwise, in which

case the coefficients γi are not uniquely determined and sliding motion is sensitive to perturbations,

such as fine details of implementation.

Evidently from fig. 3, the smoothing of a bilinear interpolation between the vector fields fi, or

stochastic switching between those vector fields, both behave as if the rates of switching across

x = 0 and across y = 0 are independent. Such systems exhibit steady sliding motion which is well

determined by the canopy (25).

For implementations that spend regular intervals of time in the different vector fields due to

spatio-temporal delays (from hysteresis, time-delay, or discretization), fig. 3 instead suggests a

dependence between the rates of switching across x = 0 and across y = 0, permitting solutions

to explore more fully the hull (24). In doing so such implementations exhibit jitter, due to the

sensitivity of the attractors that approximate to sliding along the neighbourhood of x = y = 0.

This is only a weak explanation of jitter, but provides necessary conditions for its occurrence. A

rigorous explanation requires a detailed study of the attractors that constitute sliding motion along

an intersection of discontinuity surfaces, such as the attractors in fig. 4 to 8. These require study

of non-differentiable maps of dimension two (or more in general), or of a stochastic differential

equation with discontinuities dimension two or more. Only in the case of hysteresis is this known

to be reducible to a tractable problem.

4. THEORY OF HYSTERESIS-INDUCED JITTER

Here we summarize the theoretical results of Alexander and Seidman [9] for the hysteretic

system (11) with (14). Their results are stated with equally sized hysteretic bands (φ = 1
2), but

apply to any φ ∈ (0, 1) by a simple spatial scaling.
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A. Chatterbox dynamics

If each fi is directed inwards, as given by the conditions (12), then orbits of (11) with (14)

cannot escape the rectangle

Ω = {(x, y) : |x| ≤ α, |y| ≤ β} . (29)

Following [9], we refer to Ω as a chatterbox.

Recall that we write the vector fields in the regions Qi as fi = (fi, gi, hi). Here it is convenient

to let F = (f1, . . . , f4) and G = (g1, . . . , g4) be vectors containing the x and y-components of f . Let

Φ ⊂ R
4 × R

4 be the set of all (F ,G) for which (−fi,−gi) ∈ Qi, for each i. Then each (F ,G) ∈ Φ

corresponds to a hysteretic system (11) with (14) for which each fi is directed inwards.

Theorem 4.1. Let ε > 0 and φ ∈ (0, 1). Then there exists an open dense subset Φ̃ ⊂ Φ such that,

for all (F ,G) ∈ Φ̃, the hysteretic system (11) with (14) has an attracting periodic solution whose

basin of attraction contains almost all points in Ω. Moreover, each γi is a Lipschitz function of F
and G, where γi denotes the fraction of time that the attracting periodic solution is in mode i.

Alexander and Seidman prove theorem 4.1 by tiling the (x, y)-plane with copies of Ω so that (11)

with (14) is reformulated as a doubly periodic vector field. From the theory of such vector fields

[35], it immediately follows that the system has a unique rotation number for any (F ,G) ∈ Φ. For

an open dense subset Φ̃, this rotation number is rational and the system has an attracting periodic

orbit. Most of the effort required to prove theorem 4.1 is in then using the piecewise-constant

nature of the class of vector fields under consideration to show that there exists only one other

invariant set: an unstable periodic orbit of the same period.

Theorem 4.1 tells us that the vector field hslide, given by taking the ε → 0 limit in the hysteretic

system, is well-defined almost everywhere.

B. Circle map

The dynamics within Ω can be captured by a map on its boundary,

δΩ = {(x, y) : |x| = α, |y| = β} ,

between consecutive switching events. This map is discontinuous at the corners of Ω. It is better

to work with the second return map on δΩ from the nth switching event to the (n+2)th switching
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event, which is continuous at the corners. With the labels defined as in eq. (6) and modes switching

as in eq. (14), this map carries odd modes to odd, and even modes to even.

However, if we ignore switches at corners (which constitute a measure-zero subset), when an

orbit switches its mode changes from even to odd or vice-versa. For this reason it is simpler to

work with a map from the nth switching point to the (n+ 2)th switching point.

Let (x, y) be any point on the boundary of Ω corresponding to an orbit x(t) that has just

undergone a switch. By assuming that the mode of x(t) at this point is odd, the mode is completely

determined by the point (x, y). Specifically, if (x, y) lies on either the top or right edge of Ω then

x(t) is in mode 1 and if (x, y) lies on either the bottom or left edge of Ω then x(t) is in mode 3.

We map the boundary of Ω to a circle S
1 by the continuous function

η = B(x, y) =











































α−x
8α on y = +β ,

3β−y
8β on x = −α ,

5α+x
8α on y = −β ,

7β+y
8β on x = +α .

(30)

The corners of Ω map under B to integer multiples of 1
4 .

Each η ∈ S
1 corresponds to a point (x, y) on the boundary of Ω in either mode 1 or mode 3, as

determined by the edge of Ω to which (x, y) belongs. For any η ∈ S
1, we let q(η) ∈ S

1 correspond

to the location of the forward orbit of (x, y) immediately after its second switch.

Proposition 4.2. Suppose each fi is directed inwards. Then the circle map q is piecewise-linear,

continuous, invertible, and degree-one.

Proposition 4.2 is proved in Appendix A. Let u0 < · · · < u7 be the ordered list of the values

{

0, 14 ,
1
2 ,

3
4 , q

−1(0), q−1(14), q
−1(12 ), q

−1(34)
}

,

and let vi = q(ui) denote their images under q. The graph of q is then given by simply connecting

each (ui, vi) to
(

u(i+1)mod 8, v(i+1)mod 8

)

by a line segment (taking care to appropriately deal with

the equivalence of η = 0 and η = 1). Figure 9 provides an example. Panel A shows the map q;

panel B illustrates the action of q on each ui (here the lines show the result of two excursions across

the chatterbox and so do not align with the vector fields).

Figure 10 illustrates the circle map for the system (11)-(13), showing the attractors of fig. 4

in the context of the circle map. Figure 11 shows how the rotation number and period of the

attractor in Ω varies over the entire range of φ and z values. There are open regions for which



22

u
1

u
1

v
6

v
6

0

0

1/4

1/4

1/4

1/2

3/4

1/2 1/2

A B

3/4 3/40

0

u
3

u
3

η

v
0

v
0u

5

u
5

v
2

v
2

u
7

u
7

v
4

v
4

q(η)

FIG. 9: Geometry of the second return map q. An example is shown in panel A: the points u3, u5, u7, u1,

map to η = 0, 1
4
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4
, which in turn map to v0, v2, v4, v6. This is illustrated in the chatterbox Ω in panel B.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
A

η

q(η)

B

η

q(η)

FIG. 10: Attractors of the circle map q for the system (11)-(13) with φ = 0.5. In panel A, z = 0.3; in panel

B, z = 0.5. These correspond to the attractors in Ω shown in fig. 4.

the rotation number is constant — these are mode-locking regions. By theorem 4.1 these regions

densely fill parameter space. We observe that the mode-locking regions have points of zero width.

This phenomenon has been described for the sawtooth map [36] and piecewise-linear maps on R
n

[37, 38], but to our knowledge has not previously been detected for piecewise-linear maps whose

slope takes more than two values.

The smooth portions of the hysteresis graph in fig. 3 correspond to attractors with a fixed

rotation number. For instance between z ≈ 0.23 to z ≈ 0.45 the rotation number is 2
3 , as shown in

fig. 11.
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FIG. 11: Mode-locking regions of the circle map q for the system (11)-(13). Different colours correspond

to different periods n up to n = 20; uncoloured regions correspond to a period n > 20 or a quasi-periodic

orbit. At the bottom of the figure we have indicated the rotation numbers m
n

of mode-locking regions with

n ≤ 5. Figure 3, 10, and 5 correspond to cross-sections or particular points in this figure as indicated.

The two plots in fig. 5 correspond to horizontal cross-sections of fig. 11, and so we can see that

while the rotation number is constant the value of hslide varies smoothly. Over the range φ = 0 to

φ = 1 the rotation number explores values across its full possible range (from 0 to 1). This forces

intervals of constant rotation number to be relatively small and for this reason hslide is an erratic

function of φ.

C. The limiting hysteresis ratios

The value of hslide can be given explicitly for the limits φ → 0 and φ → 1. With φ ≈ 0 or

φ ≈ 1, the chatterbox Ω is a narrow rectangle. As orbits in Ω travel between the short sides of Ω

they switch many times between two modes. During this time the motion is well-approximated by

Filippov’s standard sliding concept for a single discontinuity surface. We can then average the two

sliding motions to obtain hslide.

To state the limiting values of hslide we require some additional notation. We let

λ14 =
g4

g4 − g1
, λ23 =

g3
g3 − g2

, λ12 =
f2

f2 − f1
, λ43 =

f3
f3 − f4

, (31)

and for each of the four adjacent pairs of modes ij we let

fij = λijfi + (1− λij)fj , (32)
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denote the sliding vector field. Writing fij = (fij , gij , hij) we also let

λ14,23 =
f23

f23 − f14
, λ12,43 =

g43
g43 − g12

, (33)

in order to average the corresponding pairs of fij .

The following result, proved in App. B, provides the limiting values of γi from which hslide is

given by (8).

Proposition 4.3. At any point on x = y = 0 at which each fi of (11) is directed in towards

x = y = 0, the zero-hysteresis sliding solution yields the following limiting values of γi. In the limit

φ → 0,

γ1 = λ14,23λ14 , γ2 = (1− λ14,23)λ23 , γ3 = (1− λ14,23)(1 − λ23), γ4 = λ14,23(1− λ14), (34)

and in the limit φ → 1,

γ1 = λ12,43λ12 , γ2 = λ12,43(1− λ12), γ3 = (1− λ12,43)(1 − λ43), γ4 = (1− λ12,43)λ43 . (35)

The values of hslide obtained at these extrema are indicated by the white dots at φ = 0 and

φ = 1 in fig. 5, confirming that the graph does indeed pass through these values.

D. Chatter box dynamics under weaker conditions

Jitter is possible under weaker conditions than discussed so far, where the intersection is not

uniformly attracting. To demonstrate this let us illustrate hysteretic dynamics for piecewise-

constant vector fields in three cases for which one or more of the fi is not directed inwards, showing

that jitter remains possible. The two cases are depicted by fig. 12.

Recalling that we write fi = (fi, gi, hi), we first consider

f1 = −1 , g2 = 1 , g3 = 1 , g4 = −1 ,

g1 = 1.2 , f2 = −1.5 , f3 = 0.5 , f4 = 0.2 ,
(36)

see fig. 12-A. Here f2, f3 and f4 are directed inwards, but f1 is not. Nevertheless, the neighbourhood

of the origin is a global attractor, because the sliding dynamics on x = 0 with y > 0 approaches

(x, y) = (0, 0).

When the system is perturbed by hysteresis, orbits repeatedly escape Ω (because f1 is not

directed inwards) but remain within some neighbourhood of the origin (because the origin is an

attractor of (11)). This is shown in fig. 13-A.
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FIG. 12: Schematics of the two-dimensional piecewise-constant vector fields (11) considered below, with

sliding motion on part of the discontinuity surfaces (x = 0 and y = 0).

Despite repeatedly escaping Ω, the map q from proposition 4.2 can be derived for this example

and is shown in fig. 13-B. In this case q is discontinuous and is neither one-to-one nor onto, but

the mere existence of the map and its possession of attractors mean that jitter is possible.

The third iterate of q is shown in fig. 13-B. For the given parameter values (36), and more

generally for an open set of parameter values about them, there exists a trapping region within

which the third iterate is given by a two-piece piecewise-linear function, as shown inset. This is

a skew tent map with slopes 1 and (g1/f1)(g3/f3)
(g2/f2)(g4/f4)

. With (36) the latter slope is −2. As described

in [39–41], the dynamics is chaotic at these values. Similar to section 2, varying parameters or

hysteresis ratios causes the attractor to undergo numerous bifurcations, and the dynamics along

x = y = 0 therefore exhibits jitter. We leave further explorations of this to future work
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FIG. 13: The chaotic attractor of (11) with (14) and (36). Panel A shows part of an orbit in the (x, y)-plane;

panel B shows the circle map q and its third iterate q3.
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Here we consider (11) with

f1 = 1 , f2 = −0.6 , f3 = 1 , f4 = −1 ,

g1 = 1 , g2 = −1 , g3 = 0.8 , g4 = −0.4 ,
(37)

see fig. 12-B. This a representative example, the exact values as given are not important and

are only provided for clarity. With these values f1 is directed outwards, hence the intersection

x = y = 0 is not uniformly attracting, nevertheless orbits can become trapped in a neighbourhood

of x = y = 0.

To understand why this occurs, first notice that the values (37) have been chosen such that

for the unperturbed system (11), solutions on the negative x and y-axes approach the origin

(x, y) = (0, 0). Orbits thus approach the origin by either sliding along the negative x-axis, sliding

along the negative y-axis, or regular motion in x, y < 0.

With the addition of hysteresis, such ‘approaching’ dynamics involves evolution with x < α and

y < β in modes 2, 3 and 4. But if an orbit is in mode 2, since f2 points towards Q3, the orbit

cannot switch to mode 1 by reaching x = α, it can only switch to mode 3 by reaching y = −β.

Similarly, f4 points towards Q3 and so an orbit in mode 4 can only switch to mode 3. If an orbit

in mode 3 reaches y = β (with x < α) it changes to mode 2, whilst if it reaches y = α (with y < β)

it changes to mode 4. In the special case that it reaches (x, y) = (α, β) it changes to mode 1 (and

subsequently escapes). Thus escape from a proximity to the origin requires passing through the

point (α, β). Hence, over any finite time interval, almost all orbits remain near the origin. In this

sense hysteresis stabilizes the unstable sliding surface x = y = 0. As a result an attractor exists

that gives rise to sliding, and again varying parameters or hysteresis ratios causes the attractor to

undergo numerous bifurcations, inducing jitter. We also leave further explorations of this to future

work.

5. AN APPLIED EXAMPLE - ELECTRONIC POWER CONTROL

Power electronics seeks to regulate energy conversion in order to interface machinery with

electrical power transfer systems. Often this is achieved using physical switches in the form of solid

state semiconductor devices, for which a discontinuous on-off function is an accurate representation,

see e.g. [20, 21], and has become an important part of their mathematical design, referred to as

variable structure, sliding mode, or equivalent control systems.

Let us take a relatively simple example to illustrate jitter. We consider a circuit in which an

inductor, two capacitors, and electrical switches are used to interface four electrical energy sources
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in a theoretically lossless manner. This device is a basic example of a two-switch topology (e.g.

[19]), and because of the independence of the switches, is found to exhibit jitter.

We assume that there are two voltage sources, E1 and E2, and two current sources, I1 and I2.

There are four possible configurations of the system that are selected according to two independent

switching conditions. The equations describing the system are

L
diL
dt

= −(1− u1)(1− u2)vC1
− (1− u1)u2E1 + u1(1− u2)E2 + u1u2vC2

(38)

C1
dvC1

dt
= (1− u1)(1− u2)iL − (1− u2)I1 + u2I2 (39)

C2
dvC2

dt
= −u1u2iL + u2I1 − (1− u2)I2 (40)

where u1 and u2 take the values 0 or 1. If these are chosen as

u1 = H(i∗L − iL) and u2 = H(v∗C1
− vC1

), (41)

where H is the Heaviside step function, then the values of iL and vC1
are controllable provided

iL, i
∗
L < I1. An example of such a switched mode circuit with single-pole double-through switches

is shown in Fig. 14.

Letting x = (iL − i∗L)/A, y = (vC1
− v∗C1

)/V , z = vC2
/V , where A and V denote the units of

current and voltage, and taking physically reasonable parameter values L = 1.5mH, C1 = 1.6mF ,

C2 = 1.2mF , i∗l = 3A, v∗C = 10V , E1 = 12V , E2 = 10V , I1 = 6A, I2 = 4A, the four modes become

(ẋ, ẏ, ż) = 103 ×











































(−2(y + 10)/3, 5(x− 3)/8, −10/3) , (x, y) ∈ Q1 ,

(20/3, −15/4, −10/3) , (x, y) ∈ Q2 ,

(2z/3, 5/2, 5(3 − x)/6) , (x, y) ∈ Q3 ,

(−8, 5/2, 5) , (x, y) ∈ Q4 ,

(42)

with the regions Qi defined as in eq. (6).

We take hysteresis bounds α = β = ε/
√
2 (so φ = 1/2 in the notation of (15)). The simulations

below are obtained approximating x ≈ y ≈ 0, which is valid for sufficiently small ε. In these

simulations we use ε =
√
2/10 or ε =

√
2/103 (so that α = β = 0.1 or 0.001).

Figure 15 shows two examples of the attractor between the hysteresis boundaries at fixed values

of z. Figure 16 shows a simulation of the system obtained by solving the full system (38). The

effect of jitter is observable as a marked change in the gradient, particularly around t ≈ 0.032s.

Two simulations for different hysteresis widths ε are shown, with similar results. The gradient,

corresponding to the speed ż = hslide, can be calculated numerically by taking the gradient of this
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FIG. 14: Power transfer between sources using a switch network and passive elements. The variable con-

trolling each switch (u1, u2) is shown above the switch itself; the position that the switch takes for input 1

is also marked. For input 0 the switch takes the complementary position.
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FIG. 15: Attractors inside the ε-hysteresis chatterbox at z = vC2
= 13 (panel A) and z = vC2

= 16 (panel

B), with α = β = 0.1.

graph, shown in panel B by the green dotted and red dashed curves for the two curves in panel

A. This is compared in panel B to the theoretical sliding speed, found by iterating the hysteretic

map inside the chatterbox at fixed z (thin blue curve), which corresponds to taking an ideal limit

ε = 0, and which is almost indistinguishable from the ε =
√
2/103 simulation.
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FIG. 16: Simulation of jitter in the circuit model for the parameters in fig. 15. Panel A shows a solution of

the system (38) with ε =
√
2/103 (full curve) and ε =

√
2/10 (dotted curve). Panel B shows the speed along

the switching intersection, calculated from the gradient of the full simulation for ε =
√
2/103 (dashed green

curve) and ε =
√
2/10 (dotted red curve), and the ideal ε = 0 (thin blue curve) calculated by iterating the

hysteretic map at fixed z. The ε =
√
2/103 and ε = 0 curves are almost indistinguishable. The canopy from

(25) is also shown, and the unshaded region indicates the convex hull.

The results agree with the predicted theory, showing jitter in the sliding vector field, and in

fig. 16-A we see how this affects the solution. In fig. 16-B we see that the derivative explores

a significant portion of the convex hull, agreeing with the theoretical sliding motion given by

the attractor in the chatterbox, and deviating significantly from the canopy combination. In the

simulation with ε =
√
2/10, the switching frequency for u1 is found to be more variable than the

switching frequency of u2, but for both it remains in a range between 5kHz and 25kHz, which are

within the operating range of widely used electronic sensors and semiconductor switches.

6. CLOSING REMARKS

The phenomenon of jitter along the intersection of multiple switches is a consequence of the

rich dynamics that arises when switches are not ideal discontinuities, but instead involve elements

of hysteresis, time-delay, or discretization. If we can assume that each coefficient µx,y in eq. (25)

is determined independently, then their values are given by the canopy combination. This appears

to be a good approximation for a system where the switch is a limit of a smooth sigmoid function

which becomes infinitely steep, or of a noisy switch as the noise amplitude tends to zero. The

canopy appears to be a poor approximation when hysteresis, time-delay, or discretization dominate

the dynamics of switching, when instead the system evolves onto an attractor that determines
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the dynamics, an attractor whose identity is sensitive to parameters of the vector fields and the

switching model.

The attractor observed in the presence of hysteresis, time-delay, or discretization, is not obvious

a priori from the vector fields, but is the solution of a continuous piecewise-differentiable circle map

in the case of hysteresis, and more complicated maps in the cases of time-delay and discretization.

The attractor undergoes bifurcations as parameters of the system are varied. These parameters

may belong to the vector fields themselves, or to the perturbation. The bifurcations cause abrupt

jumps in the attractor, resulting in abrupt jumps or ‘jitter’ in the dynamics along an intersection

of switches. The work of Alexander and Seidman [9] showed that the sliding speed depends on the

attractor at the intersection, and we have added to the explanation and details of the phenomenon,

particularly its observable effect on the dynamics, showing that it extends to other perturbations.

Clearly extensive further work is needed to study the attractors, and to derive rigorously the

conditions for jitter, when delay, discretization, or noise are involved. The ultimate aim must be

to understand systems that exhibit all of these non-idealities, and perhaps others (e.g. where the

discontinuity surface itself is a fuzzy set or distribution), studying which perturbations dominate

and what their influence is on the appearance of jitter. The effect would appear to be highly

significant both for theoretical and practical problems involving interactions between two or more

switches, so substantially deeper study is warranted.

Appendix A: Proof of proposition 4.2

Choose any η ∈
(

0, 14
)

(other values can be treated similarly) and let (x0, y0) = B−1(η), where

y0 = β.

In mode i orbits follow ẋ = ai and ẏ = bi. The forward orbit of (x0, y0) is initially in mode 1,

where a1 < 0 and b1 < 0 because f1 is directed inwards. Thus the orbit next switches at either

x = −α or y = −β. Let us suppose it switches at x = −α (the other case can be treated similarly).

Let (x1, y1), where x1 = −α, denote the point of switching.

Now the orbit is in mode 2 for which a2 > 0 and b2 < 0. Thus it next switches at either x = α

or y = −β. Let us suppose it switches at x = α (the other case can be treated similarly) and let

(x2, y2), where x2 = α, denote the point of switching. Then q(η) = B(x2, y2).

For sufficiently small ∆η > 0 we have η + ∆η = B(x0 − ∆x, y0), where ∆x = 8α∆η. For

sufficiently small ∆η > 0, the forward orbit of (x0 −∆x, y0) next switches at
(

x1, y1 +
b1∆x
a1

)

and
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then at
(

x2, y2 +
b1∆x
a1

)

. Then

q(η +∆η) = B

(

x2, y2 +
b1∆x

a1

)

= η +
b1∆x

8βa1
= η +

αb1∆η

βa1
,

and so q′(η) = αb1
βa1

> 0. Indeed in every case the value of q′(η) is a positive constant. This

demonstrates that q is piecewise-linear and, once we prove continuity at corners, is continuous and

increasing.

Now suppose the forward orbit of (x0, y0) first switches at the corner (−α,−β). In this

case q(η) = 1
2 and the forward orbit of (x0 − ∆x, y0) switches at

(

−α,−β + b1∆x
a1

)

and then

at
(

−α− a2b1∆x
b2a1

,−β
)

. Thus q(η + ∆η) = 1
2 + O(∆η) which shows that q is continuous here.

Similar arguments show that q is continuous at all corners and pre-images of corners of Ω.

Finally let us consider q−1(η) for any η ∈
(

0, 14
)

. The corresponding orbit that arrives at

(x0, y0) = B−1(η) changes to mode 1, thus must previously have been in mode 4. The backward

orbit of (x0, y0) is mode 4 is unique, and in this way we can follow the orbit backwards through

two switches to verify that q−1(η) is well-defined and unique. That is, q is invertible, and since q

is increasing it must be degree-one.

Appendix B: Proof of proposition 4.3

Here we prove the result for φ = 0; the result for φ = 1 follows by symmetry.

First consider an orbit as it travels from any point on the right boundary of Ω, x = α, until

reaching the left boundary, x = −α. During this time the orbit switches between modes 1 and

4. With φ ≈ 0, the number of switches is O
(

1
φ

)

. Thus the fraction of time spent in mode 1 is

λ̃14 = λ14+O(φ), and the fraction of time spent in mode 4 is 1− λ̃14. Also the time taken to travel

from x = α to x = −α is

T14 =
−2α

λ̃14f1 + (1− λ̃14)f4
. (B1)

Upon reaching x = −α, the orbit subsequently travels back to x = α switching between modes

2 and 3. The fraction of time spent in mode 2 is λ̃23 = λ23 +O(φ), and the fraction of time spent

in mode 3 is 1− λ̃23. Also the time taken to travel from x = −α to x = α is

T23 =
2α

λ̃23f2 + (1− λ̃23)f3
. (B2)

By combining these observations, we see that as the orbit travels from x = α until it next arrives

at this boundary, the fraction of time spent in mode 1, for instance, is T14λ̃14

T14+T23
. Since this is true
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between any consecutive times at which the orbit is located on x = α, it is also true for evolution

over all t ∈ R. Hence γ1 =
T14λ̃14

T14+T23
. By using (B1) and (B2) it is readily seen that this value limits

to the value of γ1 in (34) as φ → 0. The values of γ2, γ3 and γ4 in (34) follow in the same fashion

from the above observations.
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[31] N.V. Krylov and M. Röckner. Strong solutions of stochastic equations with singular time dependent

drift. Probab. Theory Relat. Fields, 131:154–196, 2005.

[32] A.V. Skorokhod. Asymptotic Methods in the Theory of Stochastic Differential Equations. American

Mathematical Society, Providence, 1989.

[33] R. Khasminskii. Stochastic Stability of Differential Equations. Springer, New York, 2010.

[34] V. Capasso and D. Bakstein. An Introduction to Continuous-Time Stochastic Processes. Birkhäuser,
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