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Abstract.

The theory of nonsmooth dynamics describes how discontinuities in dynamical laws, such as

those caused by friction, impacts, shape buckling, or mechanical relays, affect the deterministic

and otherwise smooth behaviour of a mechanical system. In the geometric theory of dynamics,

a system ‘flows’ through a phase space, sometimes encountering limit sets, bifurcations, or

chaos. The phase space of a nonsmooth flow is also permeated by switching thresholds. The

flow can kink as it crosses the threshold, but it can also stick to the threshold, corresponding to

frictional sticking, and resulting phenomena like stick-slip oscillations have been a fruitful area

of study for mechanical modeling. The interaction of multiple objects undergoing coupled stick-

slip oscillations have not been studied from the same point of view, however, because, perhaps

surprisingly, the continuous time dynamical methods for multiple sticking events were derived

only recently.

We summarize those methods here, including the extension of Filippov’s methods to multiple

switches, and the introduction of hidden dynamics inside a discontinuity. We show the impli-

cations these have for a series of coupled dry friction oscillators, giving insight into complex

self-sustained oscillations. We derive the basic mechanisms of entry and exit from single or

multiple sticking modes (i.e. sticking of multiple oscillators), which include both deterministic

and determinacy-breaking exit points. Both of these kinds of exit point can cluster in higher di-

mensional systems, and both lead to complexity of behaviour in the form of robust, repeatable,

but unpredictable behaviour. The study of exit points reveals how large scale unpredictability,

with no obvious global structure, nevertheless has local origins in the form of local sensitivity

to initial conditions at exit point singularities.
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1 Introduction

One might not expect that much remains to be learned about the elementary mechanics un-

derlying dry friction oscillators, especially when assuming the simplest Coulomb-type (step

function) contact force. In this paper we begin showing how advances in the mathematical

theory of nonsmooth dynamics alter our view of how complex mechanical phenomena emerge

from simple underlying geometry, and highlight some of the techniques that can be used to

study them.

The systems we will consider relate a set of displacements x = (x1, x2, ..., xn), and their

time derivatives, by a relation of the general form

ẍ = f(x, ẋ;λ) , (1)

expressible as a first order system in terms of x and y if we let y = ẋ. A vector of parameters

λ = (λ1, λ2, ..., λm) will typically represent contact forces which obey

λi ∈

{

sign (hi(x)) if hi(x) 6= 0 ,
[−1,+1] if hi(x) = 0 ,

(2)

for i = 1, 2, ...m, in terms of smooth scalar functions h1, h2, ... hm. On each surface hi(x) = 0,

if there exists a solution to the inclusion (1)-(2) such that ḣi(x) = 0, then the system has

trajectories that stick to (or in the dynamics system parlence ‘slide along’) the surface hi = 0
for some interval of time. Likewise if ḣi(x) = 0 on hi(x) = 0 can be solved for a subset of

i ∈ {1, 2, ..., m}, trajectories exist that stick to the intersection of the surfaces hi = 0. The

general principles of how to determine the existence and dynamics of sticking modes can be

found in [8], but for the mechanical oscillator they are particularly simple.

In the following we shall consider one, two, and then multiple oscillators, coupled via springs

and dampers, situated on a surface moving with constant speed and subject to Coulomb dry

friction. The functions hi will become the slipping speed of the ith oscillator relative to the

surface, positive and negative hi denoting right and leftward motion, respectively. We will look

at the mechanics by which oscillators are released from stick (hi = 0) to slip (hi 6= 0), observed

as singularities in the phase space of x and ẋ, and show how this leads to either deterministic

or determinacy-breaking exits from sticking. We then discuss the way clusters of exit events

tend to appear, creating a likelihood that multiple oscillators will exit simultaneously, or in close

succession, from stick to slip. The effect of this geometry on large numbers of oscillators is then

studied in numerical experiments, revealing short term unpredictability against a background of

long term self-organisation, which reveals itself in the statistics of stick-slip cascades.

2 Slip and Stick for a single oscillator

We begin with the simple dry friction oscillator, reviewing certain basic insights that we shall

extend to many oscillators below. A block rests on a surface that moves with constant speed

v. The block is attached to a fixed apparatus by a spring with stiffness κ and extension z, and

by a dashpot with damping coefficient ρ. The block’s mass can be scaled out of the equations,

resulting in

z̈ + ρż + κz + µ (ż − v) = 0 , (3)

where µ(ż − v) is a function describing the coefficient of friction between the block and the

surface, satisfying

µ(u) ∈ µ̃

{

sign(u) if u 6= 0 ,
[−1,+1] if u = 0 .

(4)
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The constant µ̃ denotes the coefficient of kinetic friction. We can form a first order ordinary

differential equation by letting ż = y+ v, where y is the block’s velocity relative to the moving

surface. This and similar systems have been extensively studied from analytical, numerical, and

experimental viewpoints, see e.g. [4, 7, 12, 13], especially with regard to periodic or chaotic

dynamics when a periodic forcing is added to (3).

The block’s motion is illustrated in phase space in fig. 1, as a primer for the more complicated

situations to follow. The block switches its direction of slip as ż − v passes through zero, but

only if the spring force (−κz) is great enough that (ρv+κz)2 > µ̃2, otherwise the block and the

surface stick together, seen as the trajectory traveling along ż = v in fig. 1. During the sticking

phase we can find the resistance force provided by considering µ to be a variable in (3), and

finding its value by solving

z̈ + ρż + κz + µ = 0 , ż = v , z̈ = 0 ⇒ µ = −ρv − κz . (5)

z

E

E

v

v<0 v>0
 .
z

(a) (b)

z

v

 .
z

Figure 1: The phase space of the dry friction oscillator for v < 0 and v > 0. Slipping motion to the right or left

correspond to relative speeds ż > v or ż < v respectively. Crossing between slip directions takes place where the

line ż = v is dashed, while sticking occurs between the two points where the flows fold towards or away from the

line. A fold where the flow curves away creates an exit point (marked E), where the oscillator goes from stick to

right slip in (i) or from stick to left slip in (ii), and the exiting trajectory is shown as a bold curve.

The boundary between the two cases (slip-slip transition or slip-stick transition) is delimited

by folds in the slipping flow at z = (∓µ̃− ρv)/κ, where the flow is quadratically tangent to the

discontinuity. Whether the flow turns towards or away from the discontinuity surface at these

points is determined by the curvature term
...
z = −ρz̈ − κż = −κv, which implies that the flow

curves upwards at both folds if v < 0 (downwards if v > 0 but we mainly consider the former

here). Places where the flow curves away from the discontinuity create exit points from sticking

(the point E in the figure), and will take on increasing importance in what we consider below.

In systems of multiple oscillators studied in the next two sections, it is possible for exit points

like those in fig. 1(i-ii) to form on both sides of the discontinuity simultaneously. This causes

an ambiguity in which side of the discontinuity a trajectory will exit from sticking. The general

ambiguity has been much studied in the last two decades (see [3] and references therein), but

seems not to arise easily in low dimensional mechanical systems. Below we shall see that

ambiguous exits play a more significant role as more oscillators are added.

3 Slip and Stick for a pair of oscillators

Consider now a pair of blocks each independently of the form (3) (labelled by subscripts 1

and 2), and coupled by an additional spring with stiffness κ12. We have

z̈1 + ρ1ż1 + κ1z1 + κ12(z1 − z2) + µ1 (y1 − v) = 0 ,
z̈2 + ρ2ż2 + κ2z2 + κ12(z2 − z1) + µ2 (y2 − v) = 0 .

(6)
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Again v is the speed of the surface on which the blocks rest. Such systems have been much

studied for their periodic or chaotic dynamics under periodic forcing, see e.g. [1], but, as for

the single oscillator, we are more interested in local properties and omit any external forcing.

The coupled system dynamics occupies the phase space of (z1, z2, ż1, ż2), with discontinuity at

the two surfaces z1 = v and z2 = v, where the two blocks switch between left and right slip.

Consider the discontinuity surface y1 = v first. Sticking occurs for displacements z1, z2,

satisfying (ρ1v + κ1z1 + κ12(z2 − z1))
2 < µ̃2

1, and elsewhere on y1 = v the first block flips

between left and right slip without sticking. The two cases are separated, as in section 2, by

folds of the slipping flows, which occur on planes (κ1 − κ12)z1 + κ12z2 = ∓µ̃1 − ρ1v. Whether

the flow turns towards or away from the discontinuity is determined by the curvature term
...
z 1 = (κ12 − κ1)v− κ12ż2, whose sign is dependent on the velocity ż2 of the second block, and

on the relative sizes of κ1 and κ12. Clearly the quantity
...
z 1 itself can vanish, creating a cusp or

higher order tangency between the flow and the discontinuity, see e.g. [5, 14].

We can perform similar analysis for the second block to find that, on the discontinuity surface

y2 = v, sticking occurs where (ρ2v + κ2z1 − κ12(z2 − z1))
2 < µ̃2

2, folds occur on planes

(κ2−κ12)z2+κ12z1 = ∓µ̃2−ρ2v, where the curvature term
...
z 2 = (κ12−κ2)v−κ12ż1 decides

the existence of exit points.

Sticking of both blocks occurs where both sticking conditions hold, on a region taking the

form of a parallelogram in the (z1, z2) space on ż1 = ż2 = v (bottom-left in fig. 2),

−µ̃1 < ρ1v + (κ1 − κ12, κ12) · (z1, z2) < +µ̃1 ,
−µ̃2 < ρ2v + (κ12, κ2 − κ12) · (z1, z2) < +µ̃2 .

(7)

The edges of this region are the two fold planes. As a trajectory leaves the parallelogram (7) at

one of these edges, one of the blocks begins to slip, and may be closely followed by the second

block beginning to slip. Figure 2(a) depicts a bold trajectory where block 1 and then block 2

slip in close succession.

Our greater interest now resides in the corners of the parallelogram, where exit points co-

incide when both blocks may exit from sticking contact simultaneously. These are two-fold

singularities of the kind described in [10], where there is a fold both of the first and second

oscillator’s flow. Solving both of the fold conditions to find the corner gives the isolated points

(

z1
z2

)

= −ρ1v±µ̃1

K

(

κ12 − κ1

κ12

)

− ρ2v±µ̃2

K

(

κ12

κ12 − κ2

)

, (8)

writing K = κ1κ2 − κ12(κ1 + κ2). The different combinations of ±µ̃1 and ±µ̃2 give four such

points. The curvature in the ż1 and ż2 directions takes the same value at each point, namely

...
z 1 = −κ1v ,

...
z 2 = −κ2v , (9)

meaning for v < 0 the flow curves always in the position direction with respect to the ż1 and ż2
directions, and thus towards the discontinuity from below, and away from it from above. Hence

the point given by {+µ̃1,+µ̃2} is a double exit point, where both blocks are carried away from

sticking by the flow, and therefore both begin slipping simultaneously. The points given by

{+µ̃1,−µ̃2} and {−µ̃1,+µ̃2} are illustrated in fig. 2 (b) and (c) respectively. The dynamics in

each scenario are described in the caption, and reveal that only (b) forms an exit point, in which

both blocks simultaneously cease sticking.
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Figure 2: A representation of dynamics in the four dimensional phase space of (z1, z2, ż1, ż2), showing the discon-

tinuity surfaces ż1 = v and ż2 = v, on which sticking occurs in the shaded regions. Illustrating: (a) a typical case,

showing the flow on the discontinuity surfaces when sticking occurs (dotted curves show the‘virtual’ flow, indicat-

ing the flow off the surfaces where there is no sticking); (b) a visible two-fold forms a double exit point, a boundary

where both oscillators cease sticking, and since the exit takes place into a region where there is no sticking the flow

is well-determined; (c) a two-fold of mixed visibility has a well-defined trajectory emanating from it, but the flow

in the (z1, z2) plane reveals it is not an exit point as the flow cannot enter the point (c) along the intersection. This

is a sketch generated from simulations for constants ρ1 = ρ2 = 0.1, κ1 = 1.1, κ2 = 1.6, κ12 = 0.5, µ̃1 = µ̃2 = 1,

v = −1. The different points are shown in (z1, z2) space (bottom-left) as the corners of the sticking parallelogram

(7), whose edges are the fold sets, and on which the flow during sticking obeys (ż1, ż2) = (v, v).

4 Slip and Stick for multiple oscillators

We now generalize the above system to any number of oscillators, constrained to move along

a line, but to avoid being overly prescriptive, we allow them to be coupled by an arbitrary

arrangement of springs. The system we shall study here extends (3) and (6) to n blocks by

writing

z̈i +Mρ
ij żj +Mκ

ijzj + µi (yi − v) = 0 , i = 1, ..., n, (10)

where Mρ and Mκ are n × n square matrices, and we sum over the index j = 1, ..., n. The

matrix of damping coefficients Mρ is diagonal, the matrix of spring stiffness coefficients Mκ

has a diagonal part (of individual springs) and an antisymmetric part (of spring couplings).

Systems of multiple coupled oscillators similar to this have again been much studied, but the

continuous time approaches used for the low dimensional systems as above tend to be aban-

doned in favour of discrete methods. Such models are now a huge topic of network complexity

science, building on earthquake models such as [2], and typically modelled as discrete time

algorithmic models (where ‘stick’ and ‘slip’ are discrete modes). In the light of the continuous

time dynamics above, and exit points in particular, we shall now re-consider what the continu-

ous time dynamical theory implies for the behaviour of a high dimensional system.

In section 2 the system had two fold points which bounded the sticking dynamics. In sec-

tion 3 the system had four lines of folds which intersected in pairs (bottom-left in fig. 2), near

which there is an increased chance of one exit (one block beginning to slip) being followed by

another (the second block beginning to slip). As more oscillators are introduced, say a total of
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n oscillators, we obtain 2n folds. If r oscillators are sticking, the dynamics occupies a 2n − r
dimensional phase space, upon which k folds may intersect where n + k ≤ 2n − r, and there

will be up to 2k such points. Thus there exist up to 2k points where up to k ≤ n of r ≤ k
sticking oscillators may begin slipping simultaneously, nearby by which cascades of up to 2k

oscillators may be seen beginning to slip, one after another in rapid succession.

Obviously, displaying simulations of systems of multiple oscillators in phase space will be of

limited use, and already in section 3 we have been able to give only schematic representations

of the phase space dynamics for two blocks. From that analysis, however, the central feature of

interest is the codimension of the motion, equivalent to the number of intersecting discontinuity

surfaces upon which sticking motion occurs, or, in physical terms, simply the number of blocks

sticking at a given time. We label this the sticking codimension nstick. Exit points are then easily

observed as incremental decreases in the sticking codimension. If clusters of exit points occur

as expected, they will be seen as cascades of decreasing sticking codimension nstick.

The following plots are taken from a simulation of the system (10) with v = −0.2, with all

µ̃i = 1, and with initial conditions zi = −0.7, żi = −0.4, for all oscillators. The damping

constants are taken as random values in the range Mρ
ij ∈ [ρ, 2ρ] with ρ = 3.5, the spring

constants as random values in the range Mκ
ij ∈ [−κ,+κ] with κ = 0.2. These various details

have little impact on the qualitative outcomes of the simulations, the key parameters which

provide the behaviour below being v, ρ, and κ.

Figure 3(i) shows the sticking codimension for a system of 20 oscillators. Four oscillators

stick almost immediately, followed by a succession of exit points through which all slip at

around t ≈ 24, and after a short return to sticking all oscillators eventually slip. The behaviour

becomes more interesting as we increase the dimension. For 100 oscillators, in fig. 3(ii), nu-

merous cascades of exit points, and countering returns to stick, occur over a time period of

around 100 or so increments (but after t & 150 all oscillators are eventually found to slip). For

200 oscillators, in fig. 3(iii), these complex stick-slip transitions become self-sustaining, with

cascades of exit points and collapse back to sticking mediating each other over long times.

n=20

n
st

ic
k

time

8

6

4

2

0 20        40       60       80

n=100 n=200

n
st

ic
k

time

50

40

30

20

10

80

60

40

20

0 20        40       60       80

n
st

ic
k

time0 20        40       60       80

Figure 3: Plots of the sticking codimension nstick for systems of n oscillators, as described in the text.

We shall look closer into this long-term behaviour below. First, as discussed in section 3, a

system becomes very sensitive around exit points and should be sensitive to modeling assump-

tions. In fig. 4 we investigate the system’s robustness, first to perturbations of the switching

model and then to perturbations of the mechanical constants. An important simplification we

have made in the simulations here is to approximate each sign function µi(u) by a sigmoid

µ(u) = φ(u/ǫ), in fact we take φ ≡ tanh and ǫ = 0.03, and this permits us to simulate using

a standard ODE package (in this case the Mathematica R© routine NDSolve). The precise choice

of sigmoid does not matter typically (see e.g. [9, 11]), but as noted in [6] can create novel be-

haviours near exit points. In fig. 4(i)-(ii) each switching function µi(u) is replaced by a sigmoid
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µ(u) = tanh(u/riǫ), each with a different stiffness riǫ where the ri’s are a random numbers

between 0 and 1. The result of three such simulations for 20 and 200 oscillators are shown.

As expected if exit points with sensitivity to initial conditions are involved, the short-time dy-

namics is sensitive to these small changes in the modeling stiffness. The long time behaviour,

however, is largely unaffected, even exhibiting similar large scale structures in the sustained os-

cillations of 200 oscillators. That is, we observe short-term sensitivity but long-term robustness,

despite the complexity of the long-term dynamics. In fig. 4(iii)-(iv) we probe the robustness of
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Figure 4: Plots of the sticking codimension nstick for systems of n oscillators, simulated: (i-ii) for random pertur-

bations of the stiffness parameter riǫ with ri ∈ [0, 1]; (iii) for three different random sets of perturbations of the

mechanical constants up to 1% of κ and ρ, (iv) for random sets of perturbations of the mechanical constants up to

1%, 2%, 5%, 10%, of κ and ρ. [Colour online]

the physical system rather than the simulation itself. We return to modeling each switch as

µ(u) = tanh(u/ǫ), but vary the damping and spring stiffness constants (the components of Mρ

and Mκ), by adding random values on the order of 1% in (iii), for three different sets of random

perturbations, and of orders 1%, 2%, 5%, 10%, in (iv). For small perturbations in (iii) the results

are similar to before, namely that short-time behaviour is sensitive and unpredictable, but long-

term behaviour is robust and large-scale structures are preserved. In fig. 4(iv) we demonstrate

that sufficiently large changes in the constants do yield a different system, with perturbations

on the order of a few percent or more giving a very distinct system with large (period ∼ 20)

oscillations at 5%, and total collapse such that all oscillators are slipping at 10%.

To conclude let us explore this long-term dynamics a little further. Again we fix all ri = 1
with ǫ = 0.03 for the simulation. Now we shall perform simulations on a system of 200 os-

cillators, with different random matrices of damping and spring constants Mρ and Mκ (these

are randomly chosen, and not small perturbations of each other as in fig. 4(iii)). We simulate

these for a significantly longer period of time, and observe in most cases (as in the three shown)

that the complex stick-slip cascades persist over time in a self-sustaining manner, though oc-

casional instances of constants can be found that collapse to nstick = 0. The plots of sticking

codimension for three sample cases are shown in fig. 5(i).

With so many oscillators and such long timescales, further insight is provided by considering

the statistics of these self-sustaining stick slip events. We plot in fig. 5(ii) the size of cascades

7



Mike R. Jeffrey

n
st

ic
k

time

50

40

30

20

10

0 1000     2000     3000     4000      5000 Δnstick

lo
g
(f

re
q
)

Δnstick

lo
g
(f

re
q
)

Δnstick

lo
g
(f

re
q
)

6

5

4

3

2

1

0 2   4    6     8

n
st

ic
k

time

50

40

30

20

10

0 1000     2000     3000     4000      5000

6

5

4

3

2

1

0 2   4    6     8

n
st

ic
k

time

50

40

30

20

10

0 1000     2000     3000     4000      5000

6

5

4

3

2

1

0 2  4         6        8

(i) (ii)

Figure 5: Plots of the sticking codimension nstick for systems of 200 oscillators for three different sets of spring

and damping coefficients in (i), and the frequency of stick-slip cascades of size ∆nstick in (ii) shows a logarithmic

pattern for each system in (i).

∆nstick (defined as the number of successive time increments in which the sticking codimen-

sion decreases), against the frequency of events of each size, showing that the frequency f of

cascades of size ∆nstick fits a relation f ∝ e−γ∆nstick with γ ≈ 0.74.

5 Hidden dynamics

What precisely goes on inside the sticking mode requires analysis beyond the standard Fil-

ippov/Utkin theory of sliding modes [5, 15], and must be determined by revealing the hidden

dynamics [9], obtained by singular perturbation technique of performing a ‘blow up’ of the

discontinuities. This also justifies the use of the sigmoid function in the simulations below,

the stiffness parameters riǫ playing the role of time scalings that give fast contraction (the fast

element of the hidden dynamics) onto any sticking modes, see e.g. [11, 6].

The blow up analysis is performed as follows, and we express it in a general form. We relabel

the different component vector fields in (1) by writing fλ1...λm(x) = f (x; (λ1, ..., λm)), so that

the piecewise-smooth system becomes

ẋ =
{

fλ1...λm(x) where λi = sign (hi (x))
}

. (11)

and then combine these in a convex canopy of values [8]

f =
∑

i1,i2,...im=±

λ
(i1)
1 λ

(i2)
2 ...λ(im)

m f i1i2...im , λ
(±)
j ≡ (1± λj)/2 . (12)

If all oscillators are slipping then all hj are nonzero, and all λj takes values ±1. If some

oscillators j = 1, ..., r are sticking, we take coordinates xj = hj for j = 1, ..., r, write f as

(f1, ..., fn), and form the blow up system by writing

{

(λ′

1, ..., λ
′

r) = (f1(x;λ) , ..., fr(x;λ)) ,
(ẋr+1, ..., ẋn) = (fr+1(x;λ), ..., fn(x;λ)) .

(13)
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The prime on the lefthand side denotes a fast dummy timescale, instantaneous on the timescale

of the original system. This facilitates either the transition from one slipping direction to an-

other, or, if equilibria of the fast subsystem exist, the λj’s collapse in fast time to values λs
j given

by
{

(0, ..., 0) = (f1(x;λ
s) , ..., fr(x;λ

s)) ,
(ẋr+1, ..., ẋn) = (fr+1(x;λ

s), ..., fn(x;λ
s)) ,

(14)

where λ
s = (λs

1, ..., λ
s
r, λr+1, ..., λn), and these correspond precisely to the usual notion of

sticking modes deriving from [5].

In fig. 6 we illustrate the blow up system (13) applied to the two oscillator system in sec-

tion 3. Panel (a) shows the typical situation inside the sticking parallelogram, when (z1, z2) take

values such that a unique sticking mode exists, observed in the blow up as an equilibrium in the

blow up dynamics on (µ1, µ2). As (z1, z2) vary outside the parallelogram shown in fig. 2, this

equilibrium leaves the box (µ1, µ2) ∈ [−1,+1]× [−1,+1] depicted.

As an example of more novel hidden dynamics, in (6) let us replace the functions µ1 and µ2

by µ1−µ2(1−µ2
1) and µ2−µ1(1−µ2

2) respectively. During slip, when µ1,2 = ±1, the additional

nonlinear µi terms vanish, changing nothing in the original Coulomb friction problem. But in

the sticking mode when µ1,2 ∈ [−1,+1] these new terms are non-vanishing, and signify a

more complicated static friction interaction. These particular terms are chosen arbitrarily to

demonstrate interesting dynamics, in practice their precise form would depend on refinements

to the contact laws that we lack space to investigate here. The scenario shown in (b) illustrates

an example where three solutions of (14) exist, giving three sticking modes, though only two

are stable. Which of these the system attains depends on the entry trajectory, and can only be

determined by full consideration of the system (13), not from the existence of sticking modes

alone. Exit points will occur where either of the two stable equilibria leave the depicted region.
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+1
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0

0
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−1

μ1
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(a) (b)

Figure 6: Two examples of hidden dynamics for the two oscillator system, showing: (a) attraction to a unique

sticking solution, and (b) attraction to either of two possible sticking solutions (solutions of (14)).

6 Closing remarks

We have demonstrated a few key elements of recent piecewise-smooth dynamical systems

theory that provide new insights into basic mechanisms lying behind complex dynamics in dry

friction oscillators. This includes some surprises, particularly pertaining to self-sustaining stick-

slip cascades, showing a regular logarithmic relation in the frequency of cascades of given size,

and showing short-term unpredictability but long-term robustness to perturbation. Ongoing

work will investigate further how the local geometry of exit points, shown here to underly
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global dynamical patterns, lead to the statistics and criticality thresholds observed, and begin

applying these ideas to more specific large dimensional oscillator systems.
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