
Smoothing tautologies, hidden dynamics, and sigmoid asymptotics

for piecewise smooth systems

Mike R. Jeffrey
Engineering Mathematics, University of Bristol, Merchant Venturer’s Building,

Bristol BS8 1UB, UK, email: mike.jeffrey@bristol.ac.uk

(Dated: September 22, 2015)

Switches in real systems take many forms, such as impacts, electronic relays, mitosis, and the
implementation of decisions or control strategies. To understand what is lost, and what can be
retained, when we model a switch as an instantaneous event, requires a consideration of so-called
hidden terms. These are asymptotically vanishing outside the switch, but can be encoded in the
form of nonlinear switching terms. A general expression for the switch can be developed in the form
of a series of sigmoid functions. We review the key steps in extending Filippov’s method of sliding
modes to such systems. We show how even slight nonlinear effects can hugely alter the behaviour
of an electronic control circuit, and lead to ‘hidden’ attractors inside the switching surface.

There are increasingly powerful methods to study
the dynamical effects of switches in otherwise smoothly
evolving dynamical systems, whether a phase transition,
a trade or policy decision, an electrical relay, a mechan-
ical actuator or a biochemical valve. This paper is an
attempt to highlight and deal with certain ambiguities
of non-uniqueness of piecewise smooth systems like these.
Attempts are often made to show the robustness and gen-
erality of discontinuous models by smoothing or regulariz-
ing a discontinuity, a process that is somewhat tautolog-
ical because, as we show, entirely different dynamics can
be obtained with different choices of regularization. For-
tunately this can be resolved using nonlinear switching
terms, and we introduce a general method by developing
sigmoid series expressions for discontinuous vector fields.
We apply these ideas to a model of an elementary elec-
tronic control circuit, and give an example of how novel
attractors may arise inside the switching surface.

I. INTRODUCTION

Many phenomena, in either our passive attempts to
describe nature, or our active attempts to control it,
are mixtures of steady behaviours and sharp transitions.
The steady regimes are usually relatively easy to model.
The transitions are often complicated and challenging to
model, but occupy fleeting instants of time which make
it tempting to simplify them, in the extreme, as discrete
events in an otherwise smooth system. The effect of this,
and how far we can develop the mathematics of a piece-
wise determined system, is explored here.
Modeling a switch by means of piecewise smooth func-

tions is simple and convenient, requiring no detailed in-
depth knowledge of the physical laws during switching,
but it risks destroying information about the transition
process. The resulting simplicity has inspired an exten-
sive theory of discontinuity-induced bifurcations and sin-
gularities. Much of the theoretical development is im-
pressively powerful, and even highly rigorous (for reviews
see [2, 4, 7, 23, 34]). Its generality, its applicability to real
world switching phenomena, however, remains poorly un-

derstood (see e.g. [12]). We can, for example, derive
piecewise smooth models as the limiting cases of smooth
multiple timescale models, collapsing the fast switching
dynamics into a single instant [26], or as describing the
average dynamics of stochastic [28] or hysteretic [7, 33]
processes. But the limits are typically singular, and
qualitatively different systems have the same piecewise
smooth limit, resulting in ambiguity about the systems
they describe.
A resolution to this has emerged, and it seems that gen-

erality in piecewise smooth systems requires a notion of
hidden dynamics that is observable only during a switch
and not outside it, encoded in nonlinear terms that rep-
resent the remnants of asymptotically small effects that
vanish in the limit of taking a piecewise smooth model.
We shall present a few examples where nonlinear terms
entirely alter the local and global behaviour of a system,
including an application to electrical control systems.
In engineering and biological applications particularly,

an increasing number of examples of ‘nonlinear’ switches
are becoming known. These are systems whose dynam-
ical equation contain nonlinear combinations of steep or
discontinuous ‘sigmoid’ functions, each sigmoid being an
empirical representation of a particular switching action.
In Boolean switching models of protein dynamics regu-
lated via Hill functions, they are very common [8, 11, 14].
In [17, 20], it was shown that nonlinear switching can be
used to model static friction without needing to augment
Coulomb friction with a velocity dependence. In general,
nonlinear switching can be used to model effects such as
overshoot or lag, and can resolve deterministic ambigui-
ties that arise when multiple switches coincide. It seems
reasonable to hope that a deeper understanding of them
will permit greater use for modeling across the physical,
social, and biological sciences.
In section II we recount the standard method for han-

dling a discontinuity in a dynamical system, and give ex-
amples of its ambiguity under smoothing. In section III
we discuss ambiguities in smoothing more generally. In
section IV we make these ambiguities explicit, and find
how to express them in the piecewise smooth system. We
apply these ideas to a circuit model in section V. In Sec-
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tion VI we outline the method for solving a dynamical
system at a discontinuity, followed by an example of the
potential for novel dynamics, in the form of a hidden at-
tractor, in section VII. A few closing remarks are made
in section VIII.

II. NONSMOOTH DYNAMICS – THE CONVEX

APPROACH

Consider a piecewise smooth dynamical system

dx

dt
= f(x) =

{

f+(x) for v(x) > 0 ,
f−(x) for v(x) < 0 .

(1)

This paper is about how we extend such a model across
v(x) = 0, and the issues that arise in doing so.
In the standard Filippov approach [7] prominent in

variable structure control [5, 32, 33] and in piecewise
smooth dynamical systems theory [4, 7], when a system
switches between two systems as in (1), we form their
convex combination

dx

dt
= f(x;λ) =

f+(x) + f−(x)

2
+

f+(x)− f−(x)

2
λ

(2)
(or a similar form dx

dt = [f+(x) + f−(x)] +
u [f+(x) − f−(x)] with λ = 2u− 1), where

λ ∈
{

sign (v) if v 6= 0 ,
[−1,+1] if v = 0 ,

(3)

thus

f(x; +1) ≡ f+(x) and f(x;−1) ≡ f−(x) . (4)

The standard approach then seeks so-called sliding modes
which satisfy d

dtv = 0 on v = 0. Taking coordinates
x = (x1, x2, ..., xn) such that x1 = v, and writing f =
(f1, f2, ..., fn), the dynamics of sliding modes is therefore
given by

0 = f1(x;λ
s)

d
dt (x2, ..., xn) = (f2(x;λ

s), ..., fn(x;λ
s))

}

on x1 = 0

(5)
for some λs ∈ [−1,+1]. If no solutions of the sliding
mode problem exist for λs ∈ [−1,+1], then the flow of
(2) crosses through v = 0 transversally.
This definition of sliding and crossing at a switching

surface is sometimes justified by smoothing (or ‘regular-
izing’) the combination (2), by replacing λ with a smooth
sigmoid function, and showing that slow dynamics of the
smoothed system contains invariant manifold dynamics
equivalent to the sliding mode dynamics (5), (for theo-
rems regarding this equivalence, which remains impor-
tant in spite of what follows, see [26, 29, 30]). Unfor-
tunately such an argument is tautologous. Smoothing
simply preserves the dynamics we have imposed already
by writing the expression (2), and we shall see that by
changing (2) we can not only obtain different dynamics,

but that the difference persists under smoothing. Two
examples illustrate the ambiguities of smoothing a dis-
continuity very clearly, and while almost trivially simple,
they help motivate the general arguments that follow.

Example 1. Let us start with a smooth system that we
wish to study,

d
dt (x1, x2) = (−ϕε(x1), 1− 2ϕ2

ε(x1)) , (6)

where ε is a small positive parameter and ϕε(x1) is a
sigmoid function such that ϕ0(x1) = sign(x1) (so the ε →
0 limit of ϕε(x1) is (3)). This has an invariant line x1 =
εc, where c is a constant such that ϕε(εc) = 0, on which
the dynamics is given by

d
dt (x1, x2) = (0, 1) . (7)

This is illustrated in the far right of figure 1. Now con-
sider a piecewise smooth model of (6) obtained by con-
sidering the behaviour either side of x1 = 0. In the limit
ε = 0 equation (6) becomes

d
dt(x1, x2) = (−sign(x1),−1) . (8)

Filippov’s linear combination for (8), using (5), simplifies
to

d
dt (x1, x2) = (−λ,−1) , (9)

where λ is given by (3). A sliding mode on the discon-
tinuity surface x1 = 0 must satisfy d

dtx1 = 0 by (5), so
sliding modes exist for this system with λ = 0, giving a
sliding vector field d

dt (x1, x2) = (0,−1), shown in the far
left of figure 1. Clearly this is not even close to being
similar to the smooth system’s dynamics in the far right
portrait in figure 1, given by (7). Moreover if we smooth
this system, by replacing λ with a sigmoid function (we
can use ϕε again for brevity), we obtain

d
dt(x1, x2) = (−ϕε(x1),−1) , (10)

a system with an invariant line at some x1 = c, where c
is a constant such that ϕε(x1c) = 0, but on this line the
vector field is again d

dt (x1, x2) = (0,−1), inconsistent
with (7); this is the second phase portrait in figure 1.
We obtained a system whose sliding dynamics is in-

consistent with the original system (6), and the inconsis-
tency persists under smoothing. This happened because
we did not keep the hidden term ϕ2

ε, neglecting it because
its value is unity for all x1 6= 0. If we take (6) again,
and carefully replace ϕε(x1) with λ in the limit ε → 0,
we obtain instead of (9) the system

d
dt (x1, x2) = (−λ, 1− 2λ2) . (11)

A sliding mode on the switching surface x1 = 0 must
satisfy d

dtx1 = 0, and this has solutions for λ = 0, which

now gives a sliding vector field d
dt(x1, x2) = (0,−1). This

correctly captures the dynamics of the smooth system (7)
at the transition, and is illustrated by the third portrait
in figure 1. Moreover, obviously if we now smooth this
by replacing λ with a smooth sigmoid function, we regain
(6), the far right portrait in figure 1.
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FIG. 1. The system d

dt
(x1, x2) = (sign(x1), 1 − 2(sign(x1))

2)
viewed ignoring the nonlinear dependence on sign(x1) (left) or
respecting it (right), in each case showing the discontinuous sys-
tem and its smoothing. The phase portraits as shown correspond
to equations (9), (10), (11), (6), respectively.

In this example we obtained sliding dynamics that was
not only quantitatively wrong compared to the system we
were trying to model, but traveled in entirely the wrong
direction. This happened because we neglected terms
nonlinear in the switching term ϕε or λ.
The point is that if we start from the piecewise smooth

model (8), then either (9) or (11) are valid ways of con-
tinuing the system across x1 = 0, amongst an infinity of
other choices. Within the framework of piecewise smooth
systems theory we require a way to distinguish between
these alternatives. In the following sections we will show
how to express those possible systems, separate ‘linear’
and ‘nonlinear’ effects, and we shall highlight some more
and less subtle effects they give rise to.
A similar example reveals that nonlinear terms can

even affect whether the switching surface is crossed.

Example 2. Consider a system

d
dt (x1, x2) = (2ϕ2

ε(x1)− 1, 1) . (12)

The idea is similar to the previous example so we just
outline the calculations. This system has two invariant
sets x1 = εc± such that ϕε(εc±) = ±1/

√
2, on which

the vector field is d
dt(x1, x2) = (0, 1). In the limit ε = 0,

considering the behaviour either side of x1 = 0, we have

d
dt (x1, x2) = (1, 1) , (13)

from which the presence of a discontinuity is not even
evident. Filippov’s method therefore does not apply, and
the system crosses through x1 = 0. However, if we more
carefully replace ϕε by λ in (12), we obtain

d
dt(x1, x2) = (2λ2 − 1, 1) . (14)

In this system, as x1 passes through zero the value of λ
jumps, even though the value of λ2 appears not to (since
it “jumps” from +1 to +1). But because λ jumps, we
may seek its value when x1 = 0 by looking for sliding
modes, solving dx1/dt = 0. There are then two slid-

ing modes given by λ = ±1/
√
2, in which the dynamics

is given by d
dt(x1, x2) = (0, 1). So perhaps surprisingly,

while the system (14) exhibits no apparent jump in value
across x1 = 0, the fact that λ itself jump permits sliding
modes to exist, and moreover we observe that the slid-
ing dynamics is equivalent to the invariant dynamics of
the smooth system (12), i.e. given by d

dt (x1, x2) = (0, 1).
Moreover, when this system is smoothed by replacing λ
with a sigmoid function like ϕε, we of course return to
the original system (12).
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FIG. 2. The system d

dt
(x1, x2) = (2(sign(x1))

2
− 1, 1) viewed

ignoring the nonlinear dependence on sign(x1) (left) or respect-
ing it (right), in each case showing the discontinuous system
and its smoothing. The phase portraits as shown correspond to
equations (13), (13), (14), (12), respectively.

In this example the piecewise smooth model outside
x1 = 0 is given by (12), which is formed by patching
together two systems for x1 > 0 and x1 < 0. Even
though the vector fields appear continuous, their regions
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of definition are not. We may then assume the system
is continuous, or consider (11) (and again an infinity of
other choices) as a valid continuation of the system across
x1 = 0. In this case, the assumption of simple continuity
turns out to be incorrect for modeling the system (12)
that we started from.
These are trivial and somewhat extreme examples, but

in the next section we will show how vast the field of pos-
sible regularizations is. Yet the ambiguities these exam-
ples highlight are extremely important to understanding
the modeling of switches. Other examples can be much
more subtle, as we shall see later. In section IV we discuss
how to handle nonlinearities to avoid ambiguity.

III. THE SMOOTHING TAUTOLOGY –

KEEPING THE HIDDEN TERMS

What is not clear in many works concerning regulariza-
tion of nonsmooth systems is that there are many ways
a system can be smoothed, and that they result in non-
equivalent systems, any of which is equally valid as an
approximation of the piecewise model (1). In this section
we make this ambiguity explicit in the piecewise smooth
system, as a ‘hidden’ term in the vector field.
Consider smooth systems expressible in the form

dx
dt = f (x;ϕε(v(x))) s.t.

ϕε (v) ∈
{

sign (v) if |v| > ε
[−1,+1] if |v| ≤ ε

}

+ O (ε/v, ε)
(15)

where the transition function ϕε is at least continuous,
and ε > 0 is small. The error term O (ε/v, ε) ensures
that we obtain (1) as ε → 0 and for |v| ≫ ε. We do not
specify the form of ϕε beyond this, for example it need
not be monotonic, and need not be bounded to [−1,+1]
at v = 0.
Let us moreover suppose f to depend on ϕε in an arbi-

trary manner, that is, it could be a polynomial, trigono-
metric, exponential or other function of the sigmoid.
Nevertheless, if we take the limit ε → 0 in (15) we ob-
tain (1). Does the dynamics of (15) therefore tend to the
dynamics of (1) as described by (2)?
Since we do not know precisely the form of ϕε in the

limit ε → 0, let us introduce a simpler ‘reference’ sigmoid
for which we do. We define it as

Λε(v) ∈
{

sign(v) if |v| > ε
[−1,+1] if |v| ≤ ε

}

+ O (ε) ,

s.t. Λ′
ε(v) > 0 for |v| < ε ,

(16)

and we shall use this to analyze the behaviour of ϕε as ε
tends to zero. Since Λε(v) is differentiable and monotonic
for ε > 0, at least for |v| < ε, it has an inverse V (Λε)
such that V (Λε(v)) = v/ε. We can then define a new
expression for ϕε as a function of Λε,

Ψ(Λε) := ϕε (εV (Λε)) . (17)

Let us now use the reference sigmoid Λε to form a linear
combination of f(x;±1),

L(x,Λε(v)) =
1+Λε(v)

2 f(x; +1) + 1−Λε(v)
2 f(x;−1) + ... ,

such that dx
dt = L(x,±1) in the limit |v|/ε → ∞. This

will not be exactly equal to (15) for general v and ε, so
taking the difference between this system and (15), we
have

dx
dt = L(x,Λε(v)) + E (x,Λε(v(x))) , (18)

where E (x,Λε) = f (x; Ψ(Λε))−L(x,±1) vanishes when
Λε = ±1.

Because the reference sigmoid Λε varies monotonically
with v and is well-behaved as ε tends to zero, we can
identify it with a new variable λ, then (18) becomes

dx

dt
=

1 + λ

2
f(x; +1) +

1− λ

2
f(x;−1) + E (x, λ) . (19)

The quantity λ will vary dynamically according to d
dtλ =

dλ
dv

d
dtv, where dλ

dv is strictly positive (which would not
have been the case if we had identified λ with ϕε).

The expression (19) is now ε independent, and we may
consider λ to represent any ϕε, including the limiting
function λ = ϕ0(v) = sign(v), with which (19) defines a
piecewise smooth system consistent with (1), but notably
more general than (2).

Since E vanishes for v 6= 0, it is not fixed by (1). E
is the hidden part of the vector field, and by changing it
we obtain arbitrarily many different non-equivalent dy-
namical systems, all consistent with (1). Importantly, E
gives explicit expression to these different systems.

There is of course no contradiction or paradox, nor in-
deed any surprise, in the fact that infinitely many differ-
ent smooth systems expressible as (18), have the same
limit (1) as ε → 0. This is merely due to the non-
uniqueness of the singular limits by which smooth func-
tions may tend towards discontinuities. What is impor-
tant is that we can represent these different systems in the
piecewise smooth limit by (19). The system (2), there-
fore, is only the simplest member of a general class given
by (19).

The classes of systems obtained by smoothing may
be much more general still. The argument above be-
gan with (15) as a prototype smooth system, but one
may consider many other kinds. For instance consider a
number of switches that activate at a common threshold
v = 0, with each switch having a different sigmoid-like
behaviour ϕε1 , ϕε2 , ..., so (15) becomes

dx
dt = f (x;ϕε1 (v(x)) , ϕε2(v(x)) , ...) where

ϕεk (v) ∈
{

sign (v) if |v| > εk
[−1,+1] if |v| ≤ εk

}

+ O (εk/v) .

(20)
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For example we might let

ϕε1 (v) = 1
2 + 1

2
(v−1)1/ε1

1+(v−1)1/ε1
,

ϕε2 (v) = tanh(v/ε2) ,
ϕε3 (v) = Erf(x/ε3) ,
ϕε4 (v) = 2

π arctan(v/ε4) , etc.

We can again use a reference sigmoid Λε with inverse
v = εV (Λε) to define a new expression for each ϕεk ,

Ψk(Λε) := ϕεk (εV (Λε)) , (21)

and derive (18) as above with

E (x,Λε) = f (x; Ψ1(Λε),Ψ2(Λε), ...)

− (1 + Λε)f(x; +1)− (1− Λε)f(x;−1)

2
,

which vanishes when Λε = ±1, resulting again in the
piecewise smooth system (19).
An interesting example arises when the sigmoids ap-

pear only linearly, but in a matrix form such as

dx

dt
=

1 +M(v(x))

2
f(x; +1) +

1 +M(v(x))

2
f(x;−1) ,

(22)
which we may call a matrix regularization of (1), where

M(v) =











ϕε1 (v) 0 0 ...
0 ϕε2 (v) 0 ...
0 0 ϕεk (v) ...
...

...
...

. . .











or even

M(v) =











ϕε1 (v) δε12(v) δε13(v) ...
δε21(v) ϕε2 (v) δε23(v) ...
δε31(v) δε32(v) ϕεk (v) ...

...
...

...
. . .











where the off-diagonal elements are gaussian-like func-
tions δij(v) = O (ε) for |v| > ε and δij(v) ∈ [0, 1] for
|v| ≤ ε. To handle these off-diagonal terms we need an
extra step, because they are not sigmoids, nevertheless
we can recast them again in terms of the reference sig-
moid Λε via a function ∆ij := δij (εijV (Λεk)), then to
derive the corresponding hidden terms in E is a simple
exercise, resulting in (19) as before.
The class of piecewise smooth dynamical systems that

arise from such considerations is clearly vast, but all cases
are encompassed in (19) with a suitable hidden term
E [25]. Of course above we have written E in terms of
the systems (15), (20), or (22), expressions that are not
useful in themselves (except that they show E vanishes
outside the switching surface). Some means to express
the hidden term E explicitly is now required and, where
possible, to determine it from a system’s behaviour. We
broach this in the following section.

IV. SIGMOID ASYMPTOTICS

Given a system d
dtx = f , and from only the knowledge

that f jumps between functional forms f+(x) and f−(x)
as v(x) changes sign, we wish to derive a complete model
for the system. This will take the form f = f(x;λ) in
terms of a piecewise constant λ, or f = f(x;ϕε(v)) in
terms of a sigmoid function ϕε.

Below we will attempt formally to expand f as a power
series

dx

dt
= f(x;λ) =

∞
∑

n=0

αn(x)λ
n(v(x)) (23)

where for a piecewise smooth model we assume λ =
sign(v), and for a smooth sigmoid model we replace
λ 7→ ϕε(v), assuming ϕ′

ε(v) ≥ 0 and

ϕε(v) = sign(v) + O (ε) for |v| > ε . (24)

The possibility of approximating a function of several
variables (x, y) by a sum of functions of a single variable
v(x) has arisen particularly in the context of universal
approximation by neural networks [3, 10, 22], where the
sums of interest include sigmoid functions ϕε(vi(x)) that

may each have a different threshold vi = k̂i · (x − xi)
and stiffness |ki| for some vectors {ki, xi}i=1,2,... (falling
therefore into our subclass of matrix regularizations in
(22)). Here we are interested in a single switching thresh-
old, say xi = 0, and will be interested in the limit of in-
finite stiffness |ki| → ∞. An alternative is to use a series
of powers of the sigmoid function ϕε (v), and the use of
such series as solutions of nonlinear differential equations
has been explored in [24, 35] for ϕε(v) = tanh(v/ε).

The task now is to find the coefficients of the power
series (23).

A. A sigmoid sum

Comparing (24) to (1) in the states λ = ±1, we have
immediately that

∞
∑

n=0

αn(x) = f+(x) (from v > 0) ,

∞
∑

n=0

αn(x)(−1)n = f−(x) (from v < 0) .

(25)

The sum and difference of these give 2
∑

n even αn = f++
f− and 2

∑

n odd αn = f+ − f−, allowing us to eliminate
α0 and α1 to obtain

dx

dt
= 1

2 (f+ + f−) +
1
2 (f+ − f−)λ(v) + E(x;λ) , (26)
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where

E(x;λ) =
∞
∑

n=1

(α2n + λ(v)α2n+1)
(

λ2n(v) − 1
)

= (λ2 − 1)
∞
∑

n=1

n−1
∑

j=0

[α2n(x) + λα2n+1(x)] λ
2j

:= (λ2 − 1) g(x, λ) , (27)

simply factoring out λ2 − 1 in the second line, and then
defining the double sum as a function g. Note that while
E vanishes for λ = ±1, i.e. outside the switching sur-
face, the function g can take any value. Hence we obtain
exactly (19), and a formula for E .
In the piecewise smooth case, the remaining coeffi-

cients αn≥2 that make up the hidden term g may be
determined if we have any information about f at v = 0.
For example, say it is known that for λ = 0 we have
f(x; 0)|v=0 = r(x), then α2 = 1

2 (f+ + f−) − r(x), and
successive coefficients can be eliminated with knowledge
of derivatives of f with respect to λ. If these quantities
cannot be derermined by direct observations of a system,
we may propose forms of g to fit dynamical observations
or physical laws, depending on the modeling problem. In
the smooth case, where λ is replaced by a differentiable
sigmoid function ϕε, then more can be found by consid-
ering the asymptotics of the transition.

B. Asymptotics of the series

Here we consider how (26)-(27) may be applied to a
system where the transition between f± is smooth.
In a system that makes a sudden transition between

behaviours dx
dt = f+(x) for large positive η = v/ε, and

dx
dt = f−(x) for large negative η = v/ε, let us assume
that f+ and f− are actually steady states f(x; y+) and
f(x; y−) of a larger bistable system in x and y, such that

y →
{

y+ as η → +∞ ,
y− as η → −∞ ,

⇒ dx
dt →

{

f+ as η → +∞ ,
f− as η → −∞ .

(28)

The vector y may represent microscopic properties or ex-
ternal forces independent of x, which vary significantly
only where their value jumps. The scalar η may merely
be a fast timescale t/ε for small ε, or else some function
η(x, ε) of the internal state. Without specific knowledge
of the y system, we seek to model the effect on the system
dx
dt = f(x).
If we could linearize with respect to y near the steady

state f+ = f(x; y+) for large negative η, treating η
as a time-like variable, then f should diverge from f+
along a direction g+ in phase space with a time con-
stant κ (a Lyapunov exponent). The resulting approx-
imation df/dη ∼ κ (f − f+) has a solution of the form

f ∼ f+ + g+e
κη
∑∞

n=0 βnη
−n for some coefficients βn.

This is easily extended if we cannot linearize. For exam-
ple, if f = f+ is a degenerate steady state of the y system,
the same asymptotic formula applies with κ = 0 if f = f+
is a saddle-node, where df/dη ∼ |f − f+|(f − f+)/β1 for
some constant β1. The same formula again holds with
the exponent replaced by −κ|η|p near a non-hyperbolic
steady state of the form df/dη ∼ κ|η|p−1(f − f+).
Based on the typical divergence from a linear or non-

linear steady state, therefore, near either of the states
dx
dt = f+ or dx

dt = f−, the system behaves asymptotically
like

dx

dt
∼ fi(x) + gi(x)e

−κi|v/ε|
pi

∞
∑

n=0

β(i)
n (x)(ε/v)n (29)

as v/ε → −∞ for i = + or v/ε → +∞ for i = −, for pos-

itive constants κi, pi, β
(i)
n . The vector-valued functions

gi(x) describe the trajectories in function space by which
dx
dt departs from each of the fi. Provided β

(i)
0 = 0 if

κi = 0, this ensures that the second term vanishes for
v/ε → ±∞.
If we had the exact differential equations for f(x; y),

then we would now apply asymptotic matching (see e.g.
[1]) to unify the two approximations in (29). When no
such differential equations are known, we may seek to
represent f by a series approximation in x only, since y is
assumed to be beyond ready observability. The terms of
the series must be functions that give the correct asymp-
totic behaviour for positive and negative v, and this can
be achieved with sigmoid functions ϕ that vary monoton-
ically from −1 to +1, switching value at η(x) = 0. Thus
we take the series (23) with (24).
Finding the first two coefficients is similar to the piece-

wise smooth case. Comparing (23) to (29) at the steady
states f+ and f− we have that α0 = 1

2 (f++ f−)+
∑

α2n

and α1 = 1
2 (f+ − f−) +

∑

α2n+1, so

dx

dt
=

f+ + f−
2

+
f+ − f−

2
ϕε(v) + E(x, ϕε(v)) (30)

where E(x, ϕε) = (ϕ2
ε − 1)g(x, ϕε), with E and g being

the same functions as in the piecewise smooth case (27).
The remaining coefficients gathered together in g can

be found by assuming that ϕε has an asymptotic expan-
sion of the form

ϕε(v) ∼ sign(v)

(

1 + e−κγ |v/ε|
pγ

∞
∑

n=0

γn(ε/v)
n

)

, (31)

consistent with (24). For example, the Hill functions

[14] behave as Z(x) = x1/ε

x1/ε+θ1/ε ∼ 1
2 + sign(x −

θ)
(

1
2 − e−|log(x/θ)|/ε + ...

)

for x > 0, and we let v = x−θ,

ϕε(v) = 2Z(θev/ε) − 1, and other common sigmoids in-
clude ϕε(v) = tanh(v/ε) ∼ sign(v)

(

1− 2ε−2|v|/ε + ...
)

,

ϕε(v) = Erf(v/ε) ∼ sign(v) − e−v2/ε2((ε/v) − 1
2 (ε/v)

3 +
...)/

√
π.
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To give an example of the coefficients αn≥2, if we as-
sume some symmetry in the asymptotic limit such that
κ+ = κ− and p+ = p−, then it makes sense to choose
κγ = κ+ = κ− := κ and pγ = p+ = p− := p, then com-

paring terms of order e−k|η|p allows us to find α2 and α3

as

α2 = 1
4γ0

(

g+β
(a)
0 + g−β

(b)
0

)

−∑∞
m=2 mα2m ,

α3 = 1
4γ0

(

g+β
(a)
0 − g−β

(b)
0

)

− 1
4 (f+ − f−)−

∑∞
m=2 mα2m+1 ,

(32)

and so on, recursively for each coefficient αn.

V. EXAMPLE: SWITCHING ASYMPTOTICS IN

A CONTROL CIRCUIT

The most obvious kind of sigmoidal behaviour in
physics is a mechanical or electronic binary relay. Con-
sider a typical electrical model based on a DC-DC con-
verter, with a battery voltage Vb and inductor current
I. A connecting circuit, with a capacitance C and resis-
tance R across which the voltage is V , is disconnected if
V exceeds a value Vb. The empirical model of the on and
off positions is

“on”:

{

L d
dtI = V0 − V ,

RC d
dtV = IR− V ,

“off”:

{

L d
dtI = V0 ,

RC d
dtV = −V .

(33)

C
R

V

L

Vb

I +

−

+

−

μ=1

μ=0

FIG. 3. A basic switching circuit.

What then happens during the transition between
these two? The simplest model we might write down,
and the canoncial Utkin/Filippov approach [7, 32], ex-
presses (33) as

(

L d
dtI, RC d

dtV
)

= f = (V0,−V ) + (−V, IR)µ

where µ = step(Vb − V ) .
(34)

The switch µ is related to the multiplier λ in the previous
section by µ = 1

2+
1
2λ, we use µ here as it is more common

in this application.

Let us then consider a more general class of systems

(

L d
dtI, RC d

dtV
)

= f = (V0,−V ) + (−V µ, IRp(µ))

where µ = step(Vb − V ) ,
(35)

such that p(µ) = step(Vb − V ) for V 6= Vb and so, at
least off of the switching surface, (34) and (35) are iden-
tical. This does not, however, mean that p(µ) ≡ µ ev-
erywhere. (This class is introduced for demonstration,
and it may be possible to motivate more experimentally
relevant classes from the precise physics of a given de-
vice). For the sake of an explicit example we shall con-
sider p(µ) = µ − σ(1 − µ)µ below, so that the original
system (34) corresponds to σ = 0. We shall ask to what
extent we can distinguish between systems with different
σ.
The smooth function replacing the step should be

monotonic and continuous, say µ = ϕε(Vb−V ) defined in
terms of a stiffness parameter ε, such that ϕ0(Vb − V ) =
step(Vb − V ). The resulting system

(

L d
dtI, RC d

dtV
)

= f = (V0,−V ) + (−V µ, IRp(µ))

where µ = ϕε(Vb − V ) ,
(36)

becomes (35) as ε → 0, i.e. this is an ε-perturbation of
(35).
The system (36) has a small deviation from the steady

states µ = 0 and µ = 1 for |v| > ε, described by the
derivative with respect to V/ε,

∂

∂V/ε
f = (−V, IRp′(µ))

dµ

dV/ε
+ O (ε) . (37)

The p′ term means this deviation will be σ dependent.
The term dµ

dV/ε means the deviation will be of order

O (|Vb − V |/ε) or smaller, as discussed in the previous
section leading to (29). Take for example ϕε to be an
arctan function, specifically

ϕε(Vb − V ) = 1
2 + 1

π arctan
(

Vb−V
ε

)

= step(Vb − V )− ε
π(Vb−V ) + O

(

ε2

(Vb−V )3

)

then

dµ

dV/ε
=

dϕε(Vb − V )

dV/ε
=

π−1

1 + |Vb − V |2/ε2

=
ε2

2|Vb − V |2 + O

(

ε3

(Vb−V )3

)

,

hence

∂

∂V/ε
f = (−V, IRp′(µ)) ε2

2|Vb−V |2 + O

(

ε3

(Vb−V )3 , ε
)

.

(38)
The difference between models with different σ is there-

fore very small, skrinking with ε and with ε2

|Vb−V |2 for V

away from Vb (and alternative sigmoid functions may give
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deviations exponentially rather than polynomially small
in |Vb − V |/ε). Observing the deviation directly, there-
fore, would be a challenge in practice. Nevertheless we
will show that σ has significant and observable effects on
the stability of the circuit no matter how small ε is (i.e.
how close the system is to discontinuous), because the

term ε2

|Vb−V |2 permits significant deviations near V = Vb.

So we now turn to the circuit’s behaviour.
With the switch in the “on” position the state spirals

in towards an attracting focus at I = V0/R, V = V0, as
shown in figure 4. In the “off” position the system is
driven towards the switching surface V = Vb. We then
need a law describing how the systems evolves at the
switch.
We can use the smooth system to derive how µ jumps

between 0 and 1 across the switching surface. Differenti-
ating µ = ϕε(Vb − V ) with respect to t gives

ε
d

dt
µ = ε

dV

dt

d

dV
µ ⇒ ε̃(ε, V )

d

dt
µ = d

dtV , (39)

where ε̃ = ε/ dµ
dV/ε satisfies ε < ε̃ < 4ε inside the transi-

tion region |V − Vb| < ε, hence ε̃ = O (ε) is small around
the switch. We can therefore introduce a fast timescale
τ = t/ε̃ in terms of which d

dτ µ = dV
dt = f · ∇V . The de-

pendence on ε is supressed (but for ε = 0 the τ timescale
is instantaneous compared to t), and we can take the
limit ε → 0 to obtain the piecewise smooth system, in
which the transition region becomes the switching sur-
face V = Vb, on which we have
(

L
d

dt
I, RC

d

dτ
µ

)

= (V0,−Vb) + (−Vbµ, IRp(µ)) .(40)

Thus (40) prescribes the dynamics on (I, µ) at a point
on the switching surface V = Vb. Let us take the function
p(µ) as

p(µ) = µ− σ(1 − µ)µ (41)

as an example, and assume |σ| < 1. Then for IR < Vb we
have dµ/dτ < 0, implying that the flow crosses directly
from V > Vb to V < Vb. For IR > Vb instead, the
interval or layer of the transition, µ ∈ [0, 1], contains
an attractor in the form of a saddlepoint at µ = V0

Vb
,

IR =
V 3

b

V0Vb−σV0(Vb+V0)
. The dynamics outside the layer

are shown in the main part of figure 4, with a blow up
(inset) of the dynamics on µ ∈ [0, 1] inside the switching
surface V = Vb, shown near the saddle.
Solutions that enter the layer µ ∈ [0, 1] will be at-

tracted to one of the two unstable manifolds of the sad-
dle, either traveling toward increasing I with V remain-
ing on the switching threshold (shown in figure 4(a)), or
traveling toward decreasing I, before detaching from the
switching surface at IR = Vb and spiralling in towards
the focus in the “on” position (shown in figure 4(b)).
The critical effect of σ in this system is to shift the cur-

rent I =
V 3

b /R
V0Vb−σV0(Vb+V0)

at which the saddlepoint occurs

0
21

1

(a)

(b)

I

μ
m

m

m

m

μ

I

V

Vb

Vb/2

3

1

0

0

1I

V

0
21 I 3

1

Vb

Vb/2

FIG. 4. Phase portrait of the current, showing the piecewise
smooth system (main picture), and a blow up of the switching
surface into the layer µ ∈ [0, 1] revealing a saddle. The trajectory
from I = V = 0 is shown, simulating values L = 5, V0 = 5,
Vb = 6, RC = 5/2, R = 15/4, and (a) σ = 0, (b) σ = 1/2.

on the switching surface. Figure 4 shows the behaviour
of the system from an initial condition (I, V ) = (0, 0) for
two different values of σ.
If we set σ = 0, then from I = V = 0 the system tra-

jectory enters the sliding mode to the right of the saddle,
and the current grows unboundedly, while the voltage re-
mains fixed at V = Vb. In this case the switch depends
linearly on µ, and the sliding mode is simply as would be
obtained from Filippov/Utkin’s standard method [7, 32],

where the saddlepoint at µ = V0

Vb
, IR =

V 2

b

V0
is usually

called a psuedoequilibrium.
For σ nonzero, instead, the saddlepoint moves to a

higher current, and from the initial condition I = V = 0
the system hits the sliding mode to the left of the saddle,
the current falls until the sliding mode terminates, and
the system then spirals in towards the focus. The differ-
ence in the dynamics at V = Vb has to do with the fact
that, with σ 6= 0, the system is nonlinear in the switching
parameter µ.
The effect of nonlinearity in the voltage response to the

switch here is relatively minor – shifting the saddlepoint
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– but with stark effects on the system stability. The ef-
fects can easily be more interesting, as we show with an
abstract but novel example in section VII. First we shall
generalize the methods above for analyzing the piecewise
smooth system, without having to concern ourself with
the asymptotics of smoothing, yet without losing the dis-
tinction between systems that behave differently near the
switch.

VI. NONSMOOTH DYNAMICS – THE

NONLINEAR APPROACH

We can generalize the methods used in the previous
section with a slight development of methods proposed
in [7, 17].
We have shown in section IV that we can express the

system (1) as

dx

dt
=

f+(x) + f−(x)

2
+

f+(x) − f−(x)

2
λ+ E(x;λ) (42)

where

λ = sign v and vE(x;λ) = 0 . (43)

The term E is the ‘hidden’ part of the vector field, the
condition vE = 0 meaning that this vanishes outside the
switching surface.
At v = 0 the system (1) with (3) gives a differential in-

clusion, but (as we found in the last section) it turns out
that the value of λ can be fixed in most cases by dynam-
ical arguments. For E ≡ 0 this is done using Filippov’s
sliding modes [7], and in [17] these ideas were extended
to the case when E is nonzero, i.e. when (42) depends
nonlinearly on λ. We shall review the method briefly.
We introduce a transition timescale τ which is instan-

taneous in the original timescale t (so we may think of
this as τ = limε→0 t/ε for some ε > 0, as we obtained in
the previous section). Since λ switches between ±1 as v
changes sign, its variation is driven by the component of
the vector field along∇v normal to the switching surface,
so we define the dynamics of λ as

d

dτ
λ = f(x;λ) · ∇v on v = 0 . (44)

This is the generalization of the expression we obtained
in the circuit model in section V, and can be more gener-
ally derived from a smoothing of (1) using arguments of
asymptotics and geometric singular perturbation theory;
see [17–19].
The expression (42) with (44) is now sufficient to

prescibe the dynamics of the piecewise smooth system
fully. Combining them at the switching surface, taking
coordinates x = (x1, x2, ..., xn) in which x1 = v(x), and
letting f = (f1, f2, ..., fn), we have the two timescale sys-
tem

d
dτ λ = f1(x;λ)

d
dt (x2, ..., xn) = (f2(x;λ), ..., fn(x;λ))

}

(45)

on x1 = 0. When a solution reaches the discontinuity,
the system (45) facilitates either the transition from one
side of the switch to the other, or, if equilibria of the τ
timescale subsystem exist (i.e. where d

dτ λ = 0), then λ
collapses to a value λs given by

0 = f1(x;λ
s)

d
dt (x2, ..., xn) = (f2(x;λ

s), ..., fn(x;λ
s))

}

(46)

on x1 = 0. These equilibria, if they exist, represent slid-
ing modes, whereby the dynamics sticks to the switching
threshold v = 0 and evolves (slides) along it. We see
that these are precisely the sliding modes defined in (5)
by Filippov, except that now with (42) and (45) they
apply also to systems with nonlinear dependence on λ.
These are the basic elements for solving a system with

nonlinear switching. We have seen in three examples how
nonlinear terms can alter the dynamics. Nonlinearity can
read to much more interesting dynamical phenomena, an
example of which is given below.

VII. EXAMPLE: HIDDEN DUFFING

OSCILLATOR

Consider the system

d
dt (x1, x2) =

(

x2 − cx1, −λ3 − bx2 + a cos t
)

, (47)

where λ = sign(x1), for constants a, c, b. The dynamics
is that of a fused focus, that is, a folding of the dynamics
either side of the switch that creates focus-like attraction
towards x1 = x2 = 0; this is illustrated in figure 5(i).
For x1 6= 0 this is indistinguishable from the linear

switching system

d
dt (x1, x2) = (x2 − cx1, −λ− bx2 + a cos t) , (48)

where λ = sign(x1), which is well described by Filip-
pov/Utkin sliding mode theory [7, 21, 32].
Both (47) and (48) are clearly models consistent with

the system

d
dt(x1, x2) =

{

(x2 − cx1, −1− bx2 + a cos t) if x1 > 0 ,
(x2 − cx1, +1− bx2 + a cos t) if x1 < 0 .

(49)
Let us apply the methods from the previous section to

(47) to see the effect of the λ3 term in (47). Substituting
(47) into (45) to find the dynamics on x1 = 0 gives

( d
dτ λ,

d
dtx2) =

(

x2, −λ3 − bx2 + a cos t
)

on x1 = 0 ,
(50)

where τ is an instantaneous transition timescale. Only
the attracting point x1 = x2 = 0 satisfies the equa-
tion (46), so sliding modes are confined to the origin and
would seem to be of little interest. However, in the vari-
ables (λ, x2) the system (50) is a form of Duffing oscillator
(see e.g. [13]), and this can lead to rich dynamics inside
the transition layer λ ∈ [−1,+1].
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Simulations indeed reveal nontrivial dynamics on λ
and x2 for λ ∈ [−1,+1]. One simulation is shown in
figure 5(ii), showing the switching surface x1 = 0 ‘blown
up’ into a switching layer λ ∈ [−1,+1] on x1 = 0. The
variable x2 varies only slightly, while λ oscillates in an
irregular pattern between values of around |λ| ≤ a1/3.

(i)

−1             0              1

λ

(ii)

1

0

−1

−1             0              1

1

0

−1

x2

x2

x1

FIG. 5. The flow of: (i) the fused focus (47), and (ii) its switch-
ing layer (50), shown at a fixed time, for constants c = 0.1,
b = 0.05, a = 0.15. An orbit is simulated over a time t from 0
to 500.

The structure of the orbit in figure 5(ii) may appear to
be of little significance since it is negligible in the state
space of (x1, x2) in figure 5(i). The switching paramater
λmay, however, have a noticable effect on the system, for
example if it affects another variable. Let us introduce a
third variable satisfying some simple equation involving
the switch, say

κ d
dtx3 = λ− x3 , (51)

where κ is some constant, then x3 will be simply ±1
outside the switching surface, but inside the surface it
will track the dynamics of λ. We choose κ small enough
in our simulations so that x3 and λ are indistinguishable.

After discarding transients, x3(t) is seen to have oscil-
latory, complex, and chaotic dynamics for different pa-
rameters, including Ueda’s chaotic attractor [31], as ex-
pected from a Duffing oscillator. Figure 6(a) shows a plot
of x3(t). The speed of the timescale τ matters here, so we
let τ = t/ε, the ideal instantaneous switch corresponding
to the limit ε → 0. The curves (i) and (ii) show x3(t) (or
equivalently the value of λ) for ε = 10−2 and ε = 10−5,
respectively. The oscillations become more regular as ε
tends to zero, with the amplitude of this regular oscilla-
tion tending to around a1/3.

Contrast this with the curve (iii), which shows the
graph of x3(t) for the linear model (48), obtained by re-
placing λ3 with λ in (50), and gives instead always a
steady oscillation (which does not vary appreciably with
ε), but with an amplude a, rather than the a1/3 of the
nonlinear system.

0.5

0

−0.5

480                           490                           500

(i)
(a)

(b)

(ii)

(iii)

t

x3

0.5

0

−0.5

480                           490                           500

(i)

(ii)

(iii)

t

x3

FIG. 6. Simulations of hidden dynamics, plotting z(t) (or
ϕε(x(t)) for: (i) the nonlinear system with ε = 10−2, (ii) the
nonlinear system with ε = 10−5, and (i) the linear system with
ε = 10−2. Panel (a) is a simulation of the switching layer
system (50), and panel (b) is a simulation of the full system
(47) smoothed out using λ = ϕε(x1). All simulations are with
c = 0.1, b = 0.05, a = 0.15.

Throughout this paper we have tried to show that
smoothing is a tautologous process, that is, it cannot be
used to justify one way or another of resolving a discon-
tinuous system, say taking (47) or (48) to resolve (49),
and that systems must be distinguished in the expres-
sion of the discontinuous systems themselves. We demon-
strate this finally by smoothing out the systems (47) and
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(48) directly, replacing λ in those expressions with

ϕε(x1) =

{

sign(x1) if |x1| ≥ ε ,
x1/ε if |x1| < ε ,

(52)

and we simulate in figure 6(b) the orbits correspond-
ing to those in figure 6(a). The qualitative dynamics
is similar, with only minor quantitative differences in
the precise form of smaller oscillations, confirming that
smoothing only preserves the differences between the lin-
ear and nonlinear models. Simulations using alternative
smoothing functions such as ϕε(x1) =

2
π arctan(x1/ε) or

ϕε(x1) = tanh(x1/ε), or a smooth non-analytic function
equal to exactly sign(x1) outside |x1| > ε, yield results
with no significant difference to those using (52).

VIII. CLOSING REMARKS

The traditional use of Filippov’s theories to tackle
piecewise smooth systems neglects the possibility of non-
linear dependence on λ; (we should remark that Filip-
pov’s work [7] sets out results for much more general dif-
ferential inclusions, but most of his detailed theory and
most modern theory derived from it assume linear depen-
dence). In many cases the assumption of linear depen-
dence on λ will be sufficient, but nonlinear dependence
may have to be introduced if a linear model’s dynamics
that is inconsistent with experiment, if we smooth the
system out, or, something we have not discussed here,
if singularities arise that exhibit degeneracy inside the
switching surface [18].
In systems with multiple switches, sigmoid series can

be developed in a similar manner. The linear (i.e.
E = 0) part of the expression (26) becomes a multilin-
ear expansion in terms of multiple switching multipliers
λ1, λ2, ...λm, a general form for which was given in [16].
The nonlinear E(x;λ1, λ2, ...λm) term becomes a func-
tion obeying v1v2...vmE(x;λ1, λ2, ...λm) = 0, where vi for
i = 1, 2, ...,m, denote m independent switching surfaces.

These systems are particularly interesting because, even
if each of the λi’s appears only linearly itself, so E ≡ 0,
there may still be multilinear dependence due to prod-
ucts of the λi’s. Some early hints of novel phenomena
that arise as a direct extension of the phenomena we
have shown above to multiple switches can be found in
[6, 23].

Great intricacy is evidently to be found in not only the
global, but the local, effects of discontinuity, due to sin-
gularities [18], bifurcations [9, 15, 27], and now it seems
also due to the hidden dynamics of the switch itself. To
analyse these models and apply them to physical systems
requires looking closer at how piecewise smooth models
are formulated. The regularizations in section III indi-
cate that the range of models possible is much wider than
sometimes appreciated, while the sigmoid series expan-
sions in section IV attempt to form a general approach
to encoding these different systems via nonlinearity.
In conclusion, whether we model a system as smooth

or nonsmooth is not the crucial question, as was illus-
trated in section VII in particular. What matters is that
hidden terms – those which are negligible away from the
switching surface – are respected in whichever modeling
framework we choose. Section IV provides the means to
preserve these hidden terms in a piecewise smooth model,
and to discover them from small deviations in the ‘real’
system if it is actually smooth. If we choose to analyze
a system using piecewise smooth theory, then section VI
outlines the basic approach, and the examples through-
out this paper are merely a glimpse of the kind of strange
behaviours that remain to be explored, and which may
perhaps offer new means to model the dynamics of irreg-
ular systems.
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