
Hidden degeneracies in piecewise smooth dynamical systems

Mike R. Jeffrey

Dept. of Engineering Mathematics, University of Bristol,

Merchant Venturer’s Building, Bristol BS8 1UB, UK, email: mike.jeffrey@bristol.ac.uk

(Dated: November 4, 2015)

When a flow suffers a discontinuity in its vector field at some switching surface, the flow

can cross through or slide along the surface. Sliding can be understood as the flow along an

invariant manifold inside a switching layer. It turns out that the usual method for finding

sliding modes – the Filippov convex combination or Utkin equivalent control – results in a

degeneracy in the switching layer whenever the flow is tangent to the switching surface from

both sides. We derive the general result and analyse the simplest case here, where the flow

curves parabolically on either side of the switching surface (the so-called fold-fold or two-fold

singularities). The result is a set of zeros of the fast switching flow inside the layer, which is

structurally unstable to perturbation by terms nonlinear in the switching parameter, terms

such as (signx)2 [where the superscript does mean “squared”]. We provide structurally stable

forms, and show that in this form the layer system is equivalent to a generic singularity of a

two timescale system. Finally we show that the same degeneracy arises when a discontinuity

is smoothed using the standard regularization methods.

I. INTRODUCTION

Discontinuous dynamical systems have long been of interest in impact mechanics and electronic

switching, and they are increasingly being used to model changes in behaviour enacted at definite

thresholds in a wide variety of engineering and biological applications (see e.g. [1, 6, 21, 23, 31]).

Filippov [10] brought the subject to life by moving the emphasis from trajectories that cross

switching surfaces, to developing an extensive dynamical theory around sliding trajectories, which

evolve along switching surfaces. These have inspired a growing field of piecewise smooth dynamical

theory (e.g. [6, 19, 28, 31] and references therein) that have proved of great utility for electronic

control [7, 30].

Part of the importance of sliding orbits (or sliding modes) is their stability, both in providing

robust control [7, 30], and in representing the average response of discontinuous switching in the

presence of noise [25]. The boundaries of sliding regions are not constant, however, but change,

either as we vary parameters or, in sufficiently high dimensions, as we move through phase space,

see e.g. [10, 19, 28]. In this paper we will show that the boundaries of sliding exhibit a form of
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degeneracy, and become structurally unstable with respect to perturbations we shall describe, at

relatively simple singularities created when the flow is tangent to the switching surface from both

sides.

In studying a discontinuous system

ẋ =







f+(x) if h(x) > 0 ,

f−(x) if h(x) < 0 ,
(1)

for smooth vector fields f±(x), we can seek a solvable deterministic system by continuing (1) across

the switching surface h = 0 as a convex combination

ẋ = f(x;λ) =
1 + λ

2
f+(x) +

1− λ

2
f−(x) , (2)

where f(x;±1) ≡ f±(x) and







λ = signh if h 6= 0 ,

λ ∈ (−1,+1) if h = 0 .
(3)

The rigour and depth of the theory that takes (2) as its starting point, see for example [6, 10, 18, 28],

warrant a deeper consideration of the extent to which the prescription (2) can be considered a robust

dynamical model of the piecewise-defined system (1).

The present paper aims to highlight certain conditions in which such systems are structurally

unstable under close inspection at the discontinuity, yet they appear to be structurally stable from

the expression (2) alone. The conditions are those defining singularities that often involve forward

and/or backward time non-uniqueness of solutions, making issues of stability particularly important

to resolving their behaviour.

The instability arises in resolving the switching surface h = 0, either by blowing up the dis-

continuity spatially into a non-vanishing strip, or smoothing it out by means of some sigmoidal

interpolation. In either case, an invariant manifold associated with sliding motion along the surface

may become degenerate. This occurs around tangencies between the vector fields in (1) and the

surface h = 0, creating a structurally unstable set of zeros in the transition across the discontinuity.

This is introduced in section II.

In section III we show that the degeneracy is broken by admitting in (2) terms nonlinear in λ.

The possibility of nonlinear λ dependence can be found discussed already in [10, 24, 30] (including

an experimental model in [24]), and here we find them taking on a necessary role in the local

qualitative classification of nonsmooth systems.
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The situations resulting in degeneracy include the fold-fold singularities classified in [6, 10, 19],

and the two-fold or fold-cusp singularities classified in [2, 10, 28], for all of which normal form

expressions have been established that appear from the expression (2) to be structurally stable.

Thus as we extend the depth of our analysis into piecewise smooth systems, so we extend our

understanding of their structural stability.

We reconsider the simplest of these, the fold-fold bifurcation in planar systems, and the closely

related two-fold singularity in higher dimensional systems, in sections IV-V. A detailed study of

the different classes of behaviour that result is a lengthy exercise beyond our scope here, we detail

only how the degeneracy arises, how it is resolved, and we outline the starting point for further

study. For the generic form of the two-fold, for example, the structurally stable system is shown

to be equivalent to a corresponding generic singularity in smooth two timescale systems; while the

superficial resemblance of these two singularities has been obvious, the exact relationship between

them has been unclear until now.

In section VI we show that equivalent results hold if the discontinuity is regularized by smooth-

ing. Some final remarks are given in section VII.

II. THE DEGENERACY

The degeneracy that concerns us in (2) arises as follows. Take coordinates x = (x, y, z, ...)

in which h = x, and for brevity write X = (y, z, ...) so that x = (x,X), and similarly we write

f = (f, F ) where f ∈ R, F ∈ R
n−1.

Standard piecewise smooth theory for a Filippov system like (2) asks whether there exist solu-

tions of (2) that slide along the switching surface h = 0, thus satisfying ḣ = 0. Using ḣ = f ·∇h = f ,

sliding trajectories satisfy the differential-algebraic system

0 = f(0,X;λ) ,

Ẋ = F (0,X;λ) ,
(4)

on x = 0 for some λ ∈ (−1,+1). If no such solutions exist then all vectors

{f(0,X;λ) : λ ∈ (−1,+1)} direct the flow transversally across the switching surface. Solutions

to (4) exist when f+(0,X) and f−(0,X) have opposite signs, so that both vector fields f± push

the flow onto the surface or both pull it away, then the second line of (4) specifies so-called sliding

dynamics along x = 0, with λ = f−(0,X)+f+(0,X)
f−(0,X)−f+(0,X)

lying in the interval (−1,+1).
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The sliding problem (4) is a subsystem of a switching layer system

ελ̇ = f(0,X;λ) ,

Ẋ = F (0,X;λ) ,
(5)

on x = 0, where ε ≥ 0 is an infinitesimal singular perturbation parameter. The first line blows up

the jump in λ between ±1 into a fast dynamical system on the interval (−1,+1). (In section VI we

describe the relation of this layer system, proposed in [11], to a regularization derived by replacing

λ in (2) with a smooth sigmoid function according to the Sotomayor-Teixeira method [26]; in

particular we show that the results which follow also apply to such systems).

The system (5) now provides a two-timescale dynamical system specifying how the flow evolves

through the discontinuity. With respect to a fast timescale τ = t/ε, (5) becomes

λ′ = f(0,X;λ) ,

X ′ = εF (0,X;λ) ,
(6)

with the prime denoting differentiation with respect to the fast time τ , and this becomes a one

dimensional fast subsystem in the limit ε→ 0,

λ′ = f(0,X;λ) ,

X ′ = 0 .
(7)

This describes how λ either transitions directly between ±1, or else encounters zeros of f(0,X;λ),

in the limit as ε→ 0.

The equilibria of (6) occupy a hypersurface which we call the sliding manifold

M =
{

(λ,X) ∈ (−1,+1) × R
n−1 : 0 = f(0,X;λ)

}

. (8)

These equilibria are normally hyperbolic except at a set of points

L = {(λ,X) ∈ M : f,λ(0,X;λ) = 0} , (9)

where f,λ denotes ∂f/∂λ. The sliding manifold M is just the surface defined by the algebraic

condition in (4), making M\L an invariant manifold of (4). In geometric singular perturbation

theory, M is known as the critical manifold of the system (5), and the existence of invariant

manifolds near M\L in the ε 6= 0 system then follows by the theory of Fenichel, see [8, 16].

Our concern here, however, is on the critical limit ε = 0. In particular we are concerned with

the fact that if a set L occurs in the system as defined above, then it turns out that it is always

degenerate.
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Proposition 1. In the switching layer system (5) using the convex combination (2), the non-

hyperbolic set L of the sliding manifold M is degenerate.

Proof. Let us expand the first line of (5) as a series in λ about some λ0 ∈ (−1,+1),

f(0,X;λ) = f(0,X;λ0) + (λ− λ0)f,λ(0,X;λ0) + O
(

(λ− λ0)
2
)

. (10)

On the set L the two lowest order terms in this expression vanish, leaving

f(0,X;λ) = O
(

(λ− λ0)
2
)

. (11)

This vanishes identically for f as defined in (2) because f depends only linearly on λ, so the first

line of (4) or (5) is trivial on L, and the value of λ is undetermined. Geometrically this means

that L lies along the λ coordinate direction, and the fast direction of the corresponding perturbed

system (5), and represents a line of zeros of the fast subsystem (7).

The condition for L to lie transversal to the fast direction is simply that the next derivative

of f is nonzero, i.e. ∂2/∂λ2f 6= 0 in (9). Perturbing the expression (2) with a term nonlinear in

λ will therefore yield a topologically distinct system. In section III we discuss the forms of such

perturbations that are consistent with (1).

The significance of singularities that create a non-hyperbolic set L is seen by considering what

happens when L ⊂ M meets the boundaries of the interval λ ∈ (−1,+1) at a given value of X (as

it is bound to do if, as above, L lies along the λ direction). The condition for M at the boundaries

is 0 = f(0,X;±1) ≡ f±(0,X), i.e. that the components f±(0,X) normal to the switching surface

vanish, meaning the vector fields f±(x) are both tangent to the switching surface at a given point

x = (0,X).

The outcome of the argument above is that whenever tangencies between f± and h = 0 coincide

in (1), a set L exists for (2), but in a structurally unstable form. Certain classes of perturbations

should break the degeneracy so that the non-hyperbolic set on M lies in a general position with

respect to the flow. In the rest of this paper we shall explore what kinds of perturbations these are,

when non-hyperbolic sets occur, and particularly where they can be found in familiar singularities,

and we shall see how to augment (2) so that under closer inspection it remains structurally stable.
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III. EXPANSION IN TERMS OF λ

A generalization of (2) was proposed in [11] which in the present context can be derived as

follows. If we expand f about λ = +1 we have

f(x;λ) = f(x; +1) + (λ− 1)f,λ(x; +1) + 1
2(λ− 1)2f,λλ(x; +1) + O

(

(λ− 1)3
)

:= P (12)

while expanding about λ = −1 gives

f(x;λ) = f(x;−1) + (λ+ 1)f,λ(x;−1) + 1
2(λ+ 1)2f,λλ(x;−1) + O

(

(λ+ 1)3
)

:= Q . (13)

A function satisfying both of these expansions can be found by taking the convex combination of

the two approximations, 1+λ
2 P + 1−λ

2 Q, which gives

ẋ = f(x;λ) =
1 + λ

2
f+(x) +

1− λ

2
f−(x) + (λ2 − 1)g(x;λ) , (14)

where

g(x;λ) =
f,λ(x; +1) − f,λ(x;−1)

2
− 1 + λ

4
f,λλ(x;−1)− 1− λ

4
f,λλ(x; +1) + ... .

The expression (11) will now typically be nontrivial, with a non-vanishing second order term

f(0,X;λ) = 1
2(λ− λ0)

2f,λλ(0,X;λ0) + O
(

(λ− λ0)
3
)

(15)

where

f,λλ(0,X;λ0) = 2g(0,X;λ0) + 4λ0g,λ(0,X;λ0) + (λ20 − 1)g,λλ(0,X;λ0) .

In a system where g = g0 + O (λ− λ0), with f,λλ(0,X;λ0) = 2g0 for a nonzero constant g0, if a

non-hyperbolic set L ⊂ M exists then it will typically be non-degenerate.

We can then think of (14) as a series expansion simultaneously about the points λ = ±1.

The expression (2) therefore belongs to a larger class of functions f(x;λ) given by (14) that are

consistent with (1), where g is some vector field that is smooth in x and λ. The factor λ2 − 1 or

something similar must clearly always appear for consistency with (1), because any term added to

(2) must vanish for λ = ±1. In fact, if we assume f can be written as a polynomial in λ then it

can always be cast in the form (15) [12, 15]. The nonlinear term (1 − λ2)g is sometimes called a

‘hidden’ term because it vanishes everywhere except at the discontinuity.

In the following sections we will analyse the set L in the most basic situation where it exhibits a

degeneracy, in two or three dimensions, and we will show the effect of introducing a non-vanishing

nonlinear term, with a constant g = (g0, 0, 0, ...).
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IV. THE PLANAR FOLD-FOLD SINGULARITY

Definition 1. A fold singularity in a piecewise smooth system (1) is a point x̂ ∈ R
n where the

vector field f+ or f− has quadratic contact with the switching manifold h = 0, that is where

f+(x̂) · ∇h(x̂) = h(x̂) = 0 or f−(x̂) · ∇h(x̂) = h(x̂) = 0, and the corresponding second derivatives

(f± · ∇)2h are nonzero.

A fold is described as visible if it curves away from the switching surface (f+ · ∇h = h = 0 <

(f+ · ∇)2h or f− · ∇h = h = 0 > (f− · ∇)2h), and invisible if it curves away from the switching

surface (f+ · ∇h = h = 0 > (f+ · ∇)2h or f− · ∇h = h = 0 < (f− · ∇)2h).

Definition 2. A fold-fold singularity in a system (1) is a point x̂ ∈ R
2 where

h(x̂) = f+(x̂) · ∇h(x̂) = f−(x̂) · ∇(x̂) = 0, (16)

and (f±(x̂) · ∇)2h(x̂) 6= 0.

The different forms the fold-fold can take were classified in [10], and normal forms for each class

were proposed in [19], which we can represent in a unified form

(ẋ, ẏ) =







(β + y, b1 + b2y) if x > 0 ,

(cy, d1 + d2y) if x < 0 ,
(17)

where β is a bifurcation parameter and b1, b2, c, d1, d2, are constants. This amounts to the leading

order term in an expansion about a fold at (x, y) = (0,−β) for x > 0 and a fold at (x, y) = (0, 0)

for x < 0.

The convex combination (2) for (17) is

(ẋ, ẏ) =
1 + λ

2
(β + y, b1 + b2y) +

1− λ

2
(cy, d1 + d2y) , (18)

giving a switching layer system (5) on x = 0 for infinitesimal ε ≥ 0,

(ελ̇, ẏ) =
1 + λ

2
(β + y, b1 + b2y) +

1− λ

2
(cy, d1 + d2y) . (19)

The sliding manifold (8), on which λ̇ = 0, is

M =

{

(λ, y) ∈ (−1,+1) × R : λ =
(c+ 1)y + β

(c− 1)y − β

}

. (20)

Hyperbolicity of M requires ∂λ̇/∂λ 6= 0, and breaks down on the set

L = {(λ, y) ∈ M : (1 + λ)(β + y) + (1− λ)cy = β + (1− c)y = 0} , (21)
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which only has solutions for y = 0 and β = 0, for any λ ∈ (−1,+1). The fast system on L in the

limit ε = 0 is then

(λ′, y′) =
1 + λ

2
(β + y, 0) +

1− λ

2
(cy, 0) , (22)

which is a y-parameterized family of equilibria of the fast λ subsystem. However, at the parameter

values β = y = 0 the entire righthand side of (22) vanishes identically for any λ. Therefore L is a

line of singular points. Its appearance coincides with the bifurcation that takes place at β = 0.

Because the leading order expression (17) leads to a degeneracy whereby the fast system vanishes

at β = 0 on L, we introduce the next highest order term from the x component of the extended

expression (14),

(ẋ, ẏ) =
1 + λ

2
(β + y, b1 + b2y) +

1− λ

2
(cy, d1 + d2y) + (1− λ2)(α, 0) , (23)

where α is some constant. The switching layer system (5) becomes

(ελ̇, ẏ) =
1 + λ

2
(β + y, b1 + b2y) +

1− λ

2
(cy, d1 + d2y) + (1− λ2)(α, 0) , (24)

with a sliding manifold (8)

M =
{

(λ, y) ∈ (−1,+1) × R : 0 = (β + y) + cy + λ(β + y − cy) + (1− λ2)α
}

. (25)

The non-hyperbolic set now consists of well-defined isolated points

L =

{

(λ, u ∈ M : λ = c+1
c−1 ±

√

c2+1
(c−1)2

− 2cαβ
c−1 , y =

2λα− β

1− c

}

(26)

of which one, two, or zero may exist such that −1 < λ < +1. Thus L is typically non-degenerate,

except for a well-defined bifurcation that will occur when the square root in (26) vanishes.

As an example consider

(ẋ, ẏ) =







(β + y, 2) if x > 0 ,

(−y,−1) if x < 0 ,
(27)

whose phase portrait in (x, y) space is illustrated in figure 1. The switching surface is attracting for

y < min(0,−β) and repelling for y > max(0,−β), the folds lying at y = 0 and y = −β. The basic

phase portrait is depicted in figure 1, showing the movement of the folds through a bifurcation

at β = 0. A node-like equilibrium exists in the sliding dynamics on the surface, and its precise

character must be determined by closer inspection of the switching layer. This system is studied

more closely in [13], we shall analyse only the appearance of L for this system.
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β<0 β=0 β>0

y

x

FIG. 1: A bifurcation in which the (‘curving away from x = 0’) and invisible (‘curving towards x = 0’) folds in

the flow exchange ordering, is accompanied by a (pseudo)-node changing from attracting to repelling.

y

xλ

M M

L

Mβ<0 β=0 β>0

FIG. 2: The bifurcation in figure 1, with x = 0 blown up into the layer λ ∈ (−1,+1).

The switching layer is depicted in figure 2 for α = 0, showing the bifurcation that occurs at

β = 0, corresponding to a bifurcation in the sliding manifold M =
{

(λ, y) ∈ M : λ = −β
2y+β

}

,

with the formation of a structurally unstable non-hyperbolic set L.
For α 6= 0 the non-hyperbolic set is instead a pair of points

L =

{

(λ, y) ∈ M : λ = ±
√

1
2 − αβ, y = λα− 1

2β

}

that exist for β < 1/2α, coalesce when β = 1/2α and then vanish for β > 1/2α. The case illustrated

in figure 3 is for α < 0.

y

xλ

M

L

M Mβ<0 β=0 β>0

FIG. 3: The bifurcation in figure 1 for β > 0, with x = 0 blown up into the layer λ ∈ (−1,+1). .

The example above is only one of several scenarios of fold-fold bifurcations in the plane rep-

resented by (17), each described in [10, 19]. Each of these involve the same degeneracy in the
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switching layer, which in certain cases (including the example above) leads to different layer dy-

namics for α > 0 and α < 0, as can be found in [13].

In three dimensions or more, similar coincidences of folds occur as generic singularities (i.e. not

as bifurcations), and are then known as two-fold singularities. They give rise to far more intricate

dynamics in which the degeneracy of L takes on greater significance. The basic geometry, which

has not been studied before, is analysed in the next section.

V. THE TWO-FOLD SINGULARITY

Definition 3. A two-fold singularity is a point x̂ ∈ R
n≥3 where

h(x̂) = f+(x̂) · ∇h(x̂) = f−(x̂) · ∇h(x̂) = 0, (28)

such that (f+(x̂) · ∇)2h(x̂) 6= 0 and the vectors ∇h(x̂), ∇ (f+(x̂) · ∇h(x̂)) , ∇ (f−(x̂) · ∇h(x̂)) are

linearly independent.

The normal form of the two-fold singularity commonly found in the literature (e.g. [2, 10, 27])

is

(ẋ, ẏ, ż) =







(−y, a1, b1) if x > 0 ,

(+z, b2, a2) if x < 0 ,
(29)

in terms of constants ai = ±1 and bi ∈ R. By results in [2, 10, 28], a system is locally approximated

by (29) when it satisfies the conditions in Definition 3.

The two-fold is a generic singularity in piecewise smooth systems of three or more dimensions.

Nevertheless, establishing its stability has been a topic of considerable intrigue since [10, 27]. It

is known to exist in a number of forms with bifurcations between them [2]. Within these forms,

its phase portrait obtained by substituting (29) into (2) appears to be structurally stable. The

analysis of section II shows, however, that this does not hold inside the switching layer, where the

phase portrait will not be stable to perturbations of the form (14) .

The conventional qualitative picture, taking (29) with (2), is as shown in figure 4. The local

flow ‘folds’ towards or away from the switching surface x = 0, determined by a1 and a2, along the

line y = x = 0 on one side of the surface, and along the line z = x = 0 on the other. The point

where these fold lines cross is the ‘two-fold’. As a result, the surface x = 0 is attractive in y, z > 0

and repulsive in y, z < 0, while trajectories cross the surface transversely in yz < 0. The three

main flavours of two-fold are therefore: the visible two-fold for a1 = a2 = −1, the invisible two-fold
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(i) (ii) (iii)

x

cr.

cr.

r.sl.
a.sl.x

cr.

cr.

r.sl.
a.sl.x

cr.

cr.

r.sl.
a.sl.

2-fold

FIG. 4: Three kinds of two-fold formed by tangencies between the flow and the switching surface, of visible

(‘curving away’) and invisible (‘curving towards’) type on either side. In the unshaded regions the flow crosses

(cr.) through a discontinuity at x = 0, in the shaded regions the flow can only slide along the discontinuity on

x = 0, the sliding region being attracting (a.sl.) or repelling (r.sl.) with respect to the flows outside the surface.

for a1 = a2 = 1, and the mixed two-fold for a1a2 = −1; an example of each is shown in figure 4

(i,ii,iii) respectively. As in the previous section, the terms visible or invisible indicate that the flow

is curving away from or towards the discontinuity surface, respectively.

In the attractive and repulsive regions the flow slides along the surface x = 0, following the

vector field that is found by substituting (29) into (2) or (14), and solving for λ such that ẋ = 0.

The precise form of both the crossing and sliding dynamics also depends on the constants b1 and

b2, and an accounting of the classes of dynamics that arise from these simple features has been

studied in many papers; a summary and references can be found in [2].

We shall henceforth be concerned only with the dynamics that is missing from the picture above,

namely the dynamics inside the switching surface at the singularity itself, connecting the attractive

and repelling branches of sliding.

We first form a system ẋ = f(x;λ) for (29) (using either (2) or (14)). The switching layer

system is given by (5), and the sliding subsystem given by (4) on the manifold M defined in (8).

The sliding manifold M is normally hyperbolic except on the curve L given by (9).

A. The unperturbed system

The two-fold normal form (29) substituted into the convex combination (2) is

(ẋ, ẏ, ż) =
1 + λ

2
(−y, a1, b1) +

1− λ

2
(z, b2, a2) (30)

:= (f(x, y, z;λ), F2(x, y, z;λ), F3(x, y, z;λ)) ,

recalling x = (x, y, z) and f = (f, F ) = (f, F2, F3). The switching layer system (5) on x = 0 is

(ελ, ẏ, ż) = (f(x, y, z;λ), F2(x, y, z;λ), F3(x, y, z;λ)) . (31)
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By (8), the sliding manifold M is

M =

{

(λ, y, z) ∈ (−1,+1) ×R
2 : λ =

z − y

z + y

}

. (32)

The condition |λ| < 1 implies that M exists for 0 < yz, corresponding to attracting or repelling

regions of the switching surface.

By expressing M implicitly as the zero contour of the smooth function (z + y)λ + (y − z),

we see that it is smooth surface which twists over near y = z = 0. It consists of two normally

hyperbolic branches, one attractive in y, z > 0 since ∂f/∂λ = −(z + y)/2 < 0), and one repulsive

in y, z < 0 since ∂f/∂λ = −(z+ y)/2 > 0. The two branches are connected at y = z = 0 along the

non-hyperbolic set, found from (9) to be

L = {(λ, y, z) ∈ M : y = z = 0 } . (33)

This line segment L, at which the attracting and repelling branches of M intersect, constitutes

the blowing up of the two-fold singularity (x = y = z = 0 in (29)) into a curve at y = z = 0 with

|λ| < 1. Figure 5 shows an example of the piecewise smooth system in (i), the switching layer

showing M and L in (ii), which is then rotated in to show L more clearly in (iii).

y

(i) (ii) (iii)

λ
z

y

z
x

v

x=0
λ

u
y

z

L
L

blow up rotate

M

M

FIG. 5: The switching layer for the unperturbed system (30), for the example of an invisible two-fold. (i) The

flow directions outside x = 0 create an attracting sliding region in y, z > 0 and repelling sliding region in y, z < 0.

(ii) The switching layer on x = 0, where the sliding regions create a sliding manifold M (shaded), hyperbolic

except along the vertical line L, which aligns with the fast (double arrowed) λ dynamics. (iii) The dynamics in

the manifold is best viewed along the v axis of rotated coordinates u = y + z, v = y − z.

Proposition 1 therefore holds, in the particular form:

Corollary 2. In the switching layer system (5) of the normal form two-fold singularity (29), the

non-hyperbolic set L of the sliding manifold M lies everywhere tangent to the coordinate axis of

the fast variable.
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Proof. The non-hyperbolic set L forms a line with tangent vector eL = (1, 0, 0) in the space of

(λ, y, z), which means it lies everywhere parallel to the fast u-coordinate axis of the two timescale

system (31).

As in the main proposition, this degeneracy is related to the fact that all derivatives of f with

respect to the fast variable u vanish along L, not only the first derivative ∂f/∂λ = −z − y = 0

which defines L as the set y = z = 0, but also all higher derivatives ∂rf/∂λr = 0 for any r > 1.

Thus this constitutes an infinite codimension degeneracy.

First observe that adding constant terms or functions of the coordinates (x, y, z) to (30) would

only move the set L in the (y, z) plane, not remove its degeneracy, easily seen since the derivatives

∂r

∂λr
f(0, y, z;λ) =

f(0, y, z; +1) − f(0, y, z;−1)

2
for r > 0

would still vanish on L, where f(0, y, z; +1) − f(0, y, z;−1) = 0. The only recourse to break the

degeneracy, specifically to give ∂2f
∂λ2 6= 0, is therefore to add terms nonlinear in λ to (30). Anything

we add to the function f in (30) must still give (29), so it must vanish outside the switching surface

x = 0, i.e. be a perturbation in the form (14). We shall show that perturbing ẋ with a term

proportional to λ2 − 1 is sufficient for structural stability. Perturbing ẏ or ż is neither necessary

nor sufficient, therefore we leave them unaltered.

B. The perturbed system

We now show that the system

(ẋ, ẏ, ż) =
1 + λ

2
(−y, a1, b1) +

1− λ

2
(z, b2, a2) + (1− λ2)(α, 0, 0) (34)

:= (f(x, y, z;λ), F2(x, y, z;λ), F3(x, y, z;λ)) ,

where α is a constant, does not suffer the structural stability of (30), and more interestingly we

explore the consequences of removing the degeneracy. The switching layer system (5) becomes

(εẋ, ẏ, ż) = (f(x, y, z;λ), F2(x, y, z;λ), F3(x, y, z;λ)) . (35)

Our main result is as follows:

Proposition 3. The switching layer system (35) of the normal form two-fold singularity (29),

using (14) with g = (α, 0, 0), can be transformed into

εẋ = y + x2 + O (εx, εz, xz)

ẏ = pz + qx+ O
(

z2, xz
)

ż = r + O (z, x)
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provided α 6= 0 for small ε > 0, where p, q, r, are real constants, and provided the conditions

1
2(b1 − b2) ≤ 1 = a1 = −a2 or 1

2(b1 − b2) ≥ −1 = a1 = −a2 do not hold.

The significance of this result is that the system in the proposition is the canonical form for

a generic singularity in a smooth two timescale system, arising at the transversal intersection of

attracting and repelling invariant manifolds responsible for so-called canards [32]. It turns out that

the cases excluded by the conditions ±1
2(b1− b2) ≤ 1 = ±a1 = ∓a2 are those in which there are no

orbits of the sliding flow passing through the singularity, so the repelling and attracting branches

of sliding are not directly connected by the flow.

The proof of the proposition is a fairly lengthy coordinate transformation that untwists M and

folds it into a parabolic surface. To emphasise the interesting geometry we prove the proposition by

way of three lemmas, establishing first the non-degeneracy of L, second locating a new singularity

that distinguishes a special point along L, and finally morphing M into the ẋ nullcline of the

system in Proposition 3. At the end of the section we review the basic analysis used to classify the

resulting singularity, and review where these results fit into previous studies of the two-fold.

The sliding manifold, found by applying (8) to (35), is now the set

M =

{

(λ, y, z) ∈ (−1,+1) ×R
2 :

1− λ

2
z − 1 + λ

2
y + α(1 − λ2) = 0

}

, (36)

which is normally hyperbolic except on the set given by applying (9) to (35),

L =

{

(λ, y, z) ⊂ M : λ = 2
2α+ z − y

z + y
= −z + y

4α

}

. (37)

Solving the conditions in (37) we can express L in parametric form as

(λ, y, z) = L(ξ1) :=
(

u, α(λ− 1)2, −α(λ+ 1)2
)

. (38)

This gives us the first result as follows.

Lemma 4. The non-hyperbolic set L is transverse to the fast direction of (35).

Proof. By differentiating (38) with respect to λ, we find that the curve L has tangent vector

eL = (1 , 2α(λ− 1) , −2α(λ+ 1)), which for all |λ| < 1 is transverse to the coordinate axes

provided α 6= 0.

While the non-hyperbolic curve L is now in a general position with respect to the fast variable,

generically there may exist a new singularity along L, where the flow’s projection along the λ-

direction onto the nullcline f = 0 is indeterminate. We shall call this the star singularity, defined

in the following lemma.
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Lemma 5. For the values of the constants a1, a2, b1, b2, given in Proposition 3, there exists an

isolated singularity of the flow along the non-hyperbolic set L, where the projection of the slow flow

onto M lies tangent to L.

Proof. Let us consider the slow critical subsystem (i.e. the sliding system (4)) obtained by letting

ε = 0 in (35),

(0, ẏ, ż) = (f(0, y, z;λ), F2(0, y, z;λ), F3(0, y, z;λ)) . (39)

M is the surface where f = 0, so a solution of (39) that remains onM for an interval of time satisfies

ḟ = 0. We can find λ̇ on M using the chain rule, writing ḟ =
(

λ̇, ẏ, ż
)

· (∂/∂λ, ∂/∂y, ∂/∂z) f =

λ̇∂f
∂λ

+(F2, F3) · ∂f∂(y,z) = 0, which rearranges to λ̇ = −(F2, F3) · ∂f∂(y,z)/
(

∂f
∂λ

)

. Thus λ̇ is indeterminate

on M at points where the numerator and denominator of this vanish, or in full, where

0 = f =
∂f

∂λ
= (F2, F3) ·

∂f

∂(y, z)
. (40)

These three conditions define an isolated singularity on L ⊂ M. Denoting the value of Fi at the

singularity as Fis, and solving (40), we must find λs such that

0 = 1
2(F2s, F3s) · (−1− λs, 1− λs)

=
(

a1+b2
2 + a1−b2

2 λs ,
b1+a2

2 + b1−a2
2 λs

)

·
(

−1+λs

2 , 1−λs

2

)

, (41)

and find that the ‘star’ singularity lies at (λ, y, z) = (λs, x2s, x3s), where

λs =
−a1+a2

b1−b2
±

√

1 + 4a1a2
(b1−b2)2

1 + a1−a2
b1−b2

, x2s = α(λs − 1)2 , x3s = −α(λs + 1)2 . (42)

Noting that a1 and a2 in the normal form just take values ±1, we have:

• in the case a1 = a2 = 1, we have λs = −2
b1−b2

±
√

1 + 4
(b1−b2)2

, implying that there exists a

unique solution λs ∈ (−1,+1) for any b1 and b2 (the positive root for b1 > b2, the negative

root for b1 < b2);

• in the case a1 = a2 = −1, we have λs =
2

b1−b2
±

√

1 + 4
(b1−b2)2

, implying that there exists a

unique solution λs ∈ (−1,+1)for any b1 and b2 (the positive root for b1 < b2, the negative

root for b1 > b2);

• in the case a1 = −a2 = 1, we have λs = ±
√

b1−b2−2
b1−b2+2 , implying that there exist two solutions

λs ∈ (−1,+1) for b1 − b2 > 2, and no points otherwise.
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• in the case a1 = −a2 = −1, we have λs = ±
√

b1−b2+2
b1−b2−2 , implying that there exist two solutions

λs ∈ (−1,+1) for b1 − b2 < −2, and no points otherwise.

This lemma establishes the existence of at least one unique folded singularity on L in the cases

listed in Proposition 3. In the cases where λs is unique we proceed directly to the steps that follow

below. In the cases where λs can take two values we can proceed with the following analysis about

each value, and will obtain different constants in the final local expression, i.e. a different folded

singularity corresponding to each λs. In the cases when λs does not exist, no equivalence can be

formed; these are the cases when the two-fold’s sliding portrait is of focal type (see [2]), and there

exists no orbits passing directly between the attracting and repelling branches of sliding, since

orbits wind around the two-fold but never enter or leave it. So excluding those cases a1 = −a2 = 1

with b1 − b2 ≤ 2 and a1 = −a2 = −1 with b1 − b2 ≥ −2, we proceed with the final step in proving

proposition 3.

Lemma 6. Coordinates can be defined in which the folded singularity of (35) lies at the origin,

and L lies along a coordinate axis corresponding to a slow variable.

Proof. Taking a valid solution of λs from (42) for |λ| < 1, a translation puts the singularity at the

origin of the new coordinates

ξ1 = λ− λs , ξ2 = y − x2s , ξ3 = z − x3s . (43)

Then f becomes

f = −1 + λs
2

ξ2 +
1− λs

2
ξ3 −

(

ξ3 + ξ2
2

+ αξ1

)

ξ1 , (44)

found by using (41)-(42) to ensure that terms involving ys and zs vanish. To find coordinates in

which L lies along a coordinate axis, from (38) we can obtain the ξ1-parameterized expression for

L,

(ξ1, ξ2, ξ3) = L(ξ1) := (ξ1,−αξ1(2− 2λs − ξ1), −αξ1(2 + 2λs + ξ1)) ,

and re-arrange this to take ξ3 as a parameter, expressing L as (ξ1, ξ2) = (ξ1L(ξ3), ξ2L(ξ3)), where





ξ1L(ξ3)

ξ2L(ξ3)



 :=





−1− λs +
√

(1 + λs)2 − ξ3/α

−ξ3 − 4α(−1 − λs +
√

(1 + λs)2 − ξ3/α)



 . (45)
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The derivatives of these functions are needed to evaluate the vector field components below, these

are

ξ′1L(ξ3) =
−1/2α

1 + λs + ξ1L(ξ3)
, ξ′2L(ξ3) =

1− λs − ξ1L(ξ3)

1 + λs + ξ1L(ξ3)
. (46)

We can then rectify L to lie along some ζ3 axis by defining new coordinates

ζ1 = ξ1 − ξ1L(ξ3) , ζ2 = ξ2 − ξ2L(ξ3) , ζ3 = ξ3 . (47)

The original vector field components can then be written as

f = −1+λs+ξ1L
2 ζ2 − αζ21 − ζ2ζ1/2 ,

F2 = F2s + (ζ1 + ξ1L(ζ3))
∂F2s

∂φ1
= F2s + O (ζ1, ζ3) ,

F3 = F3s + (ζ1 + ξ1L(ζ3))
∂F3s

∂φ1
= F3s + O (ζ1, ζ3) .

(48)

With a little algebra we find that

εζ̇1 = εξ̇1 − εξ̇3ξ
′
1L(ξ3)

=
1 + λs

2

(

εF3s

α(1 + λs)2
− ζ2

)

− αζ21 + O
(

εζ3, εζ1, ζ2ζ3, ζ2ζ1, ζ
3
1

)

A small shift ζ̃2 = ζ2 − εF3s

α(1+λs)2
yields, after some lengthy but straightforward algebra, using the

relations in (41) and (48) to show that any terms not proportional to ζ1 or ζ3 vanish,

˙̃ζ2 = F2 − ζ̇3ξ
′
2L(ζ3) = qζ1 +

p̃

α
ζ3 + O

(

ζ23 , ζ1ζ3
)

where

q̃ =
∂F2s

∂λ
− ∂F3s

∂λ

1− λs
1 + λs

, p̃ = −2F3s + q̃(1 + λs)
2

2(1 + λs)2
.

The last thing to do is just scaling. Collecting everything together so far we have

εζ̇1 = (d1ζ̃2 − αζ21 )λs + O (εz, εζ3, ζ1ζ3)

˙̃ζ2 = p̃
α
ζ3 + q̃ζ1 + O

(

ζ23 , ζ1ζ3
)

ζ̇3 = F3s + O (ζ3, ζ1)

where d1 = −1
2(1 + λs). Defining new variables η1 =

√

|α|ζ1, η2 = −sign(α)d1ζ̃2, η3 = −sign(α)ζ3,

and t̃ = −sign(α)t, gives

εη̇1 = η2 + η21 + O (εη1, εη3, η1η3)

η̇2 = pη3 + qη1 + O
(

η23 , η1η3
)

η̇3 = r + O (η3, η1)

(49)



18

where

r = F3s , p = − 1
4|α|

(

F2s + F3s − 2q
√

|α|
)

,

q = −1

2
√

|α|

(

(λs + 1)∂F2s

∂λ
+ (λs − 1)∂F3s

∂λ

)

.
(50)

Replacing (η1, η2, η3) with (x, y, z), this is the result in the lemma and in Proposition 6, clearly

valid only for α 6= 0 (otherwise the transformation is singular).

Figure 6 shows an example of the perturbed system and its switching layer for each flavour of

two-fold in (i) (corresponding to those in figure 4), followed by their switching layer (ii), and a

rotation (iii) to show the phase portrait around the set L more clearly (similar to figure 5). In

the mixed visible-invisible two-fold (far right column), for example, the nonsmooth system (i) has

a phase portrait with infinitely many intersecting trajectories traversing the singularity, while the

layer system (ii-iv) splits these into distinguishable orbits, a finite number of which asymptote to

the attracting and repelling branches of the critical manifold.

Like the different kinds of two-fold, there are different classes of the ‘star’ singularity, and their

classification depends on the dynamics inside M (on the t timescale). From the expression (49)

with (50) we see that the class therefore depends not only on the constants a1, a2, b1, b2, of the

original piecewise smooth system, but also on the ‘hidden’ parameter α.

The classification scheme is fairly simple, and can be used to verify the dynamics on M seen

in figure 6. The projection of the system (49) onto M, found by differentiating the condition

0 = η2 + η21 with respect to time to give 0 = bη3 + cη1 + 2η1η̇1 + O
(

η23 , η1η3
)

, is




η̇1

η̇3



 =
1

−2η1











c b

−2a 0









η1

η3



+ O
(

η23, η1η3
)







.

A classification then follows by neglecting the singular pre-factor 1/2η1 and considering whether

the phase portrait is that of a focus, a node, or a saddle. This is determined by the 2 × 2 matrix

Jacobian, which has trace c, determinant 2ab, and eigenvalues 1
2 (c±

√
c2 − 8ab). This will not be

the true system’s phase portrait because the time-scaling from the 1/2x factor is positive in the

attractive branch of M, negative (time-reversing) in the repulsive branch, and divergent at the

singularity (turning infinite time convergence to the singularity into finite time passage through

the singularity). The effect of this is to ‘fold’ together attracting and repelling pairs of each

equilibrium type, so each equilibrium becomes a ‘folded-equilibrium’, forming a continuous bridge

between branches of M.

As a result the flow on M is a folded-saddle if ab < 0, a folded-node if 0 < 8ab < c2, and

a folded-focus if c2 < 8ab. So-called canard cases occur for c > 0 and faux canard for c < 0 (a
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FIG. 6: blowing up the perturbed (α 6= 0) system, for examples of each flavour of two-fold. Labelling as in

figure 5. Note in the regularization (ii) that L is now a curve. Rotating around the u axis in (iii) we can see

the attracting branch (upper right segment) and repelling branch (lower left segment) of the sliding manifold M
(shaded), connected by L. The folded singularity (f.sing.) appears along L, two in the case of mixed visibility,

recognised as having a phase portrait that resembles a saddle or node if we reverse time in the repelling branch

of M. In (iv) we sketch the corresponding phase portraits in the slow-fast system (49).

canard is a trajectory that evolves directly from the attracting sliding region to the repelling sliding

region, while a faux canard does the opposite). In the visible two-fold the singularity becomes a

folded-saddle, in the invisible case it becomes a folded-node, while the mixed case becomes a pair

consisting of one folded-saddle and one folded-node.

In the cases depicted in figures 4-6, there exist one or more trajectories, passing from the

attractive sliding region to the repelling sliding region. This passage occurs in finite time (since

the vector field obtained by substituting (29) into (2) is non-vanishing everywhere locally). The

flow is unique in forward time everywhere except in the repelling sliding region, where it is set-

valued because trajectories may slide along x = 0, but may also be ejected into x > 0 or x < 0 at
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any point. This means that the flow may evolve deterministically until it arrives at the singularity,

at which point it becomes set-valued, so we say that determinacy breaking occurs at the singularity

whenever the sliding flow passes from the attractive to repelling sliding region. This is illustrated

in figure 7. It occurs in the invisible case when b1, b2 < 0 and b1b2 > 1, in the visible case when

b1 < 0 or b2 < 0 or b1b2 < 1, and finally in the mixed case when b1 < 0 < b2 and b1b2 < −1 or

when b1 + b2 < 0 and b1 − b2 < −2. (The particular cases shown in figure 7 are: (i) a1 = a2 = −1

with b1 < 0 or b2 < 0 or b1b2 < 1; (ii) a1 = a2 = 1 with b1, b2 < 0 and b1b2 > 1; (iii) a1a2 = −1

with b1 < 0 < b2 and b1b2 < −1 or with b1 + b2 < 0 and b1 − b2 < −2.) The phase portraits

in figure 6 resolve this passage through the singularity in more detail, revealing strong and weak

eigendirections, and showing that the determinacy breaking trajectories persist in the switching

layer.

(i) (ii) (iii)

x

cr.

cr.

r.sl.
a.sl.x

cr.

cr.

r.sl.
a.sl.x

cr.

cr.

r.sl.
a.sl.

2-fold

FIG. 7: Three kinds of two-fold, showing determinacy-breaking in the systems from figure 4, meaning that the

flow becomes set-valued at is passes through the singularity. The set has 2 dimensions in (i) and 3 dimensions in

(ii-iii).

In the literature on smooth two timescale systems, the connection of attracting and repelling

branches of a slow invariant manifolds has been well studied, leading to a generic canonical form

(49) as described in [32]. In the present notation, this requires M and L to be non-degenerate,

given by

f = 0 , ∂f
∂λ

= 0 , ∂f
∂y

, ∂f
∂z

6= 0 , ∂2f
∂λ2 6= 0 , (51)

the first three of which are satisfied on L as given by (9), while the fourth holds only for α 6= 0. A

‘star’ singularity is a generic point along L where moreover 0 = f1 = ḟ1 =
∂f1
∂x

, with non-degeneracy

conditions ∂g1
∂y
, ∂g1

∂z
6= 0 6= ∂2g1

∂x2 .

To avoid confusion we have referred to this as the ‘star’ singularity. In smooth two timescale
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systems it is usually known as a ‘folded’ singularity (a folded node, folded saddle, etc. depending on

the phase portrait inside M) [32], an unfortunate clash of ‘fold’ terminologies with the piecewise

smooth literature, rooted in much older work on singularities involving flows and surfaces. A

qualitative association between the two-fold and the star singularity was made in [3, 4], based on

similarities between the phase portraits onM, and the result above at last clarifies this relation, but

requires obtaining structural stability inside the switching layer via introduction of terms nonlinear

in λ.

One may ask why certain cases were excluded by the proposition above. The excluded cases were

those in which no canards or faux canards exist in the slow-fast system. Trajectories connecting

the attractive and repulsive sliding regions occur when transversal intersections exist between the

attracting and repelling branches of the sliding manifolds M. If no such intersections exist, the

critical system possesses no ‘star’ singularities and hence is excluded from Proposition 3. Hence the

omission of these cases is consistent, and a posteriori it is obviously necessary in the equivalence

sought in the proposition.

This just touches the surface of the problem, opening the way to deeper study of the two-

fold’s dynamics. A glance at the papers [5, 32, 33] reveals what happens if we smooth out the

discontinuity, for reasons of regularization analysis or numerical simulation. As regularization

has been a popular method for studying the extent to which smooth and discontinuous systems

approximate each other, we clarify the relation between switching layer dynamics and regularization

in the next section. A detailed description of the star singularity in smooth systems can be found

in the references above. Its implications for the piecewise smooth system are of interest only in

the singular limit ε = 0, not, as concerns singular perturbation studies, what happens for ε > 0.

The full consequences for the larger piecewise smooth system, too lengthy to begin here, will be

pursued in future work.

Given the continued interest in the two-fold after many years, we should discuss also how the

results above fit into the growing literature on the subject. We delay this to closing comments in

section VII.

VI. REGULARIZATION

The piecewise smooth system is sometimes compared to its regularization, the smooth system

ẋ = f(x;φκ(h)) =
1 + φκ(h)

2
f+(x) +

1− φκ(h)

2
f−(x) , (52)
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in terms of a smooth sigmoid function

φκ(h) ∈







signh if |h| ≥ κ ,

(−1,+1) if |h| < κ ,
(53)

for which φ′κ(h) > 0 for |h| < κ, with φκ(h) → signh as κ→ 0. Taking coordinates in which h = x

as in section II, let u = x/κ and note that φκ(x) = φκ(κu) = φ1(u), then for κ zero (52) becomes

the differential-algebraic system

0 = f(0,X;φ1(u)) ,

Ẋ = F (0,X;φ1(u)) ,
(54)

This is just the sliding problem (4) rewritten with λ replaced by φκ(x) in the limit κ → 0. It is

also the singular limit of the smooth system (52), which written in terms of u is

κu̇ = f(κu,X;φ1(u)) ,

Ẋ = F (κu,X;φ1(u)) .
(55)

The system (55) provides a smoothed two-timescale system approximating the flow near the

discontinuity surface x = 0 of the original discontinuous problem (1). Below we show that this is

qualitatively consistent with the switching layer system (5), and moreover that they are equivalent

in the limit κ→ 0, ε→ 0.

From (55) we proceed analogously to section II. The outcome that the algebraic condition in

(55) defines a hypersurface

M′ = {(u,X) ∈ R
n : 0 = f(0,X;φ1(u))} , (56)

which is the critical manifold of (54) (the invariant manifold of (54)) wherever it is normally

hyperbolic, that is, excepting a set of points

L′ =
{

(u,X) ∈ M′ : f,u(0,X;φ1(u)) = 0
}

. (57)

The degeneracy of this set follows similarly to L in (9), because all higher derivatives of

f(0,X;φ1(u)) with respect to u vanish, but this fact is less obvious than the vanishing of derivatives

of f(0,X;λ) with respect to λ in section II. The second derivative is

f,uu =
φ′′1(u)

φ′1(u)
f,u + (φ′1(u))

2f,φ1φ1
. (58)

The first term vanishes on L′ where f,u = 0, and the second vanishes for (52) as f,φ1φ1
= 0.
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This means that expanding the first line of (5) as a series in u about some u0 ∈ (−κ,+κ),

f(0,X;φ1(u)) = f(0,X;φ1(u0)) + (u− u0)f,u(0,X;φ1(u0)) + O
(

(u− u0)
2
)

. (59)

On the set L′ the two lowest order terms in this expression vanish, leaving

f(0,X;φ1(u)) = O
(

(u− u0)
2
)

, (60)

which vanishes identically for f as defined in (52), so the first line of (54) or (55) is trivial on L′,

and the value of u that defines L′ is undetermined. Geometrically this means that L′ lies along

the u coordinate direction, and the fast direction of the corresponding perturbed system (55).

If we allow terms nonlinear in λ to be added to (2), in the form (14), and only then regularize

by substituting λ = φκ(h), as in section III we obtain a topologically distinct system

ẋ = f(x;φκ(h)) =
1 + φκ(h)

2
f+(x) +

1− φκ(h)

2
f−(x) + (1− φ2κ(h))g(x;φκ(h)) , (61)

that does not exhibit a degeneracy of L′ under generic conditions.

The Sotomayor-Teixeira theory of regularization [26] can be used to show the conjugacy between

the two timescale dynamics of (52) in the limit of small κ, and in [22] this theory was extended to

apply to systems (61).

Having shown that the switching layer approach of section II and the regularization approach

above exhibit similar degeneracies, let us show that their critical dynamics is in fact equivalent in

the limit of small ε or κ.

Proposition 7. Letting λ = φκ(x) given ẋ = f(x;λ), with φκ defined in (53), the dynamics of λ

is given by

ε(λ, κ)λ̇ = ẋ = f(x, λ) (62)

such that ε(λ, κ) ≪ 1, where ε denotes a continuous positive function and κ a small parameter,

with 0 < κ < κ∗ ≪ 1 for λ ∈ (φ−κ∗, φ
+
κ∗), in terms of constants κ∗ and φ±κ∗ that satisfy φ±κ∗ → ±1 as

κ∗ → 0.

Proof. We shall use the relation λ = φκ(x) to derive a dynamical system on λ for |x| < κ.

Differentiating λ = φκ(x) with respect to t gives

λ̇ =
ẋ

κ
φ′κ(x) for |x| < κ . (63)

Considering a variable u = x/κ we see from (53) that φκ(x) = φκ(uκ) = φ1(u), with derivative

κφ′κ(x) = φ′1(u). Both φ1(u) and φ′1(u) are smooth with respect to u and independent of κ.
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Moreover φ′1(u) is strictly positive because φ1(u) is strictly increasing, and φ′1(x/κ) only becomes

small (or vanishing) for |x|/κ > 1. So the quantity κ/φ′1 is small and nonzero for |x|/κ ≤ 1, and

using it we define a fast timescale τ = tφ′κ(x)/κ. Since φ1(u) is differentiable and monotonic for

|u| < 1, it has an inverse ψ(λ) such that ψ(φ1(u)) = u, and we can define a function

ε(λ, κ) := κ/φ′1(ψ(λ)) , for |λ| < 1 . (64)

That this quantity is small is shown as follows: the function φ1(u) varies differentiably over an

interval on which its extremal values are φ1(±1) = ±1, therefore there exists a point u∗ where

φ′(u∗) =
φ1(+1)−φ1(−1)

(+1)−(−1) = 1, and by continuity since φ′1(±1) = 0, there exist two points u±κ where

φ′(u±κ ) = ±κ for 0 < κ < 1, and moreover an interval u−κ < u < u+κ such that φ′1(u) > κ. Fix some

κ∗ such that 0 < κ∗ ≪ 1, then κ/φ1(u) < 1 for u−κ∗ < u < u+κ∗, and

lim
κ→0

ε(λ, κ) = 0 ,

so that ε(λ, κ) ≪ 1 for κ≪ κ∗ and u ∈ (u−κ∗, u
+
κ∗).

By (63) we therefore have the dynamical equation ε(λ, κ)λ̇ = ẋ = f(x, λ) for small ε in the

proposition.

This proposition identifies λ as a fast variable inside λ ∈ (−1,+1) (more strictly for λ ∈
(φ−κ∗, φ

+
κ∗) where φ±κ∗ = φ1(u

±
κ∗), and κ∗ is arbitrarily small but nonzero). When λ is set-valued

on x = 0 with κ = 0, this equation determines the variation of λ on the timescale τ which is

instantaneous relative to the timescale t.

The two timescale system obtained by combining (62) with (52) on the interval λ ∈ (φ−κ∗, φ
+
κ∗),

is then

(ελ̇, Ẋ) = (f(κu,X;λ), F (κu,X;λ)) = (f(0,X;λ), F (0,X;λ)) + O (κu) . (65)

The truncation of this is formally the same as the switching layer system (5), i.e.

(ελ̇, Ẋ) = (f(0,X;λ), F (0,X;λ)) . (66)

While standard geometrical singular perturbation theory does not apply to (65)-(66) when derived

in this way from the smoothing (52), because ε is then a function rather than a parameter, we can

show that (5) has the same critical manifold geometry as the regularization (55). We can omit the

arguments of ε = ε(λ, κ) without loss of generality.

Proposition 8. The system (5) has equivalent slow-fast dynamics to the system (52) on the

discontinuity set x = 0 in the critical limit ε = 0.
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Proof. Rescaling time in (5) to τ = t/ε, then setting ε = 0 and x = 0, gives the fast critical

subsystem

(λ′,X ′) = (f(0,X;λ), 0) . (67)

The equilibria of this one-dimensional system form the manifold M defined in (8), which is equiv-

alent to the manifold M′ given by (56) for λ = φ1(u). This is an invariant manifold of the system

(67) in the ε = 0 limit everywhere that M is normally hyperbolic, that is excepting the set L
defined in (9). Since f,u = φ′1(u)f,λ and φ′1(u) 6= 0 for |u| < 1, this definition of L is equivalent to

L′ given by (57). Setting ε = 0 and x = 0 in (5) gives the slow critical subsystem (4),

(0, Ẋ) = (f(0,X;λ), F (0,X;λ)) ,

which defines dynamics in the critical limit ε = 0 on M, which is identical to (54).

Since the dynamics of (5) is of interest only in the limit ε = 0, where the dynamics of λ

is infinitely fast, further study away from this limit is beyond the interest of piecewise smooth

dynamics itself. Evidently there is more to be analysed in the relation between (5) and (65) for

κ and ε nonzero as a more general singular perturbation problem, concerning how closely smooth

systems can approximate discontinuous models or vice versa.

VII. CLOSING REMARKS

The two-fold singularity is of particular interest where degeneracies in the switching layer are

concerned. Of all elementary singularities in piecewise smooth flows, the two-fold has proven sur-

prisingly difficult to characterise, from its first description in [10, 27] in three dimensions, to its

study in higher dimensions in [2]. These (and all references in between to the author’s knowl-

edge) exclusively consider the class of Filippov system obtained by placing (29) into the convex

combination (2). The degeneracy raised in this paper adds a new level of intricacy.

Early questions about the structural stability of two-fold singularities, raised in [27] particularly,

have been largely resolved by uncovering the intricate crossing and sliding phase portraits, revealing

various topologically stable classes separated by bifurcations [2, 9, 14], which include the birth of

limit cycles, bifurcation of an invariant nonsmooth diabolo, and passage of sliding equilibria through

the singularity. It is important to note that away from the known bifurcations that affect it, the

two-fold is neither an attractor nor repeller, so the flow either misses the singularity, or traverses

it in finite time.
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Particularly because of some similarity to canard dynamics and issues of flow uniqueness as

discussed in section V, attention has turned to how the two-fold can be understood as a limit or

approximation of a smooth flow. An equivalence between “sliding” motion along a discontinuity

surface, and “slow” motion on invariant manifolds of a smooth two-timescale system, has been

shown [22, 26], and the similarities in their respective behaviours continue to be of interest [3, 4,

20, 29]. The papers [17, 20, 29] follow the route of substituting (29) into (2), and then regularizing,

and therefore exhibit a degenerate sliding manifold as described in section II. While the degeneracy

is not noted explicitly, certain difficulties of robustness that arise from it are, and are tackled by

re-scaling the local variables to prove that particular solutions called ‘primary canards’ persist

within the Sotomayor-Teixeira regularization. Here we have shown instead that a more general

regularization breaks the degeneracy, and in doing so we are able to relate the two-fold to the

canonical form of generic non-hyperbolic curves along invariant manifolds in smooth two timescale

systems.

The result in section II on the degeneracy of L extends to systems with multiple switches. Let

the switching surface consist r ≤ n transversally intersecting manifolds hj(x) = 0 for j = 1, ..., r.

We define switching multipliers λ = (λ1, ..., λr), and instead of (2) we have (see e.g. [13])

ẋ = f(x,λ) =
∑

p1,...pr=±

λ
(p1)
1 ...λ(pr)r fp1...pr(x) , λ

(±)
i =

1± λi
2

, (68)

where fp1...pr(x) denote 2r different smooth vector fields f±±...(x), with






λj = signhj if hj 6= 0 ,

λj ∈ (−1,+1) if hj = 0 .
(69)

Take coordinates x = (x1, x2, ..., xn) in which xj = hj for j = 1, ..., r. For brevity write X =

(xr+1, ..., xn) so that x = (x1, ..., xr ,X), and F = (fr+1, ..., fn) so that f = (f1, ..., fr, F ). Then at a

point where r switching manifolds hj = 0 intersect, the switching layer system on x1 = ... = xr = 0

is

εjλ
′
j = fj(0, ..., 0,X;λ1 , ..., λr) , j = 1, ..., r ,

X ′ = F (0, ..., 0,X;λ1 , ..., λr) .
(70)

The sliding manifold is given in by

M =







(λ1, ..., λr) ∈ (−1,+1)r, X ∈ R
n−r :

fj(0, ..., 0,X) = 0,

for j = 1, ..., r.







, (71)

and is normally hyperbolic except on a set

L =

{

(λ1, ..., λr ,X) ∈ M : det

∣

∣

∣

∣

∂(f1, ..., fr)

∂(λ1, ..., λr)

∣

∣

∣

∣

= 0

}

. (72)
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If we assume for some infinitesimal ε0 that the ratios κj = εj/ε0 are finite and nonzero as εj → 0

and ε0 → 0, then with respect to the fast timescale τ = t/ε0, the layer system is

λ′j = fj(0, ..., 0,X;λ1 , ..., λr)/κj , j = 1, ..., r ,

X ′ = ε0fi(0, ..., 0,X;λ1 , ..., λr) ,
(73)

with the prime denoting differentiation with respect to the fast time τ . This becomes an r dimen-

sional fast subsystem in the limit ε0 → 0,

λ′j = fj(0, ..., 0,X;λ1 , ..., λr)/κj , j = 1, ..., r ,

X ′ = 0 .
(74)

Expanding the first r line of (74) as a series in λ = (λ1, ..., λr) about some λ∗ ∈ (−1,+1)r on M,

fj(0, ..., 0,X;λ) = (λ− λ∗) · ∂

∂λ
fj(0, ..., 0,X;λ∗) + O

(

|λ− λ∗|2
)

. (75)

On the set L the r × r square matrix ∂(f1,...,fr)
∂(λ1,...,λr)

is singular, so this expression is degenerate and

unsolvable to lowest order. Hence λ is again not uniquely defined on L, unless there exist terms

of order |λ− λ∗|2. In general, such terms may exist if there is at least multi-linear dependence on

the λi’s (terms like λiλj for i 6= j), as is common for instance in genetic regulatory networks (see

e.g. [21]).

Acknowledgements

MRJ’s research is supported by EPSRC Fellowship grant EP/J001317/2.

[1] G. Bachar, E. Segev, O. Shtempluck, E. Buks, and S. W. Shaw. Noise induced intermittency in a

superconducting microwave resonator. EPL, 89(1):17003, 2010.

[2] A. Colombo and M. R. Jeffrey. The two-fold singularity: leading order dynamics in n-dimensions.

Physica D, 265:1–10, 2013.

[3] M. Desroches and M. R. Jeffrey. Canards and curvature: nonsmooth approximation by pinching.

Nonlinearity, 24:1655–1682, 2011.

[4] M. Desroches and M. R. Jeffrey. Nonsmooth analogues of slow-fast dynamics: pinching at a folded

node. http://arxiv.org/abs/1506.00831, 2013.

[5] M. Desroches, B. Krauskopf, and H. M. Osinga. Numerical continuation of canard orbits in slow-fast

dynamical systems. Nonlinearity, 23(3):739–765, 2010.

[6] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-Smooth Dynamical

Systems: Theory and Applications. Springer, 2008.



28

[7] C. Edwards and S. K. Spurgeon. Sliding Mode Control. Taylor & Francis, 1998.

[8] N. Fenichel. Geometric singular perturbation theory. J. Differ. Equ., 31:53–98, 1979.

[9] S. Fernández-Garcia, D. Angulo-Garcia, G. Olivar-Tost, M. di Bernardo, and M. R. Jeffrey. Structural

stability of the two-fold singularity. SIAM J. App. Dyn. Sys., 11(4):1215–1230, 2012.

[10] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publ.

Dortrecht, 1988 (Russian 1985).

[11] M. R. Jeffrey. Hidden dynamics in models of discontinuity and switching. Physica D, 273-274:34–45,

2014.

[12] M. R. Jeffrey. The ghosts of departed quantities in switches and transitions. submitted, 2015.

[13] M. R. Jeffrey. Hidden bifurcations and attractors in nonsmooth dynamical system. submitted, 2015.

[14] M. R. Jeffrey and A. Colombo. The two-fold singularity of discontinuous vector fields. SIAM Journal

on Applied Dynamical Systems, 8(2):624–640, 2009.

[15] Mike R. Jeffrey. Smoothing tautologies, hidden dynamics, and sigmoid asymptotics in piecewise smooth

ODEs. Chaos, 23(103125):1–11, 2015.

[16] C. K. R. T. Jones. Geometric singular perturbation theory, volume 1609 of Lecture Notes in Math. pp.

44-120. Springer-Verlag (New York), 1995.

[17] K. U. Kristiansen and S. J. Hogan. On the use of blowup to study regularization of singularities of

piecewise smooth dynamical systems in R3. SIADS, 14(1):382–422, 2015.

[18] M. Kunze. Non-Smooth Dynamical Systems. Springer, 2000.

[19] Yu. A. Kuznetsov, S. Rinaldi, and A. Gragnani. One-parameter bifurcations in planar Filippov systems.

Int. J. Bif. Chaos, 13:2157–2188, 2003.

[20] J. Llibre, P. R. da Silva, and M. A. Teixeira. Sliding vector fields via slow-fast systems. Bull. Belg.

Math. Soc. Simon Stevin, 15(5):851–869, 2008.

[21] A. Machina, R. Edwards, and P. van den Dreissche. Singular dynamics in gene network models. SIADS,

12(1):95–125, 2013.

[22] D. N. Novaes and M. R. Jeffrey. Regularization of hidden dynamics in piecewise smooth flow. J. Differ.

Equ., 259:4615–4633, 2015.

[23] S. H. Piltz, M. A. Porter, and P. K. Maini. Prey switching with a linear preference trade-off. SIAM J.

Appl. Math., 13(2):658–682, 2014.

[24] T. I. Seidman. The residue of model reduction. Lecture Notes in Computer Science, 1066:201–207,

1996.

[25] D. J. W. Simpson and R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems.

Discrete Contin. Dyn. Syst. Ser. B, 19(9):2889–2913, 2014.

[26] J. Sotomayor and M. A. Teixeira. Regularization of discontinuous vector fields. Proceedings of the

International Conference on Differential Equations, Lisboa, pages 207–223, 1996.

[27] M. A. Teixeira. Stability conditions for discontinuous vector fields. J. Differ. Equ., 88:15–29, 1990.

[28] M. A. Teixeira. Generic bifurcation of sliding vector fields. J. Math. Anal. Appl., 176:436–457, 1993.



29

[29] M. A. Teixeira, J. Llibre, and P. R. da Silva. Regularization of discontinuous vector fields on R3 via

singular perturbation. Journal of Dynamics and Differential Equations, 19(2):309–331, 2007.

[30] V. I. Utkin. Sliding modes in control and optimization. Springer-Verlag, 1992.

[31] Various. Special issue on dynamics and bifurcations of nonsmooth systems. Physica D, 241(22):1825–

2082, 2012.

[32] M. Wechselberger. Existence and bifurcation of canards in R
3 in the case of a folded node. SIAM J.

App. Dyn. Sys., 4(1):101–139, 2005.

[33] M. Wechselberger. A propos de canards (apropos canards). Trans. Amer. Math. Soc, 364:3289–3309,

2012.


