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Abstract. Transitions between steady dynamical regimes in diverse applications are often
modelled using discontinuities, but doing so introduces problems of uniqueness. No matter how
quickly a transition occurs, its inner workings can affect the dynamics of the system significantly.
Here we discuss the way transitions can be reduced to discontinuities without trivializing them, by
preserving so-called hidden terms. We review the fundamental methodology, its motivations, and
where their study seems to be heading. We derive a prototype for piecewise-smooth models from
the asymptotics of systems with rapid transitions, sharpening Filippov’s convex combinations by
encoding the tails of asymptotic series into nonlinear dependence on a switching parameter. We
present a few examples that illustrate the impact of these on our standard picture of smooth or only
piecewise-smooth dynamics.
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1. Natura non facit saltus, so the aphorism goes.... Whether or not Nature
makes jumps, mathematical models can do. By making jumps, those models may be-
come not only simpler for certain systems, but also a better reflection of our true state
of knowledge. Yet fundamental questions remain about the uniqueness of flows with
discontinuous vector fields, and whether their non-uniqueness actually offers physi-
cal insight into discontinuities as models of physical behaviour. Rigorous ideas from
the theories of piecewise-smooth dynamics and singular perturbations are beginning
to shed light on the problem. Here we introduce piecewise-smooth dynamics a little
differently to usual and, through some simple examples, show the roles and uses of
the ambiguity that accompanies a discontinuity.

Many dynamic systems involve intervals of smooth steady change punctuated by
sharp transitions. Some we take for granted, such as light refraction or reflection, elec-
tronic switches, and physical collisions. In elementary mechanics, for example, when
two objects collide, a switch is made between ‘before’ and ‘after’ collision regimes,
which are each themselves well understood. The patching of the two regimes leaves
certain artefacts, such as the choice between a physical rebound solution, and an un-
physical (or virtual) solution in which the objects pass through each other without
deviating. More exotic switches arise in climate models, for instance as a jump in the
Earth’s surface albedo at the edge of an ice shelf [14, 22], in superconductivity as a
jump in conductivity at the critical temperature [3], in models of cellular mitosis [10],
in dynamics of socio-economic and ecological decision implementation [27, 6, 28], and
so on.

In the case of the collision model, we do not find the discontinuity or virtual
solutions too disturbing when first encountered, and move on to apply such insights
to the dynamics of nonlinear mechanical systems, and thereafter to electronics, the
climate, living processes, etc., perhaps becoming too comfortable with patching over
the joins in our models. The models seem to work, but calculus requires continuity,
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so it seems futile to look deeper. Fortunately, the mathematics of matching such
‘piecewise-defined’ systems turn out to be richer than might be expected.

Consider a system whose behaviour is modelled by a system of ordinary differential
equations ẋ = f(x; y), where y ≈ sign(h(x)) for some smooth function h. Our first
aim here is to show that, for many classes of behaviour, such approximations take the
form

ẋ = f (x; y(h)) where y(h) = sign(h) + O (ε/h) ,

for arbitrarily small ε. Our second aim is to show why the tails of these expansions
matter, and how they can be retained in a piecewise-smooth model as ε → 0. This
information seems not to be part of established piecewise dynamical systems theory,
but their omission is easily remedied.

The modern era of piecewise-smooth systems begins with Filippov and contem-
poraries, who showed that differential equations with “discontinuous righthand sides”
can at least be solved (e.g. in [2, 11, 12]). What those solutions look like remains an
active and flourishing field of enquiry.

As an example, take an oscillator given by ẋ2 = x1 and ẋ1 = −0.01x1 − x2 −
sin(ωt), where the forcing sin(ωt) overcomes the damping −0.01x1 to produce sus-
tained oscillations. Say the frequency ω switches between two values, ω = π/2 for
x1 < 0 and ω = 3π/2 for x1 > 0. The method usually used to study such switching
is due to Filippov [12, 33, 24, 7], and handles the discontinuity at x1 = 0 by taking
the convex combination of the two alternatives for ẋ1,

(1a) ẋ2 = x1 , ẋ1 = −0.01x1 − x2 −
(

1+λ
2 sin

[

3
2πt

]

+ 1−λ
2 sin

[

1
2πt

])

,

where λ = sign(x1) for x1 6= 0 and λ ∈ [−1,+1] on x1 = 0. We could instead take
a convex combination of the frequencies themselves, ω = (1 + 1

2λ)π with λ as above,
writing

(1b) ẋ2 = x1 , ẋ1 = −0.01x1 − x2 − sin
[

(1 + 1
2λ)πt

]

.

Figure 1 shows that the two models have significantly different behaviour. While the
linear switching model (a) has a simple limit cycle, the nonlinear model (b.i) has a
complex (perhaps chaotic) oscillation. This system has been chosen to be deliberately
challenging on two counts.

Firstly, the simulation method matters, particularly to obtain figure 1(b.i). There
are currently no standard numerical simulation codes that can handle discontinuous
systems with complete reliability, because although event detection will locate a dis-
continuity, it is insufficient to determine what dynamics should be applied there.
Throughout this paper we show why this question of ‘what dynamics’ should be ap-
plied is non-trivial. For reproducibility, figure 1 smooths the discontinuity (replacing
the step with a sigmoid function), then uses the Euler method with fixed time step. To
find (b.i) requires a numerical simulation with sufficiently precise discretization (see
caption), and decreasing precision instead gives (b.ii) (while having no qualitative
effect on (a)).

Secondly, it seems instinctively inconceivable that the systems of equations (1a)
and (1b) can have different behaviour, because they are identical for x1 6= 0, and
trajectories cross the zero measure set x1 = 0 transversally. Despite this, solutions
can linger on or even travel along x1 = 0, whereupon they are influenced differently
by linear or nonlinear dependence on λ, in (1a) or (1b) respectively. This behaviour
will provide the explanation for figure 1, to be shown in section 4.3.
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Fig. 1. Dynamics of (1), showing the flow at time t = 0, and a solution from an initial point
(1, 0) simulated up to a time t = 2000 (t < 1000 shown lightly as transients), by smoothing out
the discontinuity with λ = tanh(x1/ε), ε = 10−3, and using explicit Euler discretization in time
steps of size s, where: (a) s = 10−5 simulating equation (1a) (s = 10−4 gives similar); (b.i)
s = 10−5 simulating equation (1b); (b.ii) s = 10−4 simulating equation (1b).

We may then ask whether the behaviour in figure 1(b.i) is an aberration of the
simulation method, or the true behaviour of (1b) as a discontinuous system. We may
also ask how an observer would interpret this discrepancy if setting up an experiment
modelled by (1b), observing figure 1(b.i) in experiment, while simulations give fig-
ure 1(a) or (b.ii). What we will show is that nonlinear dependence on λ introduces
fine structure to the switching process, which is captured in (b.i), but can be missed
in a less precise simulation as in (b.ii) or by neglecting nonlinearity outright as in (a).

The consequences of overlooking such nonlinearities of switching can be far more
severe. A few key examples are given in section 4, many more are now appearing in
the literature (see e.g. [19, 18]), but our main aim is to see how they arise and learn
how to analyse them.

The starting point to a more general approach to piecewise-smooth systems is
quite simple. If a quantity f switches between states f+ and f− as a threshold Σ is
crossed, f can be expressed as

(2) f = 1
2 (1 + λ) f+ + 1

2 (1− λ) f− + (λ2 − 1)g(λ) ,

where a step function λ switches between ±1 across Σ and in [−1,+1] on Σ. The first
two terms have an obvious interpretation, namely the linear interpolation across the
jump in f . The last term is less obvious, but the role and origins of each term in (2)
are what we seek to understand here.

Strictly speaking (2) may be treated as a differential inclusion. When x lies on
the switching surface Σ, the value of λ in the set [−1,+1] can usually be fixed by
admitting only values of f that offer viable trajectories: either crossing Σ or ‘sliding’
along it. This admissible λ value is unique in many situations of interest (but not
always at certain singularities, see [20]). The term g is ‘hidden’ outside Σ where
λ = ±1, because its multiplier λ2 − 1 vanishes, but g is potentially crucial inside Σ
where λ ∈ [1,+1]. We shall show how it represents the “ghost of departed quantities” 1

of the transition, called hidden dynamics [17, 26, 13], with significant consequences
for local and global behaviour.

To handle the discontinuity unambiguously we ‘blow up’ the switching surface
Σ into a switching layer, which can reveal hidden phenomena such as novel attrac-
tors and bifurcations [19]. These concepts have been introduced recently, with some

1a term from The Analyst [5]
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heuristic [17] and some rigorous [26] justification. Here we provide a more substantive
derivation based on asymptotic transition models.

We begin in section 2 by deriving (2) as a uniform model of switching. The
argument begins with a general asymptotic expression of a switch, representative
of various differential, integral, or sigmoid models that exhibit abrupt transitions.
We delay exploring the motivations for this model to section 5, as it is somewhat
discursive, since discontinuities arise in so many contexts and yet in similar form.

The mathematics itself in these sections is quite standard, but the universal oc-
currence of the sign function and its relation to discontinuous approximations is often
under-appreciated, particularly in piecewise-smooth dynamical theory and its applica-
tions. Our main aim is to redress this, to show the universality of these expansions for
a variety of model classes, and develop the foundations of piecewise-smooth dynamical
theory beyond Filippov’s convex combinations (but still within Filippov’s differential
inclusions, see [12] for both). In section 3 we review how to solve such piecewise-
smooth systems. A few stark examples hint at the consequences for piecewise-smooth
dynamics in section 4, particularly concerning the passibility of a switching surface,
and the novel attractors that may arise.

To put this more briefly: section 2 shows how and why nonlinear terms accompany
discontinuities, section 3 reviews briefly how to study dynamics at discontinuities,
then section 4 combines these to show counterintuitive phenomena caused by such
nonlinearity. Finally, section 5 explores some general origins of switching to which the
preceding analysis applies, and continuing avenues of study are suggested in section 6.

2. Asymptotic discontinuity. Consider a system that is characterized as hav-
ing different regimes of behaviour, say

(3)
ẋ ∼ f+(x) for h(x) ≫ +ε ,
ẋ ∼ f−(x) for h(x) ≪ −ε ,

where f+ and f− are independent vector fields (but each is itself smooth in x). Some
kind of abrupt switch occurs across |h(x)| < ε for small ε. The behaviour inside
|h(x)| < ε may be of unknown nature, or of such complexity that our state of knowl-
edge is well represented by the approximation

(4)
ẋ = f+(x) for h(x) > 0
ẋ = f−(x) for h(x) < 0

}

as ε→ 0 .

The question in either (3) or (4) is how to model the system at and around h = 0.
For motivation we may consider systems whose full definition we do know, and

which exhibit the behaviour (3)-(4), to derive a common framework for dealing with
the switch. The result of these investigations (which we delay to section 5 since they
are somewhat exploratory), is a typical form near h = 0 which we may represent as a
prototype expression

(5) ẋ = F(x, h) := p0(x) + p1(x)Λ(h/ε) + q(h/ε)

∞
∑

n=1

rn(x) ε
n/hn

in terms of smooth functions p0(x), p1(x), q(h/ε), rn(x), and a sigmoid function

(6) Λ(h/ε) ∈
{

sign(h) if |h| > ε
[−1,+1] if |h| ≤ ε

}

+ O (ε/h) , Λ′(h/ε) > 0 ,
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which tends to a discontinuous function, Λ(h/ε) → sign(h), as ε → 0. The term
p1Λ in (5) encapsulates the switching in the system, the summation term contains
behaviour that is asymptotically vanishing away from the switch, and the term p0 is
switch independent.

The expression (5) is the starting point for the analysis which follows, hereon
until section 4.

We begin by re-writing (5) in a form that behaves uniformly as ε → 0. Since
Λ(h/ε) is monotonic in h, it has an inverse V such that h = εV (Λ), then

(7) ẋ = f(x; Λ) := p0(x) + p1(x)Λ + q(V (Λ))

∞
∑

n=1

rn(x)(V (Λ))−n .

Since this is now a function of x and Λ, assume that the righthand side of (7) can be
expressed as a formal series in Λ,

(8) f(x; Λ) =
∞
∑

n=0

cn(x)Λ
n .

We can relate the cn’s to the rn’s, but more useful is to relate them directly to the
large h/ε behaviour of ẋ in (3)-(4), giving f(x,±1) ≡ f±(x). Taking the sum and
difference of these gives

1
2

(

f+(x) + f−(x)
)

= c0(x) +

∞
∑

n=1

c2n(x) ,

1
2

(

f+(x)− f−(x)
)

= c1(x) +

∞
∑

n=1

c2n+1(x) ,

so we can eliminate the first two coefficients c0(x) and c1(x) in (8) to give

(9) f(x; Λ) =
f+(x) + f−(x)

2
+

f+(x) − f−(x)

2
Λ + Γ(x; Λ) ,

with a remainder term

(10) Γ(x; Λ) :=
∞
∑

n=1

{c2n(x) + Λc2n+1(x)}
{

Λ2n − 1
}

.

The factor Λ2n − 1 implies Γ(x; Λ) = 0 when Λ = ±1. These are the ‘ghosts’ of
switching, terms that are lost if we consider only the Λ = ±1 states, now retained
in the expression Γ(x; Λ). We can take out a factor Λ2 − 1, to find Γ(x; Λ) = (Λ2 −
1)g(x; Λ) where

(11) g(x; Λ) =
∞
∑

n=1

n−1
∑

m=0

{c2n(x) + Λc2n+1(x)}Λ2m .

The remaining coefficients cn≥2 can in principle be determined from any deeper
knowledge we have of F, such as the partial derivatives of F with respect to h for large

or small h/ε. For example, if we know the value of F(x, 0) in (5), then c2 = f
++f

−

2 −
F(x, 0)−∑∞

n=2 c2n, and successive coefficients can be eliminated by partial derivatives
of F with respect to h. In cases where this is not possible, we can propose forms of
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g based on dynamical or physical considerations (much as we do when proposing
dynamical models for smooth systems that may be nonlinear in a state x).

The result is that, given an asymptotic expression (5) for a switch across an
ε-width boundary in a dynamical system, we obtain an ε-independent form

ẋ = f(x;λ) =
f+(x) + f−(x)

2
+

f+(x)− f−(x)

2
λ+

(

λ2 − 1
)

g(x;λ) ,(12)

as promised in (2). This remains valid as ε → 0, and the switch, whether smooth or
discontinuous, is hidden implicitly inside λ. If we let ε→ 0, then by (6) the switching
multiplier λ obeys

(13) λ ∈
{

sign(h) if |h| 6= 0
[−1,+1] if |h| = 0

}

.

The essential point is that we are left with the ghosts, in the term
(

λ2 − 1
)

g(x which
vanishes away from the switch where λ = ±1, but does not vanish on h = 0. The
next two sections show how to handle them, and why their existence is non-trivial.

In section 5 we return to how and when such switches arise in various contexts,
including sigmoid-like transitions, higher dimensional ordinary or partial differential
equations, and oscillatory integrals. We now turn to the methods used to solve the
piecewise-smooth system (12)-(13).

3. The switching layer. We have derived in (12) an expression for the vector
field in our system ẋ = f(x;λ) which, with (13), remains valid in the discontinuous
limit ε → 0. One last thing is needed to complete the description of the piecewise-
smooth system, and that is to deal with the set-valuedness of λ(0) in (13). To do this
we derive the dynamics on λ from the asymptotic relations above. We then derive
key manifolds organizing the flow, and interpret the result as a singular perturbation
problem. (This section is essentially a review of concepts introduced in [17, 20], a
modern extension of Filippov’s theory [12]).

Differentiating λ = Λ(h/ε) with respect to t gives λ̇ = Λ′(h/ε)ḣ/ε. Define
ε̃(λ, ε) = ε/Λ′(h/ε), then apply the chain rule and (12) to substitute ḣ = ẋ · ∇h =
f · ∇h. Thus at h = 0 the dynamics of λ is given by

(14) ε̃λ̇ = f(x;λ) · ∇h(x) as ε̃→ 0 .

This result is derived in greater detail in [20], showing that since Λ is monotonic by
(6), so ε̃ ≥ 0 and ε̃ → 0 as ε → 0. Since only the limit ε → 0 concerns us in a
piecewise-smooth model, the fact that ε̃ is a function rather than a fixed parameter
is of no interest, it is just an infinitesimal like ε.

When we now combine the λ dynamics (14) with the original system ẋ = f(x;λ),
the result is a two timescale system on the switching surface h = 0. Choosing coor-
dinates x = (x1, x2, ..., xn) where x1 = h(x), and writing f = (f1, f2, ..., fn), putting
(14) together with (12) we have

(15)
ε̃λ̇ = f1(0, x2, x3, ..., xn;λ)

(ẋ2, ..., ẋn) = (f2(0, x2, ..., xn;λ), ..., fn(0, x2, ..., xn;λ))

}

on x1 = 0 .

This defines dynamics inside the switching layer
{

λ ∈ [−1,+1] , (x2, ..., xn) ∈ R
n−1

}

,
and we call (15) the switching layer system.
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Rescaling time in (15) to τ = t/ε̃, then setting ε̃ = 0, gives the fast critical
subsystem (denoting the derivative with respect to τ by a prime)

(16)
λ′ = f1(0, x2, ..., xn;λ)

(x′2, ..., x
′
n) = (0, ..., 0)

}

on x1 = 0 ,

which gives the fast dynamics of transition through the switching layer. The equilibria
of this one-dimensional system form the so-called sliding manifold

(17) M =
{

(λ, x2, ..., xn) ∈ [−1,+1]× R
n−1 : f1(0, x2, ..., xn;λ) = 0

}

.

When M exists, it forms an invariant manifold of (15) in the ε̃ = 0 limit, at least
everywhere that M is normally hyperbolic, which excludes the set where ∂f1

∂λ = 0,
namely

(18) L =

{

(λ, x2, ..., xn) ∈ M :
∂

∂λ
f1(0, x2, ..., xn;λ) = 0

}

.

Isolating the slow system in (15), and setting ε̃ = 0 in (15), gives the slow critical
subsystem

(19)
0 = f1(0, x2, ..., xn;λ)

(ẋ2, ..., ẋn) = (f2(0, x2, ..., xn;λ), ..., fn(0, x2, ..., xn;λ))

}

on x1 = 0 ,

which gives the dynamics on M in the limit ε̃ = 0, called a sliding mode.
These elements (12) with (14), implying (15)-(17), form the basis of everything

that follows. We shall look at some of the behaviours they give rise to, hinting at the
zoo of singularities and nonlinear phenomena that remain a large classification task
for future work.

In the context of piecewise-smooth systems, we are concerned with these results
only in the limit ε̃ → 0, not the perturbation to ε̃ > 0 that is typically of interest in
singular perturbation studies. However, for more general interest it is worth relating
these to singular perturbation theory. The system (15) is the singular limit of
(20)

ε̃(λ, ε)λ̇ = f1(εu, x2, x3, ..., xn;λ)
(ẋ2, ..., ẋn) = (f2(εu, x2, ..., xn;λ), ..., fn(εu, x2, ..., xn;λ))

}

for ε≪ 1

where u = x1/ε and λ = Λ(x1/ε) = Λ(u) with ε ≥ 0. Equivalently we can write

εu̇ = f1(εu, x2, x3, ..., xn; Λ(u))
(ẋ2, ..., ẋn) = (f2(εu, x2, ..., xn; Λ(u)), ..., fn(εu, x2, ..., xn; Λ(u)))

}

for ε≪ 1 ,

which is a more commonly seen expression in recent singular perturbation studies of
piecewise-smooth systems (see e.g. [32]). In [20] it is shown than (15) has equivalent
slow-fast dynamics to (20) on the discontinuity set x1 = 0 in the critical limit ε = 0.

With this we depart the smooth world. In section 2 we showed how a prototype
asymptotic expansion (5) could be represented as a discontinuous system in the small
ε limit, but left behind nonlinearities in the switching multiplier λ. We now take
our expressions (12)-(13) valid for ε→ 0, and the dynamics of λ at the discontinuity
given by (14), and continue henceforth in the realm of piecewise-smooth dynamics
alone (where ε = ε̃ = 0), to show some of the counterintuitive phenomena that
nonlinear switching terms give rise to.
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4. Hidden dynamics: examples. To summarize the analysis above: we have
a general expression for a discontinuous system in the form (12)-(13), for some smooth
vector functions f+, f−, and g. Only f± are fixed by the dynamics in h 6= 0, with g

being directly observable only on h = 0. On h = 0 we look inside the switching layer
λ ∈ [−1,+1], whose dynamics is given by the two timescale system (15) in coordinates
where h = x1. If λ̇ = 0 then solutions can become trapped inside the layer, on the
sliding manifold M if/where it exists, upon which sliding dynamics (19) occurs. In
this section we can replace ε̃ by simply ε, and only the limit ε→ 0 concerns us.

4.1. Cross or Stick?. Consider what happens when the flow of (12) arrives at
a switching surface h = 0. At least one of the vector fields f±(x) (the one the flow
arrived through) points towards the surface. Whether or not the flow then crosses the
surface is determined first by the vector field on the other side of the surface, f∓(x),
and possibly also by g.

If f+(x) · ∇h < 0 < f−(x) · ∇h at h = 0, as in figure 2 (Example 1), both vector
fields point towards the switching surface so the flow obviously cannot cross it. The
normal component f(x;λ) · ∇h changes sign as λ changes between λ = ±1, so there
must exist at least one value λ ∈ [−1,+1] for which f(x;λ) · ∇h = 0. This defines a
so-called sliding mode on the switching surface, i.e. a solution evolving according to
(19).

If (12) depends linearly on λ, i.e. if g ≡ 0, then the sliding mode given by (19)
is unique (and is exactly that described by Filippov [12]). If g is nonzero then there
may be multiple sliding modes, and the precise dynamics must be found using (15).

Example 1. A simple example of hidden dynamics is given by comparing the two
systems

(a) (ẋ1, ẋ2) = (−λ, 2λ2 − 1) , (b) (ẋ1, ẋ2) = (−λ, 1) ,
with λ = sign(x1), shown in figure 2. These appear to be identical for x1 6= 0, where
(ẋ1, ẋ2) = (− sign(x1), 1). It is only on x1 = 0 that their behaviour may differ. To
find this we blow up x1 = 0 into the switching layer λ ∈ [−1,+1], given by applying
(15),

(a) (ελ̇, ẋ2) = (−λ, 2λ2 − 1) , (b) (ελ̇, ẋ2) = (−λ, 1) ,
respectively, for ε → 0. We seek sliding modes by solving λ̇ = 0. Both have sliding
manifolds M at λ = 0, and therefore sliding modes with, however, contradictory vector
fields

(a) (ελ̇, ẋ2) = (0,−1) , (b) (ελ̇, ẋ2) = (0,+1) .

(a)
Example 1

(b) (a)
Example 2

(b)

Fig. 2. Sketch of two planar piecewise constant systems. Each portrait (a) includes hidden
dynamics that is not obvious outside the switching surface: sliding downwards in Example 1,
and in Example 2 an attracting upwards sliding solution and repelling downwards sliding solution.
Each portrait (b) excludes hidden dynamics and shows the Filippov dynamics: sliding upwards in
Example 1 and crossing in Example 2.

Hence systems that appear the same outside the switching surface can have dis-
tinct, and even directly opposing, sliding dynamics on the surface, due to nonlinear
dependence on λ.
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If (f+(x) · ∇h) (f−(x) · ∇h) > 0 at h = 0, as in figure 2 (Example 2), both vector
fields point the same way through the switching surface, so the flow may be expected
to cross it. If g ≡ 0, in fact, the flow will cross the surface, because f±(x) · ∇h have
the same sign as each other, so the linear interpolation (12) (as λ varies between ±1)
cannot pass through zero and there can be no sliding modes (no solutions of (19)).
If g is nonzero then the flow may stick to the surface, and solutions sliding along the
surface are found using (19).

Example 2. Taking again λ = sign(x1), consider the second system in figure 2,
given by

(a) (ẋ1, ẋ2) = (2λ2 − 1,−λ) , (b) (ẋ1, ẋ2) = (1,−λ) .

These both appear the same, (ẋ1, ẋ2) = (1,−λ), for x1 6= 0. In the switching layer
(15) gives

(a) (ελ̇, ẋ2) = (2λ2 − 1,−λ) , (b) (ελ̇, ẋ2) = (1,−λ) .

Solving λ̇ = 0 gives sliding modes λ = ±1/
√
2 in (a), but no solutions in (b). In (a)

the derivative ε∂λ̇/∂λ = ±2
√
2 reveals that the solutions λ = −1/

√
2 and λ = +1/

√
2

are attracting and repelling respectively, so solutions collapse to λ = −1/
√
2 and follow

the sliding dynamics (ελ̇, ẋ2) = (0,+1/
√
2). In (b) the fast subsystem ελ̇ = 1 carries

the solution across the switching layer without stopping.

Hence even the simple matter of whether or not a system will cross through a
switch cannot be determined without considering the effects of nonlinearity at the
switch.

We refer to the behaviour in (a) for each example as ‘hidden dynamics’, because
it arises through the addition of hidden terms, 2(λ2 − 1) in both examples, to the
linear system (b). In Example 2 we could even replace the second component with
ẋ2 = 1 for both (a) and (b), then (ẋ1, ẋ2) = (1, 1) for x1 6= 0, and the discontinuity is
an effect localized entirely to x1 = 0).

4.2. Hidden van der Pol system. Hidden dynamics can be much more inter-
esting. Take for example the system

(21) (ẋ1, ẋ2) =
(

1
10x2 + λ− 2λ3, −λ

)

where λ = sign(x1). This is deceptively simple for x1 6= 0, where

(22) (ẋ1, ẋ2) =

{ (

1
10x2 − 1, −1

)

if x1 > 0 ,
(

1
10x2 + 1, +1

)

if x1 < 0 ,

illustrated in figure 3(i). The surface x1 = 0 is attracting. The switching layer from
(15), however, reveals a van der Pol oscillator,

(23) (ελ̇, ẋ2) =
(

1
10x2 + λ− 2λ3, −λ

)

.

To identify the hidden term notice that λ3 = λ + (λ2 − 1)λ, which looks like λ for
x1 6= 0. In Filippov’s method we ignore the hidden term (λ2 − 1)λ which vanishes
outside x1 = 0, and then we would find that the point x1 = x2 = 0 is attracting.
Including the nonlinear term, however, the switching variable λ ∈ [−1,+1] undergoes
relaxation oscillations hidden inside x1 = 0. The dynamics inside the switching layer
is shown in figure 3(ii).
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(i)

4

2

0

−2

−4

4

2

0

−2

−4

−4        −2         0         2         4 −1         −0.5            0            0.5            1

x2 x2

x1 λ

(ii)

Fig. 3. Simulations of (21) showing: (i) the flow in the (x1, x2) plane, (ii) the flow inside
x1 = 0 given by (23).

The oscillations can be made observable if we plot x2 against time, figure 4(i).
Or we can view the dynamics of λ itself by coupling the system to a third variable,
say

(24) βẋ3 = λ− x3 ,

for small β. A simulation is shown in figure 4(i), with the orbit in phase space shown
in (ii).

0                   10                 20                 30t

0.6

0.3

0

−0.3

−0.6

1

1

0

0

0

−1

−1

−2

2

x1

x2 x3

1111

0

x3

x2

(i) (ii)

Fig. 4. Simulations revealing the hidden dynamics of (21): (i) graphs of the variable x2, and
of x3 using (24) with β = 10−4, (ii) the corresponding orbit in the space of (x1, x2, x3), with
the switching surface at x1 = 0.

Similarly to figure 1, simulating the hidden dynamics (the oscillation here) is
reliant on a sufficiently precise numerical simulation. If we solve by letting λ =
tanh(x1/ε) with ε = 10−3, using an Euler discretization with fixed time step less
than or equal to ε (or using some other more precise method), we obtain figure 4.
A more coarse simulation may miss the hidden oscillation, for example with a fixed
discretization time step s ≥ 4ε the state x2 seems to instead reach the equilibrium
x1 = x2 = 0 of the linear theory (simulations not shown). We will comment more on
the general principles behind such sensitivity at the end of section 4.3.

4.3. Oscillator revisited: hidden dynamics and its robustness. Let us
extract the hidden term for the oscillator introduced in (1b). We can write

sin
(

(1 + 1
2λ)πt

)

= sin
(

1+λ
2

3
2πt+

1−λ
2

1
2πt

)

= 1+λ
2 sin

(

3
2πt

)

+ 1−λ
2 cos

(

1
2πt

)

+
(

λ2 − 1
)

g(t;λ)(25)
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where some lengthy algebra yields

g(t;λ) = 1
4

(

sin[ 32πt] + sin[ 12πt]− 2πt
)

+ 1
4

∞
∑

i=1

(

1
2πt

)2i+1 ×




2i−1
∑

j=1

1
(2i+1)!

{

(

1+λ
2

)2j
32i+1 +

(

1−λ
2

)2j
}

−

∞
∑

j=0

(πt/2)2j

(2i)!(2j+1)!

{

(

1−λ
2

)2i−1 ( 1+λ
2

)2j
32j+1 +

(

1+λ
2

)2i−1 ( 1−λ
2

)2j
32i

}



 .

The direct effect of the nonlinear term is fairly benign compared to the examples
above: it merely slows the dynamics as it crosses the switching surface. The nonlin-
earity in λ means that small regions of sliding, where λ̇ = 0, are able to appear and
disappear at x1 = 0, temporarily preventing solutions from crossing x1 = 0. They
arise from nonlinear terms as in Example 2 above. The sliding can be seen in the
simulation of the x2 = 0 coordinate in figure 5.

x2(a.i) (a.ii) (b)
2

1

0

−1

−2

t
500         1000         1500

x2

2

1

0

−1

−2

t
500         1000         1500

x2

2

1

0

−1

−2

t
200       400        600       800

Fig. 5. Simulation of x2(t) corresponding to figure 1. Segments of sliding can be seen in (a.i).

In a smoothed-out simulation like figure 1, this slowing reveals itself as a slowing
of trajectories as they attempt to cross x1 = 0. In figure 6 we show this slowing. Using

t=10
−4
δt

(a, b.i, b.ii, c)
(b.ii) (a, b.ii)

(a)

(b.i)

(c)
(b.i,c)

δt δt δt

t=1.4+10
−3
δt t=2+10

−2
δt

1

0.5

0

-0.5

-1

5              10              15    1       2        3        4        5 1           2            3            4

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

λ λ λ

Fig. 6. Simulation of trajectories crossing the layer λ ∈ [−1,+1] in figure 1, plotting
λ against the time δt spent in transit, at different times t indicated on the figures. Curves
are labelled corresponding to figure 1: (a) linear switching, (b.i) nonlinear switching with fine
discretization, (b.ii) nonlinear switching with coarse discretization. Curve (c) shows nonlinear
switching with adaptive discretization (using Mathematica’s NDSolve in default mode).

the simulation methods described in figure 1, each graph simulates the evolution of
λ through the switching layer, and while at t = 0 all simulations agree, at a later
time t = 1.4 the graph depends strongly on linearity of the model and numerical
precision, and at t = 2 the linear system or coarse simulation are clearly distinct from
the nonlinear system, crossing the layer λ ∈ [−1,+1] in much shorter time. This is
enough, given the time-dependent sinusoidal control, to alter the connection between
trajectories either side of the switch sufficiently and destabilize the oscillation. In
the ideal ε→ 0 limit where the switch is discontinuous, this time-lag remains (but x1
remains exactly ‘sliding’ on x1 = 0 during the switch, rather than slowly transitioning
through |x1| < ε).
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It is worth summarizing one result concerning hidden dynamics proposed in [17],
where a heuristic case was made that ‘unmodelled errors’ could kill off hidden dy-
namics, i.e. mask (or essentially eliminate) the nonlinear dependence on λ in (12).
Unmodelled errors might include the discretization step of a simulation, time delay or
hysteresis of a switching process, or external noise. Essentially, large perturbations by
unmodelled errors can kick a system far enough that nonlinear features are missed.
We saw in figure 1(b) how coarse numerical integration killed off the destabilizing
effects of nonlinearity. Another simple example would be Example 2 of section 4.1,
where the attracting and repelling sliding modes could be masked in a system with
large unmodelled errors (e.g. a discretization step or additive noise larger than the
separation between the attracting and repelling branches), so solutions cross as in the
linearized λ model.

A similar result in [17] showed how, in a dry-friction inspired model, hidden terms
can model static friction, but stochastic perturbations of sufficient size destroy it. The
outcome was that static and kinetic friction coefficients become equal in more irregular
systems. The result was shown rigorously in the presence of white noise in [21]. We
now summarise the general but partly heuristic result, hoping that the challenge of
generalising it will be taken up by future researchers.

The idea is to add a stochastic perturbation dW in the form

(26) dx = f(x; Λ (h(x)/ε))dt+ κdW(t)

with f(x;λ) given by (12), with Λ (h(x)/ε) being a smooth (or at least continuous)
sigmoid function, and dW a standard vector-valued Brownian motion. The zeros of
f(x;λ) · ∇h show up as potential wells, maxima and minima of a potential function
U(h) = −

∫ v

0 du f(x; Λ (h(x)) /ε) · ∇h, which form stationary points of the transition.
These correspond to attractors or repellers of the dynamics near h = 0, upon which
solutions slide along h = 0. The results of [30] then show that the average state 〈x〉
evolving along h ≈ 0 behaves as

d〈x〉
dt

= f(x; Λ (h(x)) /ε) + O
(

κ2
)

(27)

recalling (12) and (1 − Λ2 (h(x)/ε))g(x; Λ (h(x)/ε)) = O (ε/h). If g 6= 0 then there
may exist many λ for which f(x;λ) = 0, each generating a potential well, and hence
creating many viable sliding modes near h = 0. For large enough noise, the results of
[17, 21] imply that the system eventually settles into the well corresponding to linear
dependence on λ (i.e. with g ≡ 0), leading to
(28)
d〈x〉
dt = 1

2 (1 + λ) f+(x) + 1
2 (1− λ) f−(x) + (λ2 − 1)g(x;λ) + O

(

κ2
)

for κ < r(ε) ,
d〈x〉
dt = 1

2 (1 + λ) f+(x) + 1
2 (1− λ) f−(x) + O

(

κ2
)

for κ > r(ε) ,

for a function r(ε) whose form depends on g, e.g. r(ε) =
√

−ε/ log ε for a friction
example in [21].

The counterintuitive outcome is that errors like noise can cause a system to be-
have more like a crude model (with linear switching) than a more refined one (with
nonlinear switching), and hence discontinuous models owe their unreasonable effec-
tiveness to unmodelled errors that wash out hidden effects of switching. But this
washing out of nonlinearities is not universal. By analysing the ambiguity in how we
treat the discontinuity we can quantify the effect of unmodelled errors, and estimate
when they can be neglected.
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5. Forms & origins of switching. In the literature on piecewise-smooth dy-
namical theory, much discussion is made of where discontinuous models are used, but
little consideration is made of how discontinuities arise (though the question certainly
occurs, e.g. in [29]). This is in part because the physical processes they model are
often complicated or little understood, arising typically in engineering or biological
or environmental contexts, and moreover they involve singular limits (as we shall see
below), making the idea that a model lies ‘close to’ some true system nontrivial. Let
us therefore ask how discontinuities arise in the asymptotics of transition by means of
various toy models, showing that the discontinuities that arise from ordinary and par-
tial differential equations, from integral equations, or from heuristic sigmoid models,
can be cast in a common form, namely (5).

Take a system that behaves like (3), where ε is a small positive constant that we
ultimately set to ε = 0 to obtain a sharp transition. Let us assume the switch occurs
due to a sudden transition in some extra variable y, scaled so that y ∼ sign(h) for
|h| > ε, and propose that a complete model of the system can be written as

(29) ẋ = F(x; y) such that f±(x) ≡ F(x,±1) .

Our first task here is to show that broad classes all lead to asymptotic expressions of
the form

(30) y = sign(h) + O (ε/h)
ε→0−−−→

{

+1 if h > 0 ,
−1 if h < 0 .

5.1. Ad hoc sigmoids. Piecewise-smooth dynamical theory has arisen chiefly
to deal with situations where the precise laws of switching are unknown. We should
therefore begin our study by looking at the common empirical switching models, often
ad hoc or based on incomplete physical intuition.

One particular sigmoid function introduced by Hill [16] has become prevalent in
biological models, and that is Z(z) = zr

zr+θr for z, θ > 0, r ∈ N. The function Z(z)
often represents the switching on/off of ligand binding or gene production in a larger
model ẋ = f(x; y) of biological regulation. If we let z = θeh and r = 1/ε, for large
argument the Hill function has an expansion

y(h) = 2Z(θeh)− 1 = sign(h)
{

1− 2e−|h|/ε + e−2|h|/ε + O

(

e−3|h|/ε
)}

.

In computation, commonly used sigmoids are the inverse or hyperbolic tangents, with
expansions

y(h) = 2
π arctan(h/ε) = sign(h)− 2

π

{

(ε/h) + O
(

(ε/h)3
)}

,

y(h) = tanh(h/ε) = sign(h)
{

1− 2e−2|h|/ε + O
(

e−4|h|/ε)} ,

and one may expand various other sigmoids, like h/(ε
√

1 + (h/ε)2), in a similar way,
with polynomially or exponentially small tails (i.e. O (ε/h) or O

(

e−|h|/ε)).
Differentiable but non-analytic sigmoid functions are often used in theoretical

approaches to smoothing discontinuities. An example is

y(h) =

{

r(−h)r(h) − r(h)r(−h) if |h| < ε
signh if |h| ≥ ε

where r(h) = e2ε/(h−ε). Its asymptotic form is rather messier than the examples
above, but it is better behaved since its convergence to sign(h) is even faster, being
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given for |h| < ε by

y(h) = sign(h)

{

1− 2e2/(|h/ε|−1)

|h/ε|+ 1
+ O

(

e4/(|h/ε|−1)
)

− e2e
−1{1+O(|h/ε|−1)}/(|h/ε|−1)

}

.

In all cases the leading order term is made discontinuous by the presence of a
sign(h), and the tails are small in h/ε, being of order either O (ε/|h|), O

(

e−|h|/ε), or

O
(

e1/(|h/ε|−1)
)

.
Friction (to be precise dry-friction) is a rich source of sigmoid switching mod-

els, with seemingly no limit to the different physical motivations and resulting laws.
Yet the majority of arguments result in a dressed up sign function, a friction force
F (h) = µ(h) sign(h) where h is the speed of motion along a rough surface and µ some
smooth function, some including accelerative effects F (h) = µ(h, ḣ) sign(h) or other
nonlinearities to account for ‘Stribeck’ velocity or memory effects(see e.g. [34, 23]);
in almost all cases the sign function remains.

5.2. An ODE: Large-scale bistability, small-scale decay. Let y represent a
population, for example, and consider a regulatory action that fixes y to one constant
value, +1, or another, −1, (up to some non-dimensionalization). During the transition
the population might relax to a natural behaviour, decaying at a constant rate as
ẏ ∼ −y.

Transitioning between steady states y ∼ ±1 for |h| ≫ ε and relaxing as ẏ ∼ −y
for |h| ≪ ε, for small ε, is consistent with (1 − y2)h = ε(y + ẏ), and results in the
system

(31)
ẋ = f(x; y) ,
εẏ = (1 − y2)h(x)− εy .

The quantity ε is small (the two ε’s that appear here need not be the same, but for
simplicity let us assume they are). Treating the y system in (31) as infinitely fast (for
ε→ 0 so x is pseudo-static), its solution is easily found to be

(32) y(t, h) = −(ε/2h) + α tanh (αth/ε+ k0) ,

where α =
√

1 + (ε/2h)2 and k0 = arctanh
(

(ε/2h)+y(0,h)
α

)

. This evolves on the fast

timescale t/ε towards an attracting stationary state (where ẏ = 0 > ∂ẏ/∂y), given by

y∗(h) = −ε/2h+ sign(h)
√

1 + (ε/2h)2 where ∂ẏ
∂y = −

√

1 + (2h/ε)2 .

For large h the attractor sits close to either +1 or −1 depending on the sign of h. As
h passes through zero, y∗(h) jumps rapidly (but continuously), and a series expansion
for large h/ε reveals

(33) y∗(h) = sign(h)− ε

2h

{

1− ε

4|h| + O
(

(ε/h)3
)

}

.

The asymptotic terms in the tail mitigate the transition in |h| < ε, and everywhere
else the variable y relaxes to y∗ on a timescale t = O (ε), so we approximate y ≈ y∗ =
sign(h) + O (ε/h).
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5.3. A PDE: Large-scale bistability, small scale dissipation. If instead
y represents a physical property like temperature, it might have both spatial and
temporal variation that become significant during transition.

For |h| ≪ ε assume that y satisfies the heat equation yhh ∼ εẏ for some small
positive ε, where yh denotes ∂y/∂h. For |h| ≫ ε assume asymptotes y ∼ ±1, implying
yh ∼ 0. This character is satisfied for example by the system h

ε yh + yhh − εẏ = 0,
giving overall

(34)
ẋ = f(x; y) ,

ε2ẏ = h(x)yh + εyhh ,

The y system evolves on a fast timescale t/ε2 to the slow subsystem h(x)yh+εyhh = 0,
which has solutions y = y∗(h) given by

(35) y∗(h) = y∗(0) + yh∗(0)
√

πε/2Erf
[

h/
√
2ε
]

,

where Erf denotes the standard error function [1]. The asymptotes y → ±1 for large
h imply y∗(0) = 0 and yh∗(0) =

√

2/πε. Solutions of the full system can be found
in the form y(t, h) = y∗(h) + e−t/εY (h). Substituting this into the partial differential
equation for y in (34) yields

0 = {h(x)yh∗ + εyhh∗}+ e−t/ε {εY + h(x)Yh + εYhh} ,

(again treating x as pseudo-static for small ε). The first bracket vanishes by the
definition of y∗, the second gives an ordinary differential equation for Y with solution

Y (h) = e−h
2/2ε

{

y(0) 1F1

[

1−ε
2 ,

1

2
; h

2

2ε

]

+ ε−1/2yh(0)h 1F1

[

1− ε
2 ,

3
2 ;

h2

2ε

]

}

,

where 1F1 is the Kummer confluent hypergeometric function [1]. The exact functions
are less interesting to us than their large variable asymptotics, given by

(36) y∗(h) ∼ sign(h)−
√

2ε/π

h
e−h

2/2ε(1 −
√
ε/h+ O

(

ε/h2
)

) ,

(and for completeness, Y (h) ∼ √
π

(

y(0)

Γ[ 1−ε
2 ]

+ sign(h)yh(0)√
2Γ[1− ε

2 ]

)

∣

∣

∣

√
2ε
v

∣

∣

∣

ε

+ O
(

ε/h2
)

).

The function Y (h) deviates from the sigmoid of y∗(h) by an amount greatest near
h/ε ≈ 0 and decreasing inversely with (h/ε)ε. Moreover this deviation disappears on
the fast timescale t/ε, so we approximate y ≈ y∗ = sign(h) + O (

√
ε/h), similarly to

section 5.2 to leading order. (Evidently this system scales as h/
√
ε rather than h/ε,

a triviality fixed by replacing ε with ε2 in (34)).

5.4. Integral turning points. Lastly, let us turn from differential equations
for y, to integrals. What follows is a very cursory description of a profound analytical
phenomenon, for which we refer the reader to the literature as cited.

First, as an example, take an integral over a simple Gaussian envelope e−
1
2k

2

,
with a steady oscillation of wavelength 2π/ρ, and an integration limit h/ε,

y(h) =

√

2

π

∫ h/ε

−∞
dk e−

1
2k

2

cos(ρk) .(37)
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Expanding this for large h/ε we obtain

y(h) ∼ e−
1
2ρ

2

(1 + sign(h))− e−h
2/2ε2

√

π/2
cos (ρh/ε)

( ε

h
+ O

(

(ε/h)3
)

)

.(38)

We can obviously now redefine ȳ = e
1
2ρ

2

y − 1 so that ȳ = signh + ... as in previous
sections. Here y is a simple sigmoid for ρ = 0, but otherwise has peaks of height

|ȳ| ≈ 1+
√

2
π

4ρ3

π2 e
−π2/8ρ2 at h ≈ ±επ/2ρ, illustrated in figure 7. As we take the limit

ε→ 0 for h 6= 0, however, all graphs limit to ȳ(h) = sign(h) regardless of ρ, any peaks
becoming squashed into the singular point h = 0.

y y

h/ε

ε→0

ρ=2

ρ=0

ρ=1.4

−2               0        2−2               0          2 h/ε

1

−1

1

−1

Fig. 7. The graphs of ȳ(h) for different values of ρ, which all limit to a sign function
as ε → 0. For ρ > 0 the graph has peaks (multiple peaks for larger ρ), whose height is ε-
independent and therefore do not disappear as we shrink ε, but merely get squashed into the
region |h| = O (ε).

The sign function here is the particularly well understood phenomenon of a Stokes
discontinuity [31]. Their general role as a cause of discontinuities, associated with the
rise and fall of large and small exponentials, requires innovative but not advanced
application of complex variables, so a reasonable summary is warranted.

More generally than (37), say that y is an integral of oscillations under an expo-
nentially varying envelope, such as

(39) y(α) =

∫ α

−∞
dk a(k) eψ(k) .

The term a(k) is taken to be slow (polynomially) varying, while the term eψ(k) is
fast (exponentially) varying. This is typical when solving differential equations using
Fourier or Laplace transforms, where typically ψ(k) = iuk+ θ(k) or ψ(k) = uk+ θ(k)
respectively, where u is a variable and k is its dual under the transform. (The fast
varying term might not always be obvious, for example the transform of a high order
polynomial euk[p(k)]N for large N could be treated as an exponential eψ with ψ(k) =
uk +N log p(k)). They can be analysed using stationary phase and steepest descent
methods [9, 15, 8, 4]. Care is needed in using them, but the principles are rather
simple.

Assume that the integrand has a maximum at some point k along the integration
path. If the integrand is oscillatory (when ψ has an imaginary part), it will have
many such maxima along the real line. But if the integrand is analytic then complex
function theory allows us to deform the integration contour (−∞, α] to anything of
our choice in the complex plane of k, provided it connects the point −∞ to α, and
that we do not pass through infinities (e.g. poles of aeψ) in the process. If we could
find a path P along which the function was non-oscillating, and monotonic except
perhaps for a maximum at some ks where ψ′(ks) = 0 (where ψ′(k) is the derivative
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with respect to complex k), the approximation near this point would be

y =

∫ α

−∞
dk a(k) eψ(k)

≈
∫

P
dk {a(ks) + (k − ks)a

′(ks) + ...} e

{

ψ(ks) +
1
2 (k−ks)

2ψ′′(ks) + ...
}

≈ a(ks)e
ψ(ks)

∫

P
dk e

1
2 (k−ks)2ψ′′(ks)

≈ a(ks)e
ψ(ks)

1
√

−ψ′′(ks)

∫ ∞

−∞
du e−

1
2u

2

= a(ks)e
ψ(ks)

√

2π

−ψ′′(ks)
(40)

to leading order. This is an incredibly simple, but also accurate, result, when properly
used. In line 2 we just assume such an expansion is valid along a path P (we will
come back to this), and line 3 is just the leading order term. The clever bit is the
simple substitution u = (k − ks)

√

−ψ′′(ks) to obtain line 4, and this actually defines
P by demanding that P transforms back to the real line.

Some basic complex geometry makes all this work. Complex function theory tells
us that the path P we seek can indeed be found. By virtue of the Cauchy-Riemann
equations, a path along which Im ψ = constant is also a steepest descent path of
Re ψ, so along such a path the function is non-oscillating (because the phase Im ψ
is constant), and its magnitude |eψ| = eRe ψ is exponentially fast varying (where
|eψ| is therefore exponentially). This only breaks down if the path encounters a
maximum or minimum ks, where ψ

′(ks) = 0. That is exactly the point ks which
(40) approximates about, integrating along the steepest descent path P , and the
approximation is ‘exponentially good’ because the integrand decays exponentially
away from ks.

We have neglected the endpoint α. Because the integral is exponentially fast
varying, the cutoff at the endpoint creates another exponentially strong maximum
(or minimum, in which case we discard it), where typically ψ′(α) is non-vanishing.
Approximating to leading order about k = α as above gives

y=

∫ α

−∞
dk a(k) eψ(k) ≈ a(α)eψ(α)

∫ α

−∞
dk e(k−α)ψ

′(α) ≈ a(α)eψ(α)

ψ′(α)
.(41)

So the endpoint, k = α, contributes to the integral if (41) converges. The contri-
bution of stationary point ks is conditional, since it may or may not lie on the contour
P , so we have

y ≈ −a(α)e
ψ(α)

ψ′(α)
+ a(ks)e

ψ(ks)

√

2π

−ψ′′(ks)

1 + signh

2
.(42)

The factor (1 + signh) /2 is a switch that turns on the stationary point contribution
for h > 0 if ks ∈ P , and turns it off for h < 0 if ks /∈ P . The transition between
cases is a bifurcation in P when the path connects k = α directly to k = ks, i.e. when
Im ψ(0) = Im ψ(ks) (since the path is a stationary phase contour). Typically we find
up to a sign that

(43) h = Im [ψ(0)− ψ(ks)] .

In general there may be many stationary phase points ks1, ks2, ..., turned on and off
at switching surfaces (Stokes lines) of the form

hi = Im [ψ(α)− ψ(ksi)] or hij = Im [ψ(ksi)− ψ(ksj)] .
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Finding the correct expansion (42) requires inspection of the phase contours in the
complex k plane, to find a path through the stationary points ksi and the endpoints
of k ∈ (−∞, α], with P permitted to pass through the ‘point at infinity’ |k| → ∞,
such that the integral converges. One may also calculate the higher order corrections,
and a wealth of theory exists to assist, a good starting point is [8].

In the example (37), the stationary point ks = iρ gives a contribution 2e−
1
2ρ

2

,

and the endpoint k = h/ε gives a contribution proportional to e−
1
2 (h/ε−iρ)

2

, and they
have equal phase (they are both real) when h = 0, providing the switching threshold.

The point of all this is simply that, just as with our previous examples in this
section, the discontinuity (the sign term) has again appeared as an inescapable part
of the leading order behaviour (42), and remains there as we add higher orders in the
tail of the series. The reader must pick apart the details to gain a fuller picture, but
we have laid out the basics to illustrate how the sign function arises.

5.5. Return to the vector field. Switching typically occurs when functions
have different asymptotic behaviours on different domains, and this is what unites
all of the examples above. The sign function affects the switch between different
functional forms of y that break down at h = 0.

The quantity y, which has a steady behaviour for almost all h, undergoes a sudden
jump taking the form y = sign(h) + α(h/ε)

∑∞
n=1 βn(ε/h)

n = sign(h) + O (ε/h). We
then wish to model its effect on the dynamical system ẋ = f(x; y). In general f
may have nonlinear dependence on y, as polynomials or trigonometric functions of y
for example, as in (1b) or (21). The most we can then infer is that f takes a form
f(x; y(h)) = F(x, h) as given by (5). The consequences of that form are what we have
presented already in this paper.

6. In closing. In section 5 we explored how discontinuities arise, not as crude
modeling caricatures, but in the leading order of asymptotic expansions. Just as local
expansions of differentiable functions yield linear terms, so asymptotic expansions
of abrupt transitions yield discontinuities (characterized by the sign function here).
They describe a switch in some unknown variable y, whose effect we then seek to
understand on the bulk system ẋ = f(x; y), using the methods of sections 2-4. In
practice, the origins of discontinuity explored in section 5 are often unknown, but we
found them all to take a universal form, and we have shown how to express it in a
manner that retains the asymptotic tails — the ghosts of switching — in the limit of
a piecewise-smooth model.

We have barely begun discovering the consequences of nonlinear switching for
piecewise-smooth systems. The interaction of multiple switches, for example, opens
up a vast world of attractors and bifurcations to be discovered. We have tried only
to revisit the foundations of piecewise-smooth dynamics in a way that enables future
study to embrace the ambiguity of the discontinuity, not to present a theory ready
accomplished, and so many avenues are left to be explored in more rigour.

Discontinuities seem to be a symptom of interaction between incongruent objects
or media, and the nature of such interactions is often difficult to model precisely.
Whereas in some areas of physics we have a governing law, a wave or heat equa-
tion perhaps, to guide the transition or permit asymptotic matching, in many of the
engineering and life science where discontinuous models are becoming increasingly
prominent, we rely on much less perfect information.

Piecewise-smooth dynamical theory attempts to address this, but we have seen
that behaviour can be modelled that lies outside Filippov’s simplest and most com-
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monly adopted sliding theory. So how should we put nonlinear switching to use? Non-
linear terms offer more freedom to our switching paradigm, opportunities to model
richer forms of dynamics that we have only begun to explore. The nonlinear terms
may be matched to observations, or derived from physical principles if any are avail-
able, for example from a model like (31), (34), or (39), and in genetic regulation [25]
or in friction such efforts are in progress.

In addition we understand something of how sensitive a piecewise-smooth system
is to its idealization of the switching as a discontinuity at a simple threshold. We
can introduce a parameter ε characterizing stiffness if a switch is continuous (as in
section 5.1), and an amplitude κ (or several κ’s) of discrete effects like noise, hystere-
sis, or time delay, again derived from physical principles or observations if possible,
and in simulations the discretization step provides another κ (as in figure 1(b.ii)).
The stiffness ε and unmodelled errors κ compete, and in a κ dominated system the
nonlinear phenomena of hidden dynamics may be washed out, while they may flourish
in a better behaved or better modelled (i.e. small κ) system.

That discontinuities yield strange dynamics is unsurprising, and the idea of ‘ghosts’
left behind by approximation schemes is not new [29]. Perhaps more surprising is the
extent to which we can characterise their effects in the piecewise-smooth framework.
So what remains to be done? To the geometrical arsenal of singularities and bifurca-
tions that we use to understand dynamical systems, we can add discontinuity-induced
bifurcations [7] and hidden attractors [19]. The task to classify these has a long way
to go. Though it is not always made clear, many of the theoretical results in [12]
(and hence to many works deriving from it) apply solely to the linear (or convex)
combination found by assuming g ≡ 0. The nonlinear approach with g 6= 0 permits
us to explore the different dynamics possible at the discontinuity, and thus to explore
the many other systems that make up Filippov’s full theory of differential inclusions.
When nonsmooth systems do surprising things, we usually find we can make sense of
them by extending our intuition for smooth systems to the switching layer, where, as
in smooth systems, nonlinearity cannot be ignored.

Finally, there are currently no standard numerical simulation codes that can han-
dle discontinuous systems with complete reliability, event detection being insufficient
to take full account of all their singularities and issues of non-uniqueness (see e.g.
[19, 18]). It is hoped that by capturing the ghosts of switching — in the form of
nonlinear discontinuity — such codes may soon be developed.
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