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1 Introduction

Piecewise smooth maps are a subject of increasing scientific interest, particularly as a description of
global dynamics in piecewise smooth flows. A piecewise smooth map, or a “map with a gap” [?], is
defined smoothly only over portions of its domain, with discontinuities in between. When a map is
derived as a stroboscopic snapshot of a flow, discontinuities are often the result of tangential contact,
known as grazing, between the flow and a hypersurface at which a discontinuity is introduced. In the
neighbourhood of grazing, small perturbations cause the flow to either intersect the discontinuity,
or miss it, creating a corresponding discontinuity in the global dynamics. Well known examples of
discontinuous maps pertaining to grazing arise in the mechanics of impact [] and fluid layer contact
[]. Piecewise smooth maps have been studied in their own right, for example in models of heart
arrhythmia [], neuron firing [], and electrical power converters []; see [?] for a review.

In the last two decades, grazing has taken on an important role in the analysis of discontinuity-
induced bifurcations []. The local quadratic curvature of a flow that is generic near grazing leads,
under certain conditions, to a square root map on one side of a discontinuity. As a result, square
root maps are among the most studied of the piecewise smooth maps []. Interest has also focussed
on period adding cascades [?, ?, ?, ?], that is, sequences of periodic orbit bifurcations in which
periodicity can increase by arbitrary integer values. The most general results pertain to cascades
as a route to chaos [?, ?], or assuming linearity of the map either side of the discontinuity [?, ?, ?],
and are often restricted to maps in one dimension.

The cascade presented in this paper will differ from previous studies in three important aspects.
Firstly, no chaotic dynamics is involved. Instead, the organising feature appears to be the instan-
taneous coexistence of two orbits, one of which crosses the discontinuity surface twice, the other
which cross the discontinuity infinitely many times and reaches a grazing point in positive and neg-
ative time. Secondly, nonlinearity to the map will be shown to have striking implications for the
cascade phenomenon, revealing that the cascade need not be ‘discontinuity-induced’ in the usual
sense, since the bifurcation that causes the cascade may take place away from the discontinuity.

Thirdly, the cascade will be shown to be well described by a one dimensional piecewise smooth
map, and yet describes accurately certain cascades of periodic orbits observed in simulations of the
budding yeast cell life cycle [?]. In fact, observations of cascades in the model of the cell life cycle in
[] were the motivation of the present study. The cell model is based upon experimentally observed
processes of eukaryotic cell growth. The growth cycle involves exponential increase of cell mass,
accompanied by variations in activator and inhibitor protein concentrations, modeled by a set of
coupled nonlinear ordinary differential equations. Once per cycle a mitosis (cell division) event
divides the cell mass in two, triggered when the concentration of a particular protein – cyclin B –
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falls below a critical value. A universal scaling will be derived from the one-dimensional map, and
is found to accurately describe cascades in the full model, both qualitatively and quantitatively.

In the biological model, a period p orbit represents a cycle of cell growth over which the mass
at division oscillates between p different values. For a range of parameters there exists a cell cycle
of period two, and this orbit is stable (attracting). At a critical parameter the periodic orbit
disappears, either by grazing the mass division threshold, or by colliding with an unstable period
two orbit in a saddle-node bifurcation. In either case, the disappearance is accompanied by the
creation of a new attractor that can be described as a grazing orbit of infinite period: a closed
orbit that visits infinitely many different masses at division, and visits the same grazing point
forward and backwards in time. Nearby in parameter space this orbit gives way to periodic orbits
of arbitrarily high period, whose period cascades down through the odd integers. The cascade
occurs for physically reasonable parameters, and could in principle be observed by clustering of cell
masses in populations of cells.
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Figure 1: Orbits of period two (bold lines) and period infinity (thin lines) in: (i) a flow with a reset, where only
a small piece of the infinite period orbit is shown, and (ii) a one-dimensional map representative of the global flow’s
return map to the section Π, where several iterates of the infinite period orbit are shown. The infinite period orbit
grazes in (i), and intersects the corresponding discontinuity in (ii); it also tends asymptotically towards the period
two orbit.

In section 3 we argue that cascades can be understood by studying one-dimensional piecewise-
smooth maps of the form

xi+1 = φ(xi) =

{

φR(xi) if xi ≥ 0,
φL(xi) if xi ≤ 0,

(1)

of the state xi ∈ R, over integers i. This is described as a “map with a gap” when φL(0) 6= φR(0) and
φL, φR, are smooth, with the most interesting dynamics arising when φL(0) > φR(0) (as remarked
in [?]), that is, when the jump from the left to right branches of the map is negative. We will
consider first the case when φL,R are linear, and then study the effect of adding nonlinear terms.
An orbit is a sequence of iterates x0, x1, ... for which xi+1 = φ(xi). If an orbit makes m visits to
x < 0, then n visits to x > 0, then o visits to x < 0, etc., it is given by

xj = ... ◦ φo
L ◦ φn

R ◦ φm
L (x0),

where j = m + n + o + ..., and we call x0 the initial point. It is useful to denote this orbit by a
letter sequence LmRnLo... (reading left to right). An orbit is said to have period p if it satisfies
xi+p = φp(xi).

Given the map (1), it is a simple matter to give conditions for the existence and stability of
period one orbits (fixed points, denoted L or R) or period two orbits (denoted L2, R2, or LR). In
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a piecewise linear map, when φL and φR are linear functions of x, a period two orbit must take the
form LR (i.e. must cross the discontinuity), and we review the pertinent results in section 4. Orbits
of higher period are rather more difficult to describe in general as they may take many different
forms. For orbits of the form LnR or LRn, regions of existence and stability are known [?, ?]. More
generally, if periodic orbits of the form Lk−nRn for k > n/ ≥ 1 exist, they are known to be unstable
for n > 1 provided that either: φL(0) = φR(0), in which case (1) is continuous [?], or φL(0) < φR(0)
[?]. Much less is known about the case when φL(0) > φR(0). If φL(0) > φR(0) > 0, a class of maps
have been shown to undergo period adding cascades to chaos, and formulae for the periods are
known [?]. If φL(0) > φR(0) > 0, then for piecewise linear maps only, an exhaustive study has been
made [?] that discusses whether finite, infinite, or chaotic attractors exist in different parameter
regimes. Detailed results are known only for orbits of the form LnR or LRn [?, ?, ?], which have
been shown to exhibit period adding sequences, punctuated by Farey sequences, that lead to chaos.
Our study can be considered an extension of these results to periodic orbits of the form (RL)nR
or (LR)nL, and introducing nonlinearity to the map.

The case φL(0) > φR(0) is of sole interest here, for the following reason. We are interested in
the maps formed in the presence of grazing, as in figure 9. The map φ(x) can be thought of as
representing the time taken by an orbit to return to a surface containing the point x. An orbit
may encounter a discontinuity directly (forming a short orbit, labelled R), or loop around before
meeting the discontinuity (a long orbit, labeled L). The two types of orbit, R and L, are separated
by a discontinuity in the map associated with grazing. Without loss of generality, one may orient
x such that x > 0 maps through a short (R) cycle, and x < 0 maps through a long (L) cycle.
One then expects the presence of a loop to introduce a delay in the flow time relative to grazing,
and the absence of a loop to introduce an shortening in the flow time relative to grazing, therefore
φL(0) > 0 > φR(0).

Arrangement of the paper:
section 2 cell model
section 3 abstract model, and reduction to 1D
section 4 piecewise linear map: 4.1 invariant interval, 4.2 solutions, 4.3 period 2n, 4.4 cascade

orbits, 4.5 border collision, 4.6 Fareys.
section 5 nonlinear map: 5.1 period 2, 5.2 cascade orbits, 5.3 border collision.
section 6 concluding gubbins.

2 Cascades in models of budding cell cycles

In this section we study cascading behaviour observed in simulations of the following set of ordinary
differential equations,































u̇1 = k1 − (k′2 + k′′2u2 + k′′′2 u4)u1, u̇5 = k9mub(1− u5)− k10u5,

u̇2 =
(k′3+k′′3u4)(1−u2)

J3+1−u2
− (k4mub+k′4u7)u2

J4+u2
, u̇6 = k11 − (k′12 + k′′12u7 + k′′′12mub)u6,

u̇3 = k′5 + k′′5
(ubm)n

Jn
5
+(ubm)n − k6u3, u̇7 = k′13 + k′′13u8 − k14u7,

u̇4 = k7u5(u3−u4)
J7+u3−u4

− k8Mu4

J8+u4
− k6u4, u̇8 =

(k′15m+k′′15u7)(1−u8)
J15+1−u8

− (k′16+k′′16mub)u8

J16+u8
,

ṁ = rm
(

1− m
m̄

)

,

(2)

where

ub = u1 −
2u1u6

Σ+
√
Σ2 − 4u1u6

, Σ = u1 + u6 +
1

Keq
. (3)
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The nine quantities ui and m are scalar variables, and all other quantities are parameters. The
system also undergoes a finite state reset

g(m) = m/2, (4)

applied at the surface

h(u) = u1 − ū1, if ḣ(u) = u̇1 < 0. (5)

If an orbit of (2) contains a point at which

h(u1) = 0 and ḣ(u) = u̇1 = 0, (6)

then the orbit is said to graze the discontinuity surface h = 0.
This model is presented in [?] as a serious model of growth and mitosis cycles in cell of budding

yeast. The variable m represents the mass of the cell, and the reset event (3) represents cell division.
The variables ui represent concentrations of eight different proteins that activate or inhibit different
processes in the cell’s cycle of growth. Cell division is triggered when the concentration of cyclin
B, u1 = [CycB]T, falls below a critical value ū1. The remaining concentrations are, symbolically,
u2 = [Cdh1], u3 = [Cdc20]T, u4 = [Cdc20]A, u5 = [IEP], u6 = [CKI]T, u7 = [SK], u8 = [TF],
ub = [CycB], M = [Mad].

There are 39 different parameters in (2)-(3), including rate constants ki, Michaelis constants
Ji, the division threshold ū1, a growth rate r, and a growth limit m̄. The majority of these will be
fixed to values considered physically reasonable, given in [?] as: k1 = 0.04, k′′2 = 1, k′′′2 = 1, k′3 = 1,
k′′3 = 10, k4 = 35, k′4 = 2, k′5 = 0.005, k′′5 = 0.2, k6 = 0.1, k7 = 1, k8 = 0.5, k9 = 0.1, k10 = 0.02,
k11 = 1, k′12 = 0.2, k′′12 = 50, k′′′12 = 100, k′13 = 0, k′′13 = 1, k14 = 1, k′15 = 1.5, k′′15 = 0.05, k′16 = 1,
k′′16 = 3, J3 = 0.04, J4 = 0.04, J5 = 0.3, J7 = 10−3, J8 = 10−3, J15 = 0.01, J16 = 0.01, Keq = 103,
M = 1, m̄ = 10, r = 0.0165, ū = 0.1, n = 4. We will allow k′2 to vary, observing phenomena over
a range from 0.04, the value given in [?], to around 0.12. We also take a value of r that differs
slightly from the values 0.01 and 0.005 that appear in [?].

The phenomenon to be presented will also be demonstrated in a considerable simplification of
(2), a four dimensional system



















u̇1 = k1 − k′2u1 − k′′2u1u2,

u̇2 =
(k′

3
+k′′

3
u3)(1−u2)

J3+1−u2
− k4u1u2m

J4+u2
,

u̇3 = k′5 + k′′5
(u1m)n

Jn
5
+(u1m)n − k6u3,

ṁ = rm
(

1− m
m̄

)

,

(7)

which is also given in [?], and undergoes the same cell division event (3). In simulating this system
the parameters will take the same values as given for the full model above, except that we let
r = 0.01, and will have to consider a wider range of k′2 to observe cascades.

Figure 2 shows a graph of the nine different variables throughout a period two cycle in the
system (2). The pattern repeats after the 100 minutes shown, during which the exponentially
increasing mass suffers two discontinuities at approximately 55 and 90 minutes, representing cell
division. Note the large difference in duration of the long growth period (65 minutes approximately)
and the short growth period (35 minutes approximately). Previous studies of the model (see e.g.
[?, ?]) typically present only cycles that repeat after a single cell division (period one cycles), or
present so-called mutants in which periodic behaviour is typically destroyed by drastically altering
the model. In the following, the model will undergo drastic changes of behaviour in the form of
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Figure 2: Simulation of the cell cycle (2), showing the (dimensionless) mass m and concentrations ui, plotted
against time in minutes. .

bifurcation cascades, caused, however, by changing a single parameter k′2, smoothly and over a
small range.

Figure 3 is a bifurcation diagram that shows periodic orbits of (2)-(3), obtained by the method
of shooting, for different values of k′2. Each point along the diagram represents a periodic orbit
passing through the section h(u) = 0 in the direction ḣ(u) > 0, therefore a period p orbit pierces
the section p times for a given k′2, and forms p branches in the diagram. The period two orbit
graphed in figure 2 forms the pair of branches shown for k′2 & 0.116. To the left of this, a period
adding cascade is observed from left to right, beginning at period one and increasing in multiples
of two. This cascade appears to accumulate towards a high period at around k′2 ≈ 0.116, at which
the cascade terminates. Orbits up to period p = 11 are clearly identifiable, and raw numerical data
(not given) reveals periods of up to 33 within the simulation accuracy.

m

k’2

0.8

0.04 0.06 0.08 0.10

0.10 0.11

1

1.4

1.3

0.12

0.12

1.0

1.2

1.4
p=1

p=3

p=5 p=2 p=2p=11p=9
p=7p=5

p≥7

p≥13

Figure 3: Bifurcation diagram for the simulated system (2). For stable periodic orbits, the value of m is plotted

when it crosses the surface h(u) = 0 with (̇h) > 0, at varying values of k′
2.

Where the ranges of existence of two different periods overlap, one observes orbits whose periods
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are sums of multiples of the two periods, known as Farey sequences (see section 4.6). The are clearly
seen in figure 3 around k′2 ≈ 0.047 between the period 1 and 3 orbits, and around l′2 ≈ 0.085 between
period 3 and 5 orbits.

Figure 4 shows simulations of four different orbits in the cascade, in the space of u1, u3. For the
lower period orbits, the oscillation between long period (with loop, L) cycles and short period (no
loop, R) cycles is particularly clear.

_
u1

u1 period 2

division 
surface

L

R

L R

period 21

period 5 period 3

u3 u3
0.2 0.4 0.6 0.80
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_
u1
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Figure 4: Simulations sampling four different k′
2 values from figure 3, showing : (i) a period 2 orbit at k′

2 = 0.118,
(ii) a period 21 orbit at k′

2 = 0.116, (iii) a period 5 orbit at k′
2 = 0.09, (iv) a period 3 orbit at k′

2 = 0.07. The labels
L and R indicate periods with and without loops above the division surface respectively.

For the orbits in figure 4, the cobweb diagrams (lines) in figure 5 illustrate successive values
of m when the orbit crosses the section h(u) = 0, with ḣ(u) > 0. These are superimposed on an
approximation of the return map of m to the same section, obtained by varying m away from the
periodic orbit while keeping the starting values of the ui’s fixed, and plotting the value of m (dots)
when an orbit returns to the section. The map of m given by the cobweb diagram is seen to follow
closely the one-dimensional map thus obtained.

Returning to the bifurcation diagram in figure 3, one can estimate the range of k′2 values for
which an orbit of period p exists. The upper bound on k′2 for a period p orbit is given by the
righthand extent of a region with p branches in figure 3, and these are listed in Table 1 for p ≥ 15
(these values are obtained from the raw numerical data that was used to plot figure 3, rather than
from visual inspection of the figure). A plot of these values in figure 6 (given over the larger range
p ≥ 7) shows them limiting towards a value of around k′2 ≈ 0.116.

In section 4.4 it will be shown that the range of existence of an orbit of a given period is governed
(in an approximation to be described) by a characteristic scaling. This follows from the existence
a quantity

v ≈
(

µ∞ − µb

µ∞ − µa

) 2

b−a

, (8)
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Figure 5: Maps of the mass, plotting return values against initial values of m, on the surface h(u) = 0 with ḣ(u) > 0.
The four simulations correspond to those in figure 4. The cobweb lines join successive values of m in a periodic orbit,
and the dots are return values of m obtained by shooting.

p 15 17 19 21 23 25 27 33

k′
2

0.1154 0.11577 0.11590 0.11600 0.116034 0.116048 0.116054 0.116058

Table 1: List of k′
2 values at the righthand end of the branch of period p, from a simulation of (2) (parameter values

given in the text). The estimation error is ±1 on the last decimal place. The periods 29 and 31 are missing, having
not been detected in the simulation.

k’2

p5 11 17 23 29

0.105

0.115

0.100

0.110

Figure 6: A plot of Table 1, showing k′
2 parameter values at which each branch vanishes in figure 3, plotted against

the relevent period.

that relates the upper bounds, µa and µb, of some parameter, µ, measured relative to some µ∞,
for which orbits of period a and b exist. The quantity v is independent of the periods a and b,
or any other parameters of the system, so (8) provides a characteristic scaling of the system, in
which µ can be directly substituted with whichever parameter we are interested in varying, in this
case k′2. By equating the righthand sides for two different integer pairs (a, b) and (a′, b′), one can
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eliminate v, and solve numerically to find the value of µ∞. Moreover, if we choose a, b, a′, b′ such
that b− a = b′ − a′ = 2r for some integer r, we can solve explicitly to find

µ∞ =
µa+2rµa′ − µa′+2rµa

µa+2r + µa′ − µa′+2r − µa
+O

(

v
a+1

2

)

. (9)

This simplifies further if we let two of the periods be equal, for example setting a′ = a+ 2r, thus
requiring only three different µ values, µa, µa+2r, and µa+4r, to determine µ∞ uniquely. Replacing
µ with k′2 and using triples of values from Table 1, one obtains several estimates of the value of k′2∞
(given by µ∞), a sample of which are shown in Table 2. The estimate changes slightly depending
on the three periods chosen, because (8) and (9) are only an approximate characterization of the
system. This is partly due to possible numerical error in estimating the values in Table 1, but also
because the analysis that leads to (9) is accurate only for higher period orbits, and therefore should
improve down through the rows in Table 2.

periods k′2∞
15, 17, 19 0.11497 ± 10−4

17, 19, 21 0.116333 ± 10−5

19, 21, 23 0.116052 ± 10−5

21, 23, 25 0.116058 ± 10−5

23, 25, 27 0.116059 ± 10−6

25, 27, 33 0.116058 ± 10−6

Table 2: Value of k′
2 at which the period two orbit grazes, k′

2∞, estimated for the three periods listed, using (9) for
all but the last row, which uses a numerical solution from (8). Errors follow from Table 1.

The critical k′2 value, k′2∞, is the parameter value at which the allowed period of orbits in the
cascade becomes infinite. This causes the accumulation of branches of periodic orbits observed
near k′2 ≈ 0.116 in figure 3, and the estimates in Table 2 refine this value to k′2 = 0.116058. The
accuracy of these predictions is verified by observing the accumulation of branches that occurs at
this value of k′2 in figure 3. The precision of this value could be improved by a finer simulation to
find the end points in Table 1 than was used for these calculations.

Figure 7 shows a similar cascade in a simulation of the four dimensional model (7). This
bifurcation diagram appears to have more clearly formed branches than the full model, due to its
simpler dynamics. A more crucial difference exists here, however, as is seen by close inspection of
the period two orbits in each case, which appear for k′2 & 0.116 in figure 3 and k′2 & 0.15394 in
figure 7. In figure 3, only two branches are seen to the right of the cascade, caused by a stable period
two orbit, and these branches appear to have a finite gradient everywhere. In figure 7, there are
now four branches to the right of the cascade, with a vertical gradient where they emerge from the
cascade at k′2 ≈ 0.15394, forming two continuous curves. This indicates a saddle-node bifurcation,
and indeed only the upper of each curve represents a stable orbit, the lower branch being an
unstable orbit (to obtain this branch, continuation methods were used rather than shooting). A
similar analysis of the cascade’s scaling can be applied as that performed above; the appropriate
formulae will be derived in section 5.2.

In summary, similar cascades are observed in the two different models (2) and (7) together with
(3). In one case, periodic orbits of increasing odd period are seen to accumulate at a parameter
value k′2 ≈ 0.116058, at which a stable period two orbit is created. Figure 8 shows that the lefthand
extreme of each branch appears at a grazing orbit, that is, when an orbit has a minimum of h at
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Figure 7: Bifurcation diagram for the simulated system (7). For orbits of period p, the value of m is plotted when
it crosses the surface u1 = ū1 with u̇1 > 0, at changing values of k′

2. All orbits are stable, except the lower branch of
period two orbits, which collide with the stable upper branch in a saddle-node bifurcation at around k′

2 = 0.15387.

h(u) = 0. This applies to the orbits in the cascade (as far as the precision of the simulation
can determine) and to the period two orbit. The simpler model again sees accumulation towards
a particular value, k′2 ≈ 0.15394, but in this case a pair of period two orbits are created, the
mechanism of their creation is a saddle-node bifurcation, and as figure 8 shows, neither of these
are grazing (note that orbits inside the cascade to the left of k′2 ≈ 0.15394 do still appear from
grazing).

h

k’20.05 0.07 0.09 0.11
0.0

0.01

0.02

(i) (ii)
p=3

p=5 p≥7 p≥7

p=2

h

k’2
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0.150 0.152 0.154

0.01

0.02

0.03

p=3

p=5

p=2

Figure 8: Bifurcation diagrams corresponding to: (i) figure 3, and (ii) figure 7; showing h(u) at minima along the
orbits, that is when ḣ(u) = 0 < ḧ(u).

These two cascade phenomena appear robust enough to be observed over a range of different
values of the 39 parameters in the full model, or the 16 parameters in the simplified model. The
phenomenon is also quite robust under alterations in the division rule, (3), to fractions other than
1/2. It is, however, possible for more complex cascades to occur, as we discuss in section 6. In
particular, the orbits considered above form only one small loop above h(u) = 0 between successive
divisions (see figure 4). By increasing r, the strength of rotation in the system is increased, and
this causes periodic orbits to loop many times between divisions, increasing the complexity of the
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cascade.
To gain insight into the origin of these two bifurcation sequences, and to see where the scaling

laws (8) and (9) used above came from, in the next section we discuss an abstract description of
the flows above, and argue that the cascade can be understood by simplfying the flow to a one
dimensional map with a discontinuity.

3 Reduction to a one-dimensional map

We begin by setting up an abstract form of the system in section 2. Let a scalar variable, x, and
an n− 1 dimensional state variable, y, evolve according to a hybrid dynamical system,

ẋ = f(x), (10)

ẏ = F (x, y), (11)

x 7→ g(x) when h(y) = 0 > ḣ(y), (12)

where F is a smooth vector field, while f , g, and h are smooth scalar functions. We assume

f > 0 (13)

throughout the region of interest. The time derivative ḣ is given by the Lie derivative along the
flow of F ,

ḣ(y) = LFh(y) = F (x, y) · d
dy

h(y).

Thus the system consists of a set of ordinary equations, (10)-(11), interrupted by a discrete event,
(12), called the reset. The scalar function h is regular in y, meaning dh

dy 6= 0.
Let there exist a state y = ỹ∗ to which the flow is strongly attracted, but which, since x varies

independently of y, does not form an asymptotic attractor. More precisely, let there exist a locally
defined section Π through the flow (see figure 1(i)), coordinatized by the scalar x and an n − 2
dimensional variable ỹ. Let a pair of return maps (φ,Ψ) : Π 7→ Π give the point (φ(x, ỹ),Ψ(x, ỹ)) at
which the hybrid flow (10)-(12) through a point (x, ỹ) ∈ Π returns to Π, where φ is a scalar and Ψ
is n−2 dimensional. Let there exist a set of points {(x, ỹ∗) ∈ Π : x ∈ R} on which the eigenvalues,
cj for j = 1, ..., n−2, of the Jacobian derivative d Ψ

d(x,ỹ) at (x, ỹ
∗), satisfy |cj | ≪ 1. Then ỹ ≈ ỹ∗ after

sufficiently many iterations of the maps φ and Ψ, so Ψ approaches the identity. The flow is then
well approximated by neglecting y, and treating φ as a one dimensional map of the variable x.

In the biological models considered in section 2, this situation seems to arise because the n− 1
variables y, (u in the cell model), are strongly coupled and tend to a fixed value, while one variable
x, (m in the cell model), varies independently except at the discontinuity. The only influence of y
on x is in determining the time instant at which the discontinuity (cell division) occurs.

We have then to determine the typical from that the map φ will take. For this we must examine
the dynamics elsewhere than the section Π. Let us label the reset surface

Σ = {(x, y) ∈ R
n : h(y) = 0}, (14)

and then identify the turning surface

Γ = {(x, y) ∈ R
n : Lfh(y) = 0} , (15)

where orbits of (10) turn around with respect to Σ. Their intersection forms a grazing set, Γ ∩ Σ,
where orbits contact the reset surface with zero normal velocity. The sets Σ and Γ are n − 1
dimensional hypersurfaces, illustrated for n = 3 in figure 9.
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Figure 9: A hybrid system with a switch at Σ. Under a small change in initial condition, the flow may either
intersect the reset surface first, or cross a turning surface, Γ, before reaching Σ. This advances/delays the reset, g,
as a loop is removed/added between the long-cycle L, and short-cycle R. In a biological cell cycle model [?]: g is cell
division, while L and R give rise to long and short growth cycles. A path z(γ) as discussed in the text is shown.

Consider the orbit from some initial point, (x, y) = z, to cross Γ at two points, first where
h(y)L2

Fh(y) < 0 (turning away from Σ) and then where h(y)L2
Fh(y) > 0 (turning towards Σ),

before reaching Σ at time t = T (z). Such an orbit forms a loop on one side of Σ before the reset
(12) occurs (the orbit L in figure 9). Now let the initial point z follow a path z(γ) such that, as
we vary the scalar parameter γ, the first point of intersection with the turning surface Γ can be
brought closer to Σ, until the orbit hits Σ before it can cross Γ (orbit R in figure 9). This prevents
the orbit forming a loop, and advances the reset time T (z(γ)) by a discrete amount. This jump in
the value of T occurs at a parameter γ = γg, for which the orbit through z(γ) intersects the grazing
set Γ ∩ Σ, local to which we can express T as

T (γ) =

{

TR(γ), if γ ≥ γg,
TL(γ), if γ ≤ γg,

(16)

where TL and TR are smooth single-valued functions. Let us now consider the map described
above, φ(x), which describes the return value of x to some section Π through the flow. Since x
grows monotonically in time by (13), except for the discontinuity whose affect on the flow time is
described by (16), then we obtain a general form for the map φ as

φ(γ) =

{

φR(γ), if γ ≥ γg,
φL(γ), if γ ≤ γg.

(17)

Thus the maps φL and φR give the points where long (L) and short (R) orbits return to Π. In
sections 4 and 5, we show that maps of this form can exhibit bifurcations that account for the
cascades observed in the biological model in section 2, approximating them first as piecewise linear
near the discontinuity, and then considering the effect of nonlinearity. This can be extended to
orbits that intersect Γ many times between resets, forming even longer periods and involving
further discontinuities; these are discussed briefly in section 6.

3.1 Geometry of a cascade

Above we have argued that a one dimensional piecewise smooth map can represent certain features
of the global dynamics of a class of n-dimensional flows. We have not yet identified the essential
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features of the flow, or the map, that gives rise to cascades of the form seen in the cell model. We
describe these qualitatively here. In the next section we will prove that such conditions in a one
dimensional map are sufficient for cascades.

By a period p orbit, we will mean a solution of the system (10)-(12) that repeats after p
intersections with the discontinuity surface h(u) = 0.

In a flow parameterized by µ, the key necessary conditions for cascades near some µ = µ∞
appear to be:

(i) there exists an invariant region I that contains all orbits through some set of grazing points
G ⊂ Γ ∩ Σ,

(ii) for µ ≤ µ∞, I also contains a stable orbit whose period is finite,

(iii) for µ ≥ µ∞, the set G is an attractor of the return map of the flow to the hypersurface Γ.

When the finite period orbit vanishes for µ > µ∞, the invariance of I causes a new global attractor
to be created. The vanished periodic orbit leaves behind the mirage of an attractor on the set G:
orbits are attracted towards G each time they intersect Γ as if G is an attractor, but ultimately
overshoot and hit Σ, at which they undergo a reset event, and yet remain confined to I.

In the scenarios considered in section 2, 4, and 5, the stable orbit in (i) has period two, and
vanishes at µ = µ∞ either by grazing, in which case it instersects the set G, or by saddle-node
bifurcation, in which case the centre manifold of the bifurcation intersects G. The attractivity of
G at µ = µ∞ creates an additional stable orbit that has a point in G, and asymptotes towards
the period two orbit, intersecting Γ and Σ infinitely many times to form an infinite period grazing
orbit. For µ > µ∞ this periodic orbit undergoes a bifurcation cascade in which its period becomes
finite, and decreases through odd integers as µ − µ∞ increases; these period adding bifurcations
occur each time the orbit intersects G.

In figure 10, we illustrate this geometry in a higher dimensional flow representative of the cell
model, and also in a one-dimensional map, which we study in detail in sections 4-5. The figure
illustrates dynamics around a grazing set G, on an invariant set I (in figure 10(ii), I consists of all
orbits through the shaded regions) . An open set P ⊂ Σ maps to an open set PΓ ∪ PΣ under the
flow, where PΓ ⊂ Γ and PΣ ⊂ Σ, and such that the set of grazing points G = PΣ ∩ PΓ maps into
the interior of P under the reset map on Σ. Then the generator of the invariant set I can be taken
as the set of points x ∈ PΣ ∪ PΓ in the neighbourhood of G that map into the interior of P .

In figure 11, we illustrate two scenarios by which such mirages of attractors form when a period
two orbit is destroyed either by grazing, or by a saddle-node bifurcation. In the gazing case, a
periodic orbit through the points p1 and p′1 undergoes grazing when p1 enters the set G, after
which G attracts orbits that intersect Γ on a set P ⊂ Γ. Orbits attracted towards G overshoot,
undergo the reset into the neighbourhood of a set H ′ ⊂ P ′, which maps under the flow back into P .
In the saddle-node case, stable and unstable periodic orbits through the points p1, p

′
1, and p2, p

′
2,

respectively, collide in a saddle-node bifurcation, the centre manifold of which intersects the set G.
Afterwards, G attracts orbits that intersect Γ on a set P ⊂ Γ, similarly to the grazing case. In
both cases, the result of G being attractive, but not asymptotically so, allowing orbits to overshoot
G, seems to create high periodic orbits. In simple cases, namely those in section 3 above and in
the maps of sections 4-5, the result is a cascade of orbits of decreasing period. We now turn to a
detailed study of these maps as sources of cascades.
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Figure 10: The mirage of an attractor at the grazing boundary. The conditions for a cascade are illustrated: after
a period two orbit vanishes, its domain of attraction leaves behind sets, PΣ and PΓ, attracted towards the a grazing
set G ⊂ Γ ∩ Σ; points in PΣ in the neighbourhood of G, which have reset values in a neighbourhood of H ′ = g(G),
must return to PΓ under the flow.
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Figure 11: p1 and p′1 are points along a stable period two orbit, with domains of attraction P1 and P ′
1. As a

parameter changes the period two orbit is destroyed, either by grazing (left) or by a saddle-node bifurcation (right).
Grazing automatically creates an attractive set of grazing points, G. The saddle-node creates an attractive set
of grazing points, G, if the saddle’s unstable manifold, lying in the centre manifold of the bifurcation (dashed),
transversally intersects the grazing set Γ ∩ Σ.
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4 Piecewise linear map with a gap

We begin by studying the piecewise linear map

xi+1 =

{

φR(xi) = µ+ λ+ vRxi if xi ≥ 0,
φL(xi) = µ+ vLxi if xi ≤ 0.

(18)

where we assume φL(0) > φR(0), in which case x can be scaled such that the jump in the map at
x = 0 is λ = −1, though we leave the symbol λ in for convenience.

Unlike many previous studies, we allow both φR and φL to be applied at the discontinuity.
Although this means the solution of the map is non-unique at x = 0, it is useful to consider the two
solutions as giving the limiting behaviour of the map as x tends to 0 from above and from below,
since arbitrarily close to the limit, the solutions on both sides are well defined.

It will be shown that there exists a parameter µ = µ∞ at which the map satisfies:

(i) φR ◦ φL(0) = 0, and (19)

(iii) φR ◦ (φL ◦ φR)
n(0) → 0 as n → 0. (20)

Condition (i) defines a period two orbit, and (ii) can be described as an orbit of infinite period.
Both orbits have an iterate on the discontinuity, so that a border collision occurs at µ = µ∞.

The analysis in this section can be considered as an extension of previous studies, which analysed
periodic orbits of the form RnL given by φn

R ◦φL(x) = x (or similarly LnR), whereas here we study
periodic orbits of the form (RL)n, given by (φR ◦ φL)

n(x) = x, and of the form (RL)nR, given by
φR ◦ (φR ◦ φL)

n(x) = x. All of the following analysis can be extended to orbits of the form (LR)n

and (LR)nL by making the substitution {x, vR, vL, µ} 7→ {−x, vL, vR,−µ− λ}.

xk+1

x6
x4

x0=0

..
.
x

R 
∗∗/μ

L
 =1

xk

x2 /μL 
 =1−v

φL 
φR 

I 

Figure 12: The period two orbit (bold lines) defined in (19), and the infinite period orbit (fine lines) defined in (20),
both diverging from each other and recombining at the discontinuity, x = 0. The quantities v, µL, x

∗∗
R , are defined in

section 4.3.

4.1 Invariance of the interval [φR(0), φL(0)]

Conditions (20) requires that an application of φR at the point x = 0 is followed by φL, which only
occurs if φR(0) < 0 < φL(0). From (18) we have φR(0) = µ + λ, and therefore µ + λ < 0 < µ, or
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simply
0 < µ < −λ. (21)

Moreover, given φR ◦ φL(0) = 0 by (19), the existence of a solution (20) requires (φL ◦ φR(0))
n > 0

for all k = 1, ..., n. Taking n = 1 gives the condition

φL ◦ φR(0) = µ+ vL(µ + λ) < 0,

and substituting the value of µ for which φR ◦ φL(0) = 0 by (19), which is easily found to be
µ = −λ/(1 + vR), yields the condition

|v| < 1. (22)

This is therefore required for the existence of the infinite period orbit (20) with an iterate on the
discontinuity. In the next section we will see that then (φL◦φR(0))

n > 0 for each power n, provided
that the interval

I = [φR(0), φL(0)] = [µ+ λ, µ] (23)

is invariant under the map (18). Invariance of I requires that the values of the gradients vR,L are
restricted to

0 < vR < −λ

µ
, 0 < vL < − λ

µ+ λ
. (24)

To prove this, we first show that each of the functions φR,L map points x ∈ I towards x = 0, that
is, we show that φR(x)− x < 0 and φL(x)− x > 0 for x ∈ I. For the former we have

φR(x)− x = µ+ λ+ (vR − 1)x by (18)

< µ+ λ−
(

λ

µ
+ 1

)

x by (24)

= (µ + λ)

(

1− x

µ

)

< 0 by (21) and x ∈ I. (25)

In the last line, we use from (21) that µ+ λ < 0 and µ > 0, while x ∈ I implies x
µ < 1. For the L

map we have

φL(x)− x = µ+ (vL − 1)x by (18)

> µ− x by (24)

> 0 by (21) and x < 0. (26)

Having been mapped towards x = 0, any point must again map to the interior of I, since φL,R(0) ∈ I
by definition (23). Therefore under the conditions (21) and (22), the interval I = [φR(0), φL(0)] is
invariant.

Fixed points of the map (18) lie at x = x∗R := µ+λ
1−vR

and x = x∗L := µ
1−vL

, exist if and only if
x∗L < 0 < x∗R, and are stable if |vR,L| < 1. It follows from (24) that no fixed points x∗R,L can exist
within the invariant interval I, and we will not study these further.

4.2 Solutions of the piecewise linear map

If an orbit of (18) does not cross x = 0 from an initial point x0 until the rth iterate xr, then xr is
given by

xr(µ, x0) =

{

(φR)
r(x0) = vrRx0 +

1−vrR
1−vR

(µ+ λ) if x0 ≥ 0,

(φL)
r(x0) = vrLx0 +

1−vrL
1−vL

µ if x0 ≤ 0,
(27)
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where r ≥ 1 is an integer. Since this is only valid if all iterates xi have the same sign for i =

0, ..., r − 1, the domain of xr(µ, x0) is given by the regions x0 >
(µ+λ)(1−v−r

R
)

1−vR
and x0 <

µ(1−v−r
L

)
1−vL

.
The proof of this is simple given that these maps are linear in x0; the details are omitted as this
result will not be used here.

If, instead, an orbit starting at x0 crosses x = 0, we can define a second iterate map given by

xi+2 =

{

ΦR(xi) = φL ◦ φR(xi) if xi ≥ 0,
ΦL(xi) = φR ◦ φL(xi) if xi ≤ 0.

(28)

Solving (28) by substituting in (18), after 2n iterations we find the orbit of an initial point x0 to
be given by

x2n(µ, x0) =







(ΦR)
n (x0) = vnx0 +

1−vn

1−v

(

1− µ
µR

)

λvL if x0 ≥ 0,

(ΦL)
n (x0) = vnx0 +

1−vn

1−v

(

1− µ
µL

)

λ if x0 ≤ 0,
(29)

where n ≥ 1 is an integer, and we introduce three parameters

µL = − λ

1 + vR
, µR = − λvL

1 + vL
, and v = vRvL. (30)

For reasons that will become clear, we will frequently give expressions in terms of the parameters
µR,L and v, in place of vR,L.

The condition for the existence of solutions of the form (29) is that there is a sign change
between each xi and xi+1 = φL,R(xi), that is, x2n = ΦL,R(x0) exists if and only if

xi φR,L(xi) < 0, for all i = 0, 2, 4, ..., n − 2. (31)

By combining the formulae (27) and (29), orbits with an arbitrary form can be described, but
we will not make use of (27) here.

4.3 Orbits of period two

In this section we consider periodic orbits of the form (RL)n for a general integer n, and derive an
expression for stable period two orbits which, at a certain parameter, undergo a border collision
satisfying condition (19).

Periodic orbits of the form (RL)n are fixed points of the map (29), given by

x∗∗L =
ξ(µ)− µ

vL
=

λ

1− v

(

1− µ

µL

)

, x∗∗R = ξ(µ) :=
λvL
1− v

(

1− µ

µR

)

, (32)

where we define the function ξ(µ). Since these iterates are independent of n, they represent only
two fixed points, one either side of x = 0, hence these orbits have period two. They exist if and
only if

(ξ(µ)− µ)/vL < 0 < ξ(µ), (33)

and are stable because the derivative of the second iterate map,
dΦL,R

dx0
= v, has modulus less than

unity by (22). From (22) and (24) it is clear that λ
1−v and λvL

1−v are positive quantities, therefore
substituting (32) into (33) and simplifying, the existence condition for stable period two orbits
becomes

µR ≤ µ ≤ µL. (34)
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Such a range of µ is possible, since substituting (30) into (22) shows that the parameters µR,L are
strictly ordered according to

µR < µL. (35)

Again taking (32), applying (34) and (22), a little algebra gives

µ+ λ ≤ x∗∗L ≤ 0 ≤ x∗∗R ≤ µ, (36)

meaning that the period two orbit, (x∗∗L , x∗∗R ), lies inside the invariant interval I = [µ + λ, µ].
To summarize, while µ lies inside the bounds (34), a period two orbit exists, by (22) it is stable,

and the map has a well defined local derivative in the neighbourhood of x∗∗R,L. We also have from
(29) that, from any initial point x0, the second iterate map obeys

x2n → x∗∗R,L as n → ∞. (37)

Thus the domain of attraction of the period two orbit is the entire domain of Φ±, which, however,
is not easy to express explicitly. If there exist no other attractors inside the interval I, then the
perioid two orbit’s period domain of attraction includes the whole interval I. This is as observed
in simulation, however a definitive proof must exclude the possibility of periodic orbits of any form
from I (the conditions (24) at least exclude fixed points); such a result is not pursued here and we
assume no other attractors exist for µR < µ < µL.

A border collision occurs when µ = µR or µL, as we discuss in section 4.5.

4.4 Orbits of the form (RL)nR

In this section we consider periodic orbits with the form (RL)nR, for a general integer n.
For a solution of (18) with the form (RL)nR, the (2n + 1)th iterate is given by

x2n+1(µ, x0) = φR ◦ (φL ◦ φR)
n = µ+ λ+ vRx2n(µ, x0), (38)

that is, n applications of the second iterate map ΦR = φL ◦ φR from (29), followed by a single
application of φR. Expanding this by substituting in (29), some re-arrangement gives

x2n+1(µ, x0) = vRv
nx0 +

(

1− µ
µL

)

−
(

1− µ
µR

)

vn+1

1− v
λ. (39)

If they are valid solutions of the map (18), then fixed points of (39) correspond to iterates lying on
period κ = 2n+1 orbits of (18). We label such a fixed point xκ, then solve x2n+1(xκ) = xκ to find

xκ(µ) =

(

1− µ
µL

)

−
(

1− µ
µR

)

v
κ+1

2

(1− v)(1− vRv
κ+1

2 )
λ. (40)

The map, and an orbit of period κ = 5, are illustrated in figure 13.
Given that the map (39) is linear it has the form x±κ = ax0 + b for constants a and b, and its

fixed points are stable if |a| < 1. Applying this to (39), where a = vRv
κ+1

2 , and using (24) to place
an upper bound on vR, gives the stability condition

v
κ+1

2 < −µ/λ, (41)

where the righthand side is strictly positive (since λ < 0 by definition and µ > 0 by (21)). Thus
a period κ orbit, if it exists, is stable if it satisfies (41). Note that periodic orbits with sufficiently
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Figure 13: (i) An orbit of the form (RL)nR shown up to n = 2. (iii) A period κ = 5 orbit of the piecewise linear
map (18), where x0 = x5 is a fixed point of the map (29).

large κ are always stable, since |v| < 1 by (22), so the leftthand side tends to zero as κ → ∞. We
now turn to existence conditions for such orbits.

In a period κ = 2n + 1 orbit, with n ∈ Z and containing a point (40), the first 2n iterates are
obtained by applying the map ΦR to xi ≥ 0 for all even i up to i = 2n, and by applying ΦL to
xi ≤ 0 for all odd i up to i = 2n− 1. Since the orbit is periodic, the last iterate must equal the
first, x2n+1 = x0, and becomes the only odd iterate with a positive sign. (For κ = 5 the sequence
of iterates with x0 = 0 and with a general x0 = xκ are shown in figure 13). Thus we have an
ascending sequence of iterates with an initial point x0 > 0, the odd iterates

x1 < x3 < ... < xκ−2 < 0 ≤ xκ, (42)

and the even iterates, obtained by applying to these the inverse map [φR]
−1,

0 ≤ x0 < x2 < ... < xκ−3 < [φR]
−1(0) < xκ−1, (43)

which are given by (29), and where [φR]
−1(0) = −(µ+λ)/vR. The values of µ for which such orbits

can exist are found as follows.
Firstly, if µR < µ < µL then no such sequences, and therefore no such orbits, are possible. This

is because, by (34), there exists a period two orbit with iterates (x∗∗L , x∗∗R ) = ((ξ − µ)/vL, ξ). These
are fixed points of the second iterate maps ΦL,R, therefore the sequence (42) would asymptotically
approach x∗∗L , and hence could not undergo the change in sign required from xκ−2 to xκ.

For µ & µL, the points (x∗∗L , x∗∗R ) = ((ξ − µ)/vL, ξ) are no longer fixed points of the map
(18) because x∗∗L > 0 by (34). Iterates of ΦR and ΦL are attracted monotonically towards ξ and
(ξ − µ)/vL respectively, but using (32) with (30), and taking µ & µL, a little algebra shows that

ξ(µ) =
λvL
1− v

(

1− µ

µR

)

= µ+
λvL(1− µ/µL)

1− v
> µ. (44)

therefore the attracting point ξ lies outside the invariant interval I = [µ+ λ, µ]. So iterates of ΦR

form an ascending sequence towards the boundary of I, but the map ΦR becomes invalid before
ξ is reached, because the iterates of ΦL undergo a change in sign as in (42), and the even iterates
forming a sequence (43).
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The case of µ < µR yields similar, decreasing sequences

x1 > x3 > ... > x2n−1 > 0 ≥ xκ, (45)

0 ≥ x0 > x2 > ... > xκ−3 > [φL]
−1(0) > xκ−1, (46)

of orbits of the form (RL)nL given by x2n = φL(φR ◦ φL)
n(x0), with iterates of ΦL attracted

towards the point x∗∗L outside I. Corresponding results for this case are obtained by making the
replacement {x, vR, vL, µ} 7→ {−x, vL, vR,−µ− λ} in the analysis for µ ≥ µL.

The conditions for the existence of periodic orbits of the form (29) are, therefore, that the
inequalities (43) are satisfied. In fact, since Φ is monotonic on the interval I we need only the
conditions on the iterates xκ−1 and xκ−3 (which imply the conditions on xκ−2 and xκ simply by
applying φR once), so this implies that a period κ orbit of the form (39) exists if

xκ−3 < [φR]
−1(0) ≤ xκ−1 for µ & µL. (47)

Substituting in expressions for the even iterates xκ−1 and xκ−3 from (29), and using x0 = xκ given
by (40) as an initial point, one obtains explicit ranges of the parameter µ and gradients vR,L for
which a period κ orbit can exist. The expressions obtained, however, are somewhat complicated.
These bounds are illustrated in figure 14.

(i) xk+1

x0=0

x2

x4
x0=φR

oφL(0)

x3=0

x2
x4=μ

L

μ
L 
 

xk

(ii) xk+1

xkμ
L 
 

φL φRφL φR

Figure 14: The range of existence of a period 5 orbit in (18), showing: (i) the orbit of the point x0 = 0 and a
nearby period 5 orbit, (ii) the orbit of the point x0 = φR ◦ φL(0), and a nearby period 5 orbit (dotted) is shown in
both.

This can be simplified significantly if, instead of finding x0 by solving (40), we replace x0 with
its value in the bounding cases, when xκ−3 = [φR]

−1(0) or [φR]
−1(0) = xκ−1. Taking the left bound

first, xκ−3 = [φR]
−1(0), implies that x0 = xκ = φR ◦ φL ◦ φR(xκ−3) = φR ◦ φL(0). Using (29) with

x0 = φR ◦ φL(0) = λ(1− µ/µL) to express xκ−3, and substituting this into (47), and recalling that
[φR]

−1(0) = (−µ− λ)/vR, gives

λ

(

1− µ

µL

)

v
κ−3

2 +

(

1− µ

µR

)

(1− v
κ−3

2 )

(1− v)
λvL <

−µ− λ

vR

which can be re-arranged to

µ− µL <
µL

−λ

(1− v)v
κ−1

2

vL
µL

+
(

1−v
µL

− vL
µR

)

v
κ−1

2
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This places a lower bound on the distance µ− µL, from the border collision at µ− µL, over which
a period κ orbit can form. Conversely, it places an upper limit on the period κ of an orbit that is
possible for a given µ. Inverting, we obtain the upper bound on the allowed period κ at a given µ
as

κ < 3 +
2

log(1/v)
log

(

1− µ
µR

)

v +
(

1− µ
µL

)

(1− v)vR
(

1− µ
µR

)

+
(

1 + µ
λ

)

(1− v)
. (48)

This expression is plotted in figure ??.
More interesting are the upper bound on the distance µ−µL, and lower bound on the period κ.

Taking the right bound in (47), [φR]
−1(0) = xκ−1, implies that x0 = xκ = φR(xκ−1) = 0. Using (29)

with x0 = 0 to express xκ−1, substituting this into (47), and recalling that [φR]
−1(0) = −(µ+λ)/vR,

gives

−µ− λ

vR
≤

(

1− µ

µR

)

1− v
κ−1

2

1− v
λvR,

which rearranges (using (30) and noting (35)) to

µ− µL ≥ µL

(

µL

µR
− 1

)

v
κ+1

2

1− µL

µR
v

κ+1

2

. (49)

This places an upper bound on the distance µ−µL > 0 from the border collision for which an orbit
of period κ can exist. It also places a lower bound on the period κ that is possible for a given µ,
made explicit by rearranging (49) to

κ >
2 log (µ−µR)µL

(µ−µL)µR

log(1/v)
− 1, (50)

written so the arguments of both logarithms are positive for µ > µL. This bound is plotted in
figure 15 (the curves with vc = 0 only). A few simple observations are immediately possible. As
µ → µL with µ− µL ≥ 0, the argument of the second logarithm tends to positive infinity, hence

κ → ∞ as µ → µL. (51)

This implies that, as we approach the border collision, the allowed period of a periodic orbit of the
form (39) increases exponentially, tending to infinity. Thus a cascade of orbits of increasing period
will be seen as µ approaches the border collision. The infinite period orbit is of the form required
by (20). Furthermore, by (41), we see that this orbit is stable. Letting κ → ∞ in (49) gives the
converse,

µ → µL as κ → ∞, (52)

meaning that an infinite period orbit of this form is possible only at the border collision.
The bound (49) can be used to characterise cascades observed in simulations. For large κ,

condition (49) becomes

µ− µL ≥ µκ − µL := µL

(

µL

µR
− 1

)

v
κ+1

2 + O
(

vκ+1
)

, (53)

introducing a constant, µκ, so that a period κ may exist for µ ≥ µκ. In simulations of a system of
the form (18), one can measure the values µκ for three different periods κ = a, b, c, then eliminate
the quantities µR and v, and solve for the parameter µL at which the border collision occurs. For
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Figure 15: Smallest allowed period κ of an orbit of the form (RL)nR, κ = 2n + 1, showing that κ → ∞: (i) as
µ → µsn when vL = 0.8, vR = 0.9, vc = 0.7; (ii) as µ → µ̃L when vL = 0.8, vR = 0.3, vc = 0.5. In both cases we also
show that κ → ∞ as µ → µL if we set vc = 0. The graphs are calculated from (87); the vc = 0 graphs can also be
calculated from (??).

particular values of a, b, c, we can obtain an explicit solution for µL as follows. The expression for
µκ above can be rearranged to the form

µL

µR
− 1 =

(

µκ

µL
− 1

)

v−
κ+1

2 + O
(

vκ+1
)

.

Since the lefthand side of this expression is independent of the period, the quantity on the righthand
side remains fixed whatever the period κ. Therefore, one may equate the righthand side for two
periods κ = a, b, then rearrange to eliminate the unknown µR, to find

v ≈
(

µb − µL

µa − µL

)
2

b−a

,

which is the result (8) used in section 2. Here again, the lefthand side is independent of the
period, and therefore by equating the righthand sides for two different integer pairs (a, b) and
(a′, b′), we can numerically solve for µL and v. If we choose those pairs to have the same difference,
b− a = b′ − a′ = 2p for some integer p, then we can solve explicitly to obtain

v ≈ µa′+2p − µL

µa′ − µL
≈ µa+2p − µL

µa − µL
.

Solving these simultaneous equations for µL gives

µL ≈ µa+2pµa′ − µa′+2pµa

µa+2p + µa′ − µa′+2p − µa
, (54)

which is the result (9) used in section 2. Finally, we remark that this derivation (53)-(54) can
be made exact by starting from (49) instead of (53), without discarding terms of order vκ+1 as
we have done above, with only moderately more complication. However, when we apply this
as an approximate description of higher dimensional nonlinear systems, the formulation assumes
attractive orbits (v < 1) and small distance µ−µL from the border collision (equivalently large κ),

so an approximation to first order in v
p+1

2 is sufficient.
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4.5 Border collision

The border collision described in the defining conditions (19)-(20) occurs when µ = µL. Setting
µ = µL in the expression (32) gives the iterates of the period two orbit as

(x∗∗L , x∗∗R ) =

(

0,
vLλ (1− µL/µR)

1− v

)

, (55)

which therefore has an iterate on the discontinuity, x = 0, and satisfies condition (19). If we set
µ = µL in (40), substitute in (29) and (55), then some algebra using (30) gives the κth iterate of a
period κ = 2n+ 1 orbit as

xκ(µL) = φR ◦ ΦR(xκ) = 0, κ → ∞. (56)

This provides the infinite period orbit with an iterate on the discontinuity required by condition
(20). The period κ is infinite due to its µ-dependent lower bound from (50), and furthermore, by
(41), this orbit is guaranteed to be stable.

The point x = 0 is initially mapped, by φL, around the period two orbit in the region x ≥ 0,
or is mapped away from it into x < 0 by φR. The latter of these remains in the invariant interval
I, and more specifically inside the domain of attraction of the period two orbit, and consequently
it undergoes an infinite sequence of iterations, each of which crosses the discontinuity, tending
asymptotically and monotonically towards the period two orbit, which eventually returns it to the
discontinuity.

Thus at the border collision there exist two stable periodic orbits, one of each of them mapping
from the discontinuity to φL(0) < 0 or φR(0) > 0. Their coexistence is allowed by the definition
of the piecewise linear map (18), which permits either map φL,R to be applied at x = 0. That one
may break the lack of uniqueness at x = 0 by changing the choice of inequality signs in (18) is
unimportant. The results in sections 4.3-4.4 reveal the existence of a period two orbit for µ inside
the region (µR, µL), and the existence of a cascade of orbits of increasing period as µ approaches
µL from outside that region. Close to the border collision at µL, these orbits are guaranteed to
be stable. A similar analysis gives the existence of a cascade of orbits of increasing period as µ
approaches µR from outside (µR, µL).

4.6 Overlapping regions and Farey sequences

...

5 Nonlinear map with a gap

Let us now extend the results above by considering the effect of nonlinearity. We consider the
piecewise linear map (18) to be the leading order term in a Taylor expansion about the discontinuity.
To investigate the effect of adding nonlinearity, let us leave φL linear and add a higher order term to
φR. Trouble is immediately encountered, since even the addition of a quadratic term, for example
taking φR(x) = µ+ λ+ vRx+ vcx

2 for some constant vc, yields a map for which iterates cannot be
expressed in closed form, except in special cases. Instead of approximating φR by a truncated Taylor
series, we can approximate it by a rational function P (x)/Q(x) where P and Q are polynomials,
a general method of approximation developed by Padé and Frobenius [??r], allowing us to write
φR(x) = µ− λ+ vRx+ vcvRx

2 + O
(

x3
)

= µ− λ+ vRx
1−vcx

+ O
(

x3
)

. Neglecting higher order terms,
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we therefore study the system

x 7→
{

φR(x) = µ− λ+ vRx
1−vcx

, if x ≥ 0,

φL(x) = µ+ vLx, if x ≤ 0.
(57)

As with the linear map, we will exclusively consider the case λ < 0, which can be scaled so that
λ = −1. We assume that the new parameter, vc, is positive, and to preserve the invariance of the
interval I = [φR(0), φL(0)] = [µ+ λ, µ], we fix

µvc < 1, (58)

then the divergence of φR at x = 1/vc, which is an artifice of the rational function approximation,
lies outside of I. Note that (57) reduces to (18) for vc = 0.

We will not conduct a complete analysis of the dynamics made possible by adding nonlinearity
to the piecewise linear map. We confine our analysis to the effect of the perturbation vc on the
cascade analysed in the piecewise linear map in section 4.

As for the piecewise linear map we will not be concerned with fixed points of the map (57),
but for completeness we note that these lie at x = x∗L,R, and exist if and only if x∗L := µ

1−vL
< 0

(stable if |vL| < 1), or x∗R =
1−vR±

√
(1−vR)2−4vc(µ+λ)

2vc
> 0 (the signs −/+ gives stable/unstable

orbits respectively). The stable solutions coincide with the fixed points of the piecewise linear map
for vc = 0.

5.1 Orbits of the form RL

A period two orbit of the form RL has iterates (xL, xR), satisfying

xL = φR ◦ φL(xL), xR = φL ◦ φR(xR). (59)

For the nonlinear map (57) these have two solutions, given by

x±L =
ξ±(µ)− µ

vL
, x±R = ξ±(µ) :=

1− v + vcp(µ)∓ θ(µ)

2vc
, (60)

in terms of the pair of functions

p(µ) = µ+ vL(λ+ µ) = vLλ(1− µ/µR), (61)

θ(µ) =
√

(vcp(µ) + 1− v)2 − 4vcp(µ), (62)

and where
√
a denotes the principle root

√
a = |a|1/2ei arg(a)/2. We will again in this section make

use of the parameters µL,R, defined in (30).
These period two solutions exist while x±L,R are real and x±L ≤ 0 ≤ x±R, giving existence condi-

tions

ξ±(µ)− µ

vL
≤ 0 ≤ ξ±(µ), (63)

and [θ(µ)]2 > 0. (64)

From the definition of ξ± in (60), it is useful to note that

ξ+ξ− = p/vc, and ξ− − ξ+ = θ/vc, (65)
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and, moreover,

|ξ±|2 = ξ+ξ− = p/vc if θ2 < 0, (66)

0 < ξ+ < (1− v)/vc < ξ− < µ < 1/vc if θ2 > 0. (67)

The first line follows simply from the definition of ξ± when θ is imaginary. In the second line,
the relation of ξ± to v follows from (65) when θ is real (and therefore θ > 0 by definition), the
remainder following from (60) with x±L < 0 < x±R and given µvc < 1 from (58).

The stability of these orbits is determined by whether the absolute value of the derivative

∂

∂x
[φL ◦ φR(x

±

R)] =
v

(1− vcξ±(µ))2

is smaller than unity. Using (67) we can order these derivative according to

v

(1− vcξ+)2
< 1 <

v

(1− vcξ−)2
, (68)

so that the iterates (x+L , x
+
R) describe a stable orbit, and (x−L , x

−
R) an unstable orbit. The solution

(x+L , x
+
R) becomes the stable period two orbit (32) of the piecewise linear map (18) when vc = 0.

By (67), we have that the stable orbit lies to the left of the unstable orbit, that is, x+L ≤ x−L and
x+R ≤ x−R.

Substituting in the expressions for ξ± and θ into (63)-(64), one can obtain explicit conditions on
µ for the existence of period two orbits. The algebra is fairly involved and one must check whether
a given solution applies to ξ+ or ξ−. We are concerned only with the existence of the stable period
two orbit, whose iterates are (x+L , x

+
R), and we find existence conditions

µR ≤ µ ≤ µ̃L if ξ+(µ̃L) + ξ−(µ̃L)− 2µ̃L > 0, (69)

µR ≤ µ ≤ µsn if ξ+(µ̃L) + ξ−(µ̃L)− 2µ̃L < 0, (70)

under the assumption |v| < 1 from (22), and where we introduce

µsn := µR

(

1− (1−√
v)2

vcvLλ

)

, (71)

which is the solution of θ(µsn) = 0, and

µ̃L =

1
µL

+ vc −
√

4vc
λ +

(

1
µL

+ vc

)2

−2vc/λ
, (72)

which is a solution of ξ+(µ̃L) = µ̃L, for which x+L = 0. The parameter µ̃L becomes µL when vc = 0.
Solving ξ±(µ) = µ is equivalent to finding the roots of the polynomial

Ω±(µ) = (µ+ λ)(1− vcξ
±(µ)) + vRξ

±(µ), (73)

when ξ+(µ) = µ. The function Ω± will be of further use later.
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5.2 Orbits of the form (RL)nR

Considering the nonlinear map as a perturbation of the piecewise linear map (18), we now follow
similar analysis to section 4.4. There it was shown that, in the absence of period two orbits, there
is a lower bound for the allowed period κ = 2n+ 1 of orbits of the form (RL)nR, given by

x2n+1 = φR ◦ (φL ◦ φR)
n(x0),

and satisfying (20) at the border collision. This bound was arrived at from the condition (47), that
is, by considering the condition

[φR]
−1(0) ≤ xκ−1.

As in section 4.4, to evaluate xκ−1 for κ = 2n + 1 odd, we require an expression for xκ−1 =
x2n = (φL ◦ φR)

n(x0). We begin with the second iterate map on the region x ≥ 0,

xi+2 = ΦR(xi) = φL ◦ φR(xi) = p(µ) +
vxi−2

1− vcxi−2
, (74)

where p was defined in (62). To solve for xi in terms of x0, let

x =
α

β
, (75)

which fixes α and β up to a relative scaling. Substituting these into (74), they are found to obey
the bilinear map

αi

βi
=

(v − vcp)αi−2 + pβi−2

βi−2 − vcαi−2
, (76)

which is exactly solvable, and implies that α and β obey

(

αi

βi

)

= W (µ)

(

αi−2

βi−2

)

, (77)

where

W (µ) =

(

v − vcp(µ) p(µ)
−vc 1

)

. (78)

The real 2× 2 matrix W can be decomposed into (omitting arguments)

W = ω+W+ + ω−W−,

where W± are fixed by the conditions

W±W± = W± and W±W∓ = 0,

which give

W± = ±vc
θ

(

−ξ± p/vc
−1 ξ∓

)

, (79)

then ω± are the eigenvalues of W , given by

ω± = 1− vcξ
±, (80)

25



in terms of the functions ξ± defined in (60). The solution to (77), letting i = 2n and defining an
initial point x0 = α0/β0, is then

(

α2n

β2n

)

= W n

(

α0

β0

)

=
{

(ω+)nW+ + (ω−)nW−}
(

α0

β0

)

. (81)

Taking the ratio x2n = α2n/β2n gives the nth term of the second iterate map as

x2n = (ΦR)
n(x0)

=

{

(ω
−

ω+ )
nξ− − ξ+

}

x0 +
{

1− (ω
−

ω+ )
n
}

p/vc
{

(ω
−

ω+ )n − 1
}

x0 +
{

ξ− − (ω
−

ω+ )nξ+
} , (82)

where n ≥ 1 is an integer. For vc = 0, (82) reduces to equation (29) for x0 ≥ 0. When the
functions ω± are real, then by (60) θ is real, so we can apply (67) to show that |ω−/ω+| =
|(1 − vcξ

−)/(1 − vcξ
+)| < 1. Then using the identity ξ+ξ− = p/vc from (65), we find that (82)

obeys

x2n → ξ+ as n → ∞. (83)

Thus the second iterate map (82) tends towards the point x = ξ+. This corresponds to similar
behaviour in the piecewise linear map, from which we recall that the second iterate map tends
towards the period two orbit if it exists, and otherwise will never reach ξ+, reaching the boundary
of the invariant interval I first. In the case when θ is imaginary, no real limit of x2n exists.

Following section 4.4, we now use this result to place a bound on the values of µ at which an
orbit of odd period κ can exist, now with vc 6= 0. In section 4.4, it was shown that the conditions
that must be satisfied for an orbit of odd period κ to exist are

φR(xκ−1) ≥ 0 given x0 = 0, (84)

and

φR(xκ−3) ≤ 0 given x0 = φR ◦ φL(0). (85)

Here we will calculate only the former of these. Substituting x0 = 0 into (82) gives

φR(x2n) = µ+ λ+
vRp/vc

ξ−−(ω
−

ω+ )nξ+

1−(ω
−

ω+ )n
− p

= µ+ λ+
vR

(1−vcξ+)n/ξ+−(1−vcξ−)n/ξ−

(1−vcξ+)n−(1−vcξ−)n − vc
. (86)

This should be real-valued, and while all other terms are strictly real, ξ± are complex when θ is
imaginary. The potentially problematic term is

(1− vcξ
+)n/ξ+ − (1− vcξ

−)n/ξ−

(1− vcξ+)n − (1− vcξ−)n

in the denominator of (86), which can be expanded exactly as a polynomial in θ, and becomes,
after some cancellation,

2vc(1 + v − vcp)

(1− v + vcp)2 − θ2











1− v + vcp

1 + v − vcp
+

n
∑

j=0

(

n
2j

)

(1 + v − vcp)
n−2jθ2j

n
∑

j=0

(

n
2j + 1

)

(1 + v − vcp)n−2jθ2j











,
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where
(

n
2j

)

and
(

n
2j + 1

)

denote binomial coefficients. This quantity is then clearly real-valued since

θ appears only as θ2, which is always real.
Substituting (86) into the condition (84) and setting κ = 2n + 1, we have that period κ orbits

satisfy

κ ≥ 1 + 2

log

(

ξ+(µ)Ω−(µ)√
ξ−(µ)ξ+(µ)Ω−(µ)Ω+(µ)

)

log

(

ω+(µ)√
ω−(µ)ω+(µ)

) , (87)

where ξ± and Ω± were defined in (60), (80), and (73) respectively. This bound is plotted in
figure 15. The expression (87) written in this form gives the correct phases inside the logarithms
when ξ±, ω±, and Ω±, are complex.

For θ2 > 0, all of the quantities in (87) are real, but the lower bound placed on κ is not larger
than one. This is because we can use (67) to show that (1 − vcξ

+)/(1 − vcξ
−) > 1, therefore the

denominator in (87) is positive, but ξ+/ξ− < 1 from (67), and Ω−/Ω+ < 1 since

Ω+ = (µ+ λ)(1 − vcξ
+) + vRξ

−

= (µ+ λ)(1 − vcξ
+) + vR(ξ

− − θ/vc)

> (µ+ λ)(1 − vcξ
−) + vRξ

− = Ω−,

therefore the numerator in (87) is negative, so the righthand side of (87) cannot exceed one. The
bound in such a case is shown in figure 15(ii), for vc both zero and non-zero.

For θ2 < 0, the righthand side of (87) is real because ξ+ and ξ− are complex conjugates,
therefore each of the ratios appearing inside the logarithms have unit length in the complex plane,
the logarithms of which yield imaginary values, and the ratio of these cancels to give a real value
overall. Figure 15(i) (the vc 6= 0 only) shows the positive bound on κ that this imposes for µ & µsn.

5.3 Disappearance of the period two orbit

A stable period two orbit exists for µ values satisfying the conditions (69) and (70). At the boundary
of (69), the period two orbit disappears via a border collision, as we discuss in section 5.3.1 below.
Introducing nonlinear terms to the map creates a new situation by which the period two orbit
can disappear in a saddle-node bifurcation, which occurs at the boundary of (70) as we discuss in
section 5.3.2 below. Both scenarios lead to similar bifurcation cascades, with one vital difference,
discussed in sections 5.3.1-5.3.2.

If the bounds in (69) and (70) both achieve equality, that is, if µ = µ̃L = µsn, then a codimension
two bifurcation occurs, namely a simultaneous border collision and saddle-node bifurcation. Such
higher codimension events are beyond the scope of the present paper.

5.3.1 Border collision

To consider border collision of periodic orbits we assume that (69) holds. Then a stable period two
orbit exists for µR ≤ µ ≤ µ̃L, and has an iterate on the discontinuity when x+L = 0 or x+R = 0.
The latter case was omitted from section 4.3, because it could be derived from the former by a
straightforward transformation, and again we omit it here.

The border collision of a stable period two orbit for which x+L = 0 occurs when µ = µ̃L, defined
in (72). Since µ̃L becomes µL when vc = 0, this corresponds to a perturbation of the border collision
at µ = µL considered for the piecewise linear map in section 4.
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For µ & µ̃L the stable period two orbit no longer exists. In this region, instead, from section 5.2,
we have orbits of the form (RL)nR, whose period κ is bounded below by (87). We must now consider
the limit of this bound as µ → µ̃L, which depends on the behaviour of ξ±(µ) and Ω±(µ). By the
definition of Ω± from (73) we have Ω+(µ̃L) = 0, and therefore

log
(

Ω−/Ω−) → ∞ as µ− µ̃L → 0+. (88)

Since (1− vcξ
+)/(1 − vcξ

−) ≥ 1 by (67), the denominator in (87) is positive, and so

κ → ∞ as µ− µ̃L → 0+. (89)

Therefore, as µ → µ̃L from µ ≥ µ̃L, we have a cascade of orbits whose period κ increases towards
infinity, as shown in figure 15(ii). This corresponds to the cascade approaching border collision in
the piecewise linear map in section 4.

5.3.2 Saddle-node bifurcation

A saddle-node bifurcation occurs when the stable and unstable period two orbits coincide. That
is, for µ < µsn by (70), there exist stable and unstable period two orbits with iterates (x+L , x

+
R)

and (x−L , x
−
R) respectively, as given by (60). When µ = µsn these two solutions coincide. Note that

the right iterate x±R = ξ±(µsn) of the saddle-node bifurcation is confined to the region x < 1/vc,
and therefore does not cross the divergence in the φR map at x = 1/vc. (There exists a second
saddle-node solution, given by changing the sign in front of the square root in (71), and this solution

does cross the divergence, having its right iterate at xR = 1+
√
v

vc
> 1

vc
; we omit this scenario here).

For µ & µsn we have θ2 ≤ 0, and the period two orbits no longer exist. Instead, from section 5.2,
there exist orbits of the form (RL)nR, whose period κ is bounded below by (87), which for θ
imaginary becomes

κ ≥ 1 + 2
log

(

ξ+(µ)Ω−(µ)
ξ−(µ)Ω+(µ)

)

log
(

1−vcξ+(µ)
1−vcξ−(µ)

) = 1 + 2
arg ξ+ + argΩ−

arg(1− vcξ+)
.

All three of these arguments tend to zero as µ tends to µsn, so the relative rate at which they do
so determines the bound on κ. We have

| arg ξ+| = arctan θ
1−v+vcp

≈ arctan θ
1−v ,

| arg(1− vcξ
+)| = arctan θ

1+v−vcp
≈ arctan θ

1+v ,

| arg Ω−| = arctan θ

1+
vR
vc

+µ+λ

vR
vc

−µ−λ
(vcp−v)

≈ arctan θ
1−v ,

approximating for small vc, which gives | arg(1− vcξ
+)| < | arg ξ+| and | arg(1− vcξ

+)| < | arg Ω−|,
so the denominator of (87) tends to zero faster than the numerator, giving

κ → ∞ as µ− µsn → 0+. (90)

Such limiting behaviour is shown in figure 15(i) (vc 6= 0 curve only). This result holds more
generally than for small vc, however, for brevity, we omit further investigation here. We therefore
have that, just as a cascade occurs as µ approaches the appearance of a stable period two orbit in
a border collision at µ = µ̃L, a cascade occurs similarly as µ approaches the appearance of a stable
period two orbit in a saddle-node bifurcation at µ = µsn.
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6 Concluding remarks

Grazing of a period two orbit creates an infinite period attractor that itself grazes. The saddle-node
bifurcation liberates the infinite period attractor from grazing...

The cascades of section 4 and section 5 appear to account well for those observed in the cell
cycles models of section 2, and this was verified quantitatively by calculating the location of a
border collision in the nine dimensional model. It is quite remarkable that the phenomenon is
sufficiently robust to survive from fundamental origins in a one-dimensional map, to observation in
highly nonlinear four and nine dimensional biological models. Lest this outcome be overestimated,
however, we must discuss the various other behaviours that are observed in the cell cycle model.

For the four dimensional model, considering only the scalar map of m works particularly well,
because u1, u2, u3, are almost constant on u1 = 0 for u̇1 > 0 throughout the different cycles of a
periodic orbit. This is not so in the nine dimensional model. Though this evidently does not destroy
the applicability of the cascade scaling, it does make it easier for variations in the various ui to
allow more complex periodic orbits to form, and the cascades associated with them are consequently
more complex. For example, by slightly decreasing r in the cascade reported above, one observes a
cascade triggered by grazing of an orbit of period four, rather than two. Period four orbits do not
occur in a one dimensional map of the local form (57), hence this reveals the multi-dimensionality
of the full system changing the qualitative form of the cascade. Nevertheless, a cascade does occur,
and in a similar manner, though a sequence of odd periods which, however, does not visit all odd
integers. Further analysis of such scenarios will require the study of two-dimensional maps with
gaps.

Changing the value of r further, one finds that orbits may make many loops between cell
divisions, whereas in section 2 we observed only one loop. The result is that any of these loops may
graze the discontinuity surface, leading to many discontinuities in any global return map, which
could be called a “map with many gaps”. One could consider a scalar map of the form φ(x) = φr(x),
where each φr is a smooth function over a region xr−1 < x < xr, and where φr−1(xr−1) > φr(xr−1).
This represents a flow in which different periods consist of different numbers, r, of loops, each of
which increases the length of that period. Cascades can occur as in sections 4-5, accumulating
either at a grazing of a period two orbit, or at a saddle-node bifurcation. When the period two
orbit with iterates on the r1 and r2 branches vanishes, the system can map around the intervening
branches r1 < r < r2. Provided a generalization of the conditions given in section 4.1, that the
period two orbit lies in an invariant region that includes the r2 − r1 discontinuities, then after
sufficient iterations any orbit should return to the r1 and r2 branches, after which the analysis in
this paper can be applied to place a lower bound on the number of iterations required to form a
new periodic orbit. Hence cascades may be expected to occur, but their precise form will depend
on closer analysis.

Although we began, in (20), by assuming the existence of an infinite period orbit homoclinic
to the discontinuity, the conditions under which this occurs are quite general, and in those cases,
seems to be an inevitable consequence of the disappearance of a period two orbit via grazing or
saddle-node bifurcation. Intuitively, when a stable period two orbit vanishes, the system strives
towards the vanished orbit over an even number iterates 2n, then is interrupted by the discontinuity,
adding one iterate that re-injects the orbit back towards its starting point; a periodic orbit of this
form then has period 2n + 1.

Most interesting perhaps is the more general question brought up by the cascade, namely the
behaviour of the mirage attractor or this attraction-to-grazing...
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