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Abstract

This paper applies methods of numerical continuation analysis to document characteristic bifurcation cascades of limit
cycles in piecewise-smooth, hybrid-dynamical-system models of the eukaryotic cell cycle, and associated period-adding
cascades in piecewise-defined maps with gaps. A general theory is formulated for the occurrence of such cascades, for
example given the existence of a period-two orbit with one point on the system discontinuity and with appropriate
constraints on the forward trajectory for nearby initial conditions. In this case, it is found that the bifurcation cascade
for nearby parameter values exhibits a scaling relationship governed by the largest-in-magnitude Floquet multiplier, here
required to be positive and real, in complete agreement with the characteristic scaling observed in the numerical study.
A similar cascade is predicted and observed in the case of a saddle-node bifurcation of a period-two orbit, away from
the discontinuity, provided that the associated center manifold is found to intersect the discontinuity transversally.
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1. Introduction

Piecewise-defined maps are a subject of increasing scien-
tific interest, particularly as a description of global dynam-
ics in piecewise-smooth flows. A piecewise-defined map is
defined smoothly only over the interior of a partition of its
domain, with discontinuities and/or loss of di↵erentiability
on the boundaries of this partition. When a map is derived
as a stroboscopic snapshot of a flow, discontinuities are of-
ten the result of tangential (grazing) contact between the
flow and a hypersurface at which a discontinuity in the
vector field or the instantaneous state is introduced. In
the neighborhood of grazing contact, small perturbations
cause the forward dynamics to either intersect the hyper-
surface, or miss it, creating a corresponding discontinuity
in the global dynamics. Well-known examples of piecewise-
defined maps pertaining to grazing arise in the mechanics
of impact and fluid layer contact. Piecewise-defined maps
have been studied in their own right, for example in mod-
els of heart arrhythmia, neuron firing, and electrical power
converters; see di Bernardo et al. [1] for a review.

The application focus of this paper is on hybrid dynam-
ical models of the cell cycle of budding yeast (cf. Li et
al. [2], Pfeuty and Kaneko [3], Tyson and Novák [4], and
Qu et al. [5], but see also Noel et al. [6] and Alfieri et al. [7]
for the construction of switched models of the cell cycle)
designed to replicate experimentally observed processes of
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eukaryotic cell growth. In these models, the growth cycle
exhibits exponential increase of cell mass, accompanied
by variations in activator and inhibitor protein concen-
trations, modeled by a set of coupled nonlinear ordinary
di↵erential equations. When the concentration of a key
protein falls below a critical value, the models considered
here assume an essentially instantaneous cell division (mi-
tosis) event, resulting in two progeny cells, each carrying
a fraction of the mass of the mother cell. A period-p orbit
represents a periodic sequence of p cycles of cell growth
over which the mass at mitosis assumes p di↵erent values.
In particular, period-one orbits result in regular cell cycles
where the mass at mitosis is the same each time.
A discontinuity-induced bifurcation [1] occurs in a

piecewise-smooth system, when the presence of a disconti-
nuity results in a bifurcation that is unanticipated by the
local description of the flow about some reference trajec-
tory in the case that the discontinuity were to be ignored
(without destroying the existence of the reference trajec-
tory). In the cell-cycle models, an obvious example of
a discontinuity-induced bifurcation is the disappearance
(under further parameter variations) of a period-p orbit
when the state during one of the cell cycles grazes the
division threshold. A local analysis of return maps near
such a grazing orbit yields a piecewise-defined map that
is discontinuous across some hypersurface of initial con-
ditions. In the piecewise-a�ne case, such a “map with
a gap” (see Hogan et al. [8]) is known to exhibit compli-
cated bifurcation scenarios, including period-adding cas-
cades, period-incrementing cascades, and robust chaotic
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attractors (e.g., Dutta et al. [9], Rajpathak et al. [10], but
see also Glendinning [11] and Keener [12] for an analysis
of routes to chaos in general piecewise-defined maps).

In the present paper, we derive a small set of su�-
cient conditions for the existence of period-adding bifur-
cation cascades accumulating on a grazing bifurcation of a
period-two orbit in such piecewise-defined maps and verify
the theoretical predictions using careful numerical anal-
ysis of suitably-constructed boundary-value problems for
the cell cycle models. The theoretical analysis is found
to accurately describe cascades observed in the numeri-
cal analysis of the corresponding hybrid dynamical system
models, both qualitatively and quantitatively, including
the prediction of a characteristics scaling relationship. Al-
though this relationship results from the essentially one-
dimensional nature of the bifurcation cascade su�ciently
close to the accumulation point, the analysis is indepen-
dent of model dimension and does not require the reduc-
tion to a piecewise-defined one-dimensional map.

We further derive a similar set of su�cient conditions
for the existence of a period-adding bifurcation cascade
accumulating on a saddle-node bifurcation of a period-two
orbit, with no point of grazing contact with the system dis-
continuity. Remarkably, although the saddle-node bifur-
cation is not induced by the discontinuity, the associated
bifurcation cascade is very much a result of the presence
of the discontinuity. We here find a discontinuity-induced
bifurcation scenario that is triggered by a saddle-node bi-
furcation, specifically, a saddle-node point on an infinite-
period orbit that intersects the discontinuity transversally.
We are not aware of any existing treatment or observation
of such a global bifurcation scenario in a piecewise-smooth
dynamical system.

A key ingredient of the conditions that hold at the accu-
mulation point of the period-adding bifurcation cascades
is the reinjection of a neighborhood of a grazing point
on the discontinuity into the basin of attraction of the
period-two orbit by the application of a state reset. This
reinjection persists qualitatively even after the period-two
orbit is destroyed by the discontinuity, but the asymptotic
convergence to the locus of the period-two orbit (had the
discontinuity been ignored) is interrupted by a crossing of
the discontinuity and another global excursion away from
the discontinuity. The scenario is reminiscent of examples
of intermittency and bursting in the literature (cf. Dias
De Deus et al. [13] and Mosekilde et al. [14]), but the de-
pendence of the frequency of bursting on the parameter
deviation from the accumulation point in the cascade may
di↵er. A similar “homoclinic” behavior, with identical im-
plications to the existence of a period-adding cascade may
be found in Budd and Piiroinen [15].

In the remainder of this paper, we introduce and ex-
plore numerically two models of the yeast cell cycle in
Sec. 2 and develop the corresponding theoretical treat-
ment in Sec. 3. A concluding discussion in Sec. 5 reflects
on the implications of the analysis to general piecewise-
smooth dynamical systems and the class of cell cycle mod-

els considered herein. Several appendices at the end of
the paper present examples of the phenomenology in the
case of piecewise-a�ne, one-dimensional (complete treat-
ment) and two-dimensional (numerical example) maps,
piecewise-nonlinear one-dimensional maps (numerical ex-
ample), and an autonomous linear oscillator with state
resets (numerical example).

2. Cascades in models of the yeast cell cycle

2.1. Model formulation

We ground the theoretical analysis of this paper in the
context of finite-dimensional, deterministic models of the
cell cycle of budding yeast, and establish in these models
several realizations of the abstract framework considered
in the second half of the paper.
To this end, let u

i

, for i = 1, . . . , 8, represent nondimen-
sionalized concentrations of eight key proteins that acti-
vate or inhibit di↵erent processes in the cycle of growth
and division of eukaryotic cells, including the production
or degradation of other members of this group of pro-
teins. Specifically, following Tyson and Novák [4], let the
continuous-time evolution of the cell state be governed by
the following system of di↵erential equations
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and where the nondimensionalized cell mass is governed
by the logistic growth model

ṁ = rm

⇣
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(11)

with carrying capacity m̄. Moreover, suppose that a
transversal intersection of the continuous-time trajectory
with the zero-level surface of the scalar-valued function

h
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(u) := u

1

� ū

1

, (12)
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in the direction of decreasing values of h
mitosis

, results in
the instantaneous state reset

m 7! ⇢m, 0 < ⇢ < 1 (13)

corresponding to a division of the mother cell into two
daughter cells with masses ⇢m and (1� ⇢)m, respectively.
In the study below, we thus trace the time histories for the
components of u and the cell mass m through generations
of mother and daughter cells inheriting, at each division,
the fraction ⇢ of the original cell mass.

There are 39 di↵erent parameters in the hybrid dynam-
ical system governed by Eqs. (1-13), including the rate
constants k

i

, the Michaelis-Menten constants J

i

, the di-
vision threshold ū

1

, the growth rate r, and the carrying
capacity m̄. The majority of these will be fixed to values
considered physically reasonable, given in [4] in a consis-
tent set of units as: k
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= 0.1, n = 4, ⇢ = 0.5. We
will allow k

0
2

to vary, observing phenomena over a range
from 0.04, the value given in [4], to around 0.2. We also
take a value of r = 0.0165 that di↵ers slightly from the
values 0.01 and 0.005 that appear in [4].

Time histories of interest in this system tend to take the
form of a succession of long and short intervals of growth,
with longer intervals characterized by an additional local
minimum in u

1

followed by an additional local maximum
prior to cell division. As an example, Fig. 1 shows the
projection of an example periodic steady-state behavior of
the nine-dimensional dynamical system for k

0
2

= 0.1524,
obtained using forward integration. Here, two distinct cell
cycles (from the so-called G1 phase immediately follow-
ing cell division and back) constitute a full period of the
system behavior. In both of these cycles, a protein concen-
tration modeled by u

1

initially decreases from the critical
threshold ū

1

and then rises above this threshold to a local
maximum. In the shorter of the two cell cycles, u

1

then de-
cays monotonically in time until cell division is triggered.
The duration1 of this first cycle is T

short

= 35.0914. In the
longer of the two cell cycles, the monotonic decay of u

1

that previously led to cell division is here interrupted by
a local minimum of u

1

, a phase of increasing values of u
1

,
followed by another phase of monotonic decay and subse-
quent cell division. The duration of this second cycle is
T

long

= 66.3226.
The two crucial events that occur along a cycle, particu-

larly (as we will see) for identifying bifurcations, are local
minima of u

1

that occur for u
1

> ū

1

, and the cell division
events that occur at u

1

= ū

1

. To this end, we consider

1The system of units implicit in the choice of parameter values
measures time in minutes

Figure 1: An example two-cycle, asymptotically stable periodic tra-
jectory of the nine-dimensional hybrid dynamical system in Sec. 2.1
obtained for k0

2

= 0.1524. Here and in Fig. 3, the filled circle indi-
cates the local minimum in the value of u

1

above the critical level
ū
1

at the terminal end of the first segment, whereas the open cir-
cles indicate terminal points on {h

mitosis

= 0}, corresponding to the
triggering of cell division. The solid curve represents the longer cell
cycle of duration T

long

⇡ 66 min, while the dashed curve represents
the shorter cell cycle of duration T

short

⇡ 35 min.

a maximal partition of system trajectories into individual
segments that terminate either at a local minimum of u

1

,
i.e., on the zero-level surface of

h
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with h

mitosis

(u) > 0, or on {h
mitosis

= 0}. In the former
case, continuity in time implies the imposition of the iden-
tity

g

turn

:= (u,m) 7! (u,m) , (15)

whereas termination on the zero-level surface of h

mitosis

implies the imposition of the map

g

divide

:= (u,m) 7! (u, ⇢m) (16)

corresponding to a discrete jump in state space to a di↵er-
ent point on this zero-level surface. The two-cycle, peri-
odic, steady-state behavior may now be obtained as the so-
lution to a three-segment, sequential boundary-value prob-
lem, in which each segment must satisfy the governing dif-
ferential equations on its interior, and for which boundary
conditions are given by the vanishing of the corresponding
event function h

minimum

or h
mitosis

at the terminal point,
and by the connectivity with the next segment expressed in
terms of the corresponding jump function g

turn

or g
divide

.
A solution to the three-segment boundary-value prob-

lem is a viable physical solution, provided that state re-
sets occur only at points on {h

mitosis

= 0} with h

mitosis

locally decreasing. Suppose, for example, that all ter-
minal points on {h

minimum

= 0} are local minima. In
this case, a violation of viability along a one-parameter
family of solutions occurs if the value of h

mitosis

at the
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Figure 2: a) A Type I grazing bifurcation in which the value of
h
mitosis

at terminal points on {h
minimum

= 0} decreases through
0 under a parameter variation represented by the straight arrow.
b) A Type II grazing bifurcation in which the value of h

minimum

at terminal points on {h
mitosis

= 0} increases through 0 under a
parameter variation represented by the curved arrow. In both cases,
the grazing trajectory is represented by the thicker curve. Dashed
curves represent actual solutions to the multisegment boundary-value
problem.

terminal point on {h
minimum

= 0} changes from posi-
tive to negative, since h

mitosis

is stationary and not de-
creasing on {h

minimum

= 0}. At the special point where
the value of h

mitosis

vanishes at the terminal point on
{h

minimum

= 0}, the continuous-time trajectory is locally
tangential to {h

mitosis

= 0} at a point of grazing contact.
We refer to a parameter choice for which such a grazing
contact occurs as corresponding to a Type I grazing bifur-

cation (cf. panel a) of Fig. 2).
Alternatively, a violation of viability along a one-

parameter family of solutions occurs if the value of
h

minimum

at one of the terminal points on {h
mitosis

= 0}
changes from negative to positive. At the special point
where the value of h

minimum

vanishes at a terminal point
on {h

mitosis

= 0}, the continuous-time trajectory is again
locally tangential to the zero-level surface of h

mitosis

at a
point of grazing contact. We refer to a parameter choice
for which such a grazing contact occurs as corresponding
to a Type II grazing bifurcation (cf. panel b) of Fig. 2)..

It is clear from the nontrivial action of the state reset
map g

divide

that either of the two types of grazing bifurca-

tions are associated with terminal points along branches of
viable physical solutions to the three-segment boundary-
value problem. In the case of a Type I grazing bifurcation,
the approach to the grazing bifurcation parameter value
is not reflected in any of the local properties of the cor-
responding state-space trajectory, with well-defined limits
for the solutions of the associated variational equations. In
the terminology of Dankowicz and Schilder [16], the tan-
gent vector to a one-parameter family of solutions through
such a grazing bifurcation has a nonzero component in the
direction of an active continuation parameter.
In contrast, in the case of a Type II grazing bifurcation,

the analysis in Dankowicz and Katzenbach [17] demon-
strates a local behavior best described with the inclusion
of a term dependent on the square-root of h

minimum

at the
terminal point. In this case, unbounded growth of one
of the Floquet multipliers is observed as one approaches
the grazing bifurcation parameter value. Moreover, the
component in the direction of the active continuation pa-
rameter of the tangent vector to a one-parameter family
of solutions through such a grazing bifurcation must equal
zero at the bifurcation point, corresponding to a geometric
fold of the solution branch.
Finally, a violation in spirit, albeit not immediately of

the physical constraints of the problem, occurs when the
terminal point on {h

minimum

= 0} is a point of tangential
contact with this surface, corresponding to the merger of
a local minimum and a local maximum at a saddle. A
one-parameter family of solutions through such a point
generically exhibits a geometric fold at the critical point,
such that the terminal point on {h

minimum

= 0} switches
from being a local minimum to a local maximum, as the
solution manifold retraces the same overall state-space tra-
jectory in the opposite direction of changes to the active
continuation parameter.
In the analysis below, we restrict attention to multi-

segment solutions of the governing di↵erential equations,
together with the state reset, that satisfy the viability con-
ditions described above. In particular, we observe the ac-
cumulation of sequences of Type I and Type II grazing
bifurcations of periodic orbits of successively higher pe-
riod onto limit points given by Type I grazing bifurcations
and saddle-node bifurcations of two-cycle periodic orbits,
such as that shown in Fig. 1.

2.2. Discretization

Generic forward-time trajectories of the hybrid dynami-
cal system described in the previous section may be maxi-
mally partitioned into segments, in such a way that, except
possibly for the last segment, terminal points lie either on
{h

minimum

= 0} with h

mitosis

> 0 or on {h
mitosis

= 0} with
h

minimum

< 0. For each such segment, we may character-
ize the terminal point (u

e

,m

e

) as the image of the corre-
sponding initial point (u

b

,m

b

) under a map ⇡

mitosis

in the
case that the terminating surface equals {h

mitosis

= 0}
and ⇡

minimum

in the case that the terminating surface
equals {h

minimum

= 0}. With the possible exception of
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the last segment, a maximally partitioned trajectory may
then be described in terms of a composition of the maps
g

turn

�⇡
minimum

and g

divide

�⇡
mitosis

, referred to as its signa-
ture. As an example, the three-segment, two-cycle periodic
orbit may be equivalently described in terms of a solution
to the following system of equations

(u
b,2

,m

b,2

) = (g
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� ⇡
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) (u
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) (17)
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) (u
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,m
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or, equivalently, in terms of a fixed point of the map
�

short

� �
long

, where the maps

�

short

:= g

divide

� ⇡
mitosis

(20)

and

�

long

:= g

divide

� ⇡
mitosis

� g
turn

� ⇡
minimum

(21)

correspond to the short and long cell cycles described
above.

As long as all terminal points correspond to points of
transversality of the vector field with the corresponding
event surfaces, a signature defines a nonsingular multiseg-
ment boundary-value problem with a dimensional deficit

equal to the number of system parameters plus the state-
space dimension. As discussed above, families of solutions
to such a boundary-value problem may include subfamilies
that violate the viability conditions, associated with Type
I or Type II grazing bifurcations or the loss of transversal-
ity at a terminal point on {h

minimum

= 0}.
We obtain a systematic numerical procedure for analyz-

ing a multisegment boundary-value problem, such as that
described above, by approximating the solution on each
segment with a continuous, piecewise-polynomial function
of time, expressed on each of N equal-sized2 intervals in
terms of its values at m+ 1 maximally distributed points
on the interval. Finally, we require that the approximat-
ing polynomial satisfy the governing di↵erential equations
at m collocation nodes within each interval (here obtained
from the roots of the m-th order Legendre polynomial). If
we let n represent the state-space dimension (here equal to
9), for each segment we thus obtain Nmn+(N�1)n equa-
tions in the N(m+ 1)n+ 1 unknowns given by the nodal
values of the state vector and the duration of the segment.
A closed system of nonlinear algebraic equations results
from the imposition of n+1 additional conditions on each
segment or, alternatively, a total of k(n+1) conditions on
the totality of unknowns for a trajectory consisting of k
segments.

As an example, consider the imposition of a given set

of initial conditions
�

u

0

m

0

�

T

on a solution segment.
When a continuous, piecewise-polynomial function of time

2We comment on nonuniform, adaptive partitions and questions
pertaining to numerical accuracy in Sec. 5.

exists that satisfies the initial conditions, the collocation
conditions, and the terminating condition at a point of
transversality, the intersection with the zero-level surface
of the corresponding event function is generically locally
unique and persistent under changes in the initial condi-
tions. As before, we associate this intersection with the
image of the initial condition under the (implicitly de-
fined) map ⇡

mitosis

in the case that the terminating sur-
face equals {h

mitosis

= 0} and ⇡

minimum

in the case that it
equals {h

minimum

= 0}, albeit recognizing that these maps
are at best approximations of the maps defined for the
infinite-dimensional problem.

An approximation of the three-segment, two-cycle peri-
odic orbit found above may now be equivalently described
in terms of a solution to the discretized version of the
boundary-value problem in Eqns. (17-19) or, equivalently,
in terms of a fixed point of the composition �

short

� �
long

of
the discretized maps �

short

and �

long

, again corresponding
to the short and long cell cycles described above.

The one-dimensional family of periodic, three-segment
solution trajectories in Fig. 3a) shows the result of ap-
plying the hspo toolbox (compatible with the continua-
tion package referred to below as coco [16]) to numerical
continuation of solutions to the corresponding discretized
boundary-value problem with N = 40 and m = 4 under
variations in k

0
2

. The interval of existence is here bounded
i) from below by a Type I grazing bifurcation at k

0
2

=
k

0
2,grazing

:= 0.11606, where the second segment terminates
at a point on {h

minimum

= 0}\{h
mitosis

= 0}; and ii) from
above by a geometric fold at k0

2

= k

0
2,fold

:= 0.19810, where
the local minimum in u

1

merges with the subsequent local
maximum at a saddle point. The corresponding periodic
orbits are shown in Figs. 3b) and c), respectively.

Continuation of the periodic, three-segment solution
trajectory through the fold at k0

2

= k

0
2,fold

is possible, but
simply retraces the previous solution branch in the oppo-
site direction, with the first solution segment terminating
on the local maximum, rather than the local minimum.
Instead, continuation of the actual periodic system behav-
ior beyond k

0
2,fold

requires a resegmentation of the solution
into a two-segment trajectory consisting only of segments
terminating on {h

mitosis

= 0}.

Of greater physical (biological) relevance, however, is
the local behavior of the system for k0

2

below k

0
2,grazing

. At
the grazing bifurcation point, the three-segment periodic
trajectory is locally asymptotically stable in the Lyapunov
sense (provided that we ignore the possible imposition of
g

divide

on the vicinity of the terminal point of the first
solution segment). The largest-in-magnitude eigenvalue
of the Jacobian of the composition �

short

� �

long

is here
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Figure 3: a) A one-dimensional branch of viable, three-segment so-
lution trajectories obtained with coco under variations in k0

2

. Here,
each point on the solution manifold is represented by the value of
h
mitosis

at the terminal point of the first solution segment. The
two saddle-node bifurcations (denoted by SN) correspond to a single
eigenvalue of the Jacobian of the composition �

short

��
long

evaluated
at the fixed point crossing the unit circle at 1. The terminal points of
the solution branch are coincident with a Type I grazing bifurcation
(denoted by GR) and a geometric fold (denoted by FO) associated
with the merger of the local minimum at the terminal point of the
first segment with a subsequent local maximum along the second seg-
ment. The corresponding solution trajectories are shown in panels
b) and c), respectively. Here, solid curves represent long cell cycles
and dashed curves represent short cell cycles.

�

max

= 0.4332 with corresponding eigenvector given by

v

max

=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0.0000
�0.0001
�0.8207
�0.1736
�0.0706
0.0023

�0.0056
�0.0066
�0.5397

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(22)

For small perturbations of the initial condition on the first
solution segment away from that of the grazing trajectory,
two possible scenarios are found in the case of forward it-
erates of g

divide

�⇡
mitosis

or g
turn

�⇡
minimum

, as appropriate,
(this time accounting for the possible imposition of g

divide

on the vicinity of the terminal point of the first solution
segment of the grazing trajectory). In the first case, the
solution trajectory is patterned upon the grazing periodic
trajectory for the entire length of the transient, i.e., cor-
responding to alternating application of �

long

and �

short

,
such that the sequence of terminal points on {h

mitosis

= 0}
at the end of a short cell cycle converges monotonically to
the corresponding terminal point on the grazing trajectory
along v

max

with a local rate of convergence approximately
given by �

max

. In the second case, illustrated in Fig. 4, the
initial perturbation results first in the application of �

short

before again following an alternating sequence of long and
short cycles, resulting in an eventually monotonically con-
vergent sequence of terminal points on {h

mitosis

= 0} along
v

max

, at the end of the short cell cycle, with a local rate
of convergence given by �

max

.

2.3. A period-adding sequence

For small and positive integer values of n, forward inte-
gration beyond initial transients may be used to establish
the existence of windows of periodic orbits corresponding
to fixed points of the composition (�

short

� �
long

)n � �
short

for values of k0
2

close to, but below k

0
2,grazing

. Several exam-
ples are shown in Fig. 5a). In each case, parameter contin-
uation of the corresponding multisegment boundary-value
problem using hspo with N = 40 and m = 4, and with k

0
2

as active continuation parameter, yields a one-dimensional
solution manifold that terminates at the more distal end
from k

0
2,grazing

at a Type I grazing bifurcation, and at the
more proximal end from k

0
2,grazing

at a Type II grazing bi-
furcation (cf. panels b) and c) of Fig. 5). As predicted by
the theory above, the corresponding Floquet multipliers
approach finite limits at the Type I grazing bifurcations,
but exhibit unbounded growth at the Type II grazing bi-
furcations. For n = 1, . . . , 4, the periodic orbits are all
asymptotically stable near the Type I grazing bifurcations.
A geometric fold is found in the vicinity of the Type II
grazing bifurcation for n = 1 as one real Floquet multi-
plier passes through 1 on its way to positive infinity at a
discontinuity-induced saddle-node bifurcation. For n = 2,

6



Figure 4: Forward trajectory obtained by applying �
long

and �
short

alternately, and as implied by the viability conditions, to the initial
condition generated by applying �

short

(rather than �
long

) to the
fixed point of �

short

��
long

corresponding to the period-two orbit at
the Type I grazing bifurcation point. The inset shows the sequence
of images of �

short

along this trajectory, and the convergence to the
fixed point along v

max

with a local rate of convergence given by
�
max

. Here, solid curves represent long cell cycles and dashed curves
represent short cell cycles.

3, and 4, the Type II grazing bifurcation is associated with
a discontinuity-induced period-doubling bifurcation as one
real Floquet multiplier passes through �1 on its way to
negative infinity.

As supported by panels c) and b), respectively, of Fig. 5,
we observe that the Type II grazing bifurcations always
correspond to a grazing of the first trajectory segment,
whereas the Type I grazing bifurcations correspond to
grazing of the last trajectory segment that terminates on
{h

minimum

= 0} in the application of the composition
(�

short

� �
long

)n � �

short

to the corresponding fixed point.
We may locate such grazing bifurcation parameter values
by imposing a condition on the values of h

minimum

and
h

mitosis

, respectively, at the corresponding terminal points,
and solving the new multisegment boundary-value prob-
lem for the value of k

0
2

. Moreover, for some su�ciently
large integer n⇤, our analysis shows that an initial solution
guess for a multisegment periodic trajectory corresponding
to some n > n

⇤ may be obtained by n� n

⇤ repetitions of
the last pair of long and short cell cycles in the multiseg-
ment trajectory obtained for n

⇤. The grazing bifurcation
parameter values shown in Table 1 were obtained using
this methodology.

Let k

0
2,n,+

and k

0
2,n,� denote the parameter values for

the Type I and Type II grazing bifurcations, respectively,
of the periodic orbit corresponding to the fixed point of
the map (�

short

� �
long

)n ��
short

. As seen in the third and
fourth columns of Table 1, the ratios

r

n,± :=
k

0
2,n+2,± � k

0
2,n+1,±

k

0
2,n+1,± � k

0
2,n,±

(23)

Figure 5: a) Branches of periodic orbits corresponding to fixed points
of the composition

�
�
short

� �
long

�n � �
short

for n = 1, 2, 3, and 4
as well as the two-cycle orbit discussed in Sec. 2.2, under variations
in k0

2

. Each point corresponds to the value of m at the beginning of
a cell cycle. The terminal points of the solution branches obtained
for k0

2

< k0
2,grazing are coincident with Type I grazing bifurcations

(distal from k0
2,grazing) and Type II grazing bifurcations (proximal

from k0
2,grazing). The corresponding solution trajectories for n = 2

are shown in panels b) and c), respectively. Here, solid curves rep-
resent long cell cycles and dashed curves represent short cell cycles.
The dash-dotted curve represents the initial short cell cycle.
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Table 1: Sequences of Type I and Type II grazing bifurcation pa-
rameter values and the corresponding ratios between successive dif-
ferences of bifurcation parameter values near k0

2,grazing.

n k

0
2,n,+

k

0
2,n,� r

n,+

r

n,�
1 0.049015 0.075416 0.4644 0.1721
2 0.087191 0.104879 0.2847 0.6610
3 0.104923 0.109949 0.6584 0.4210
4 0.109971 0.113299 0.4244 0.4913
5 0.113295 0.114710 0.4927 0.5101
6 0.114706 0.115403 0.5108 0.4742
7 0.115401 0.115757 0.4740 0.4519
8 0.115756 0.115925 0.4515 0.4415
9 0.115924 0.116000 0.4412 0.4368

10 0.116000 0.116034 0.4366 0.4348
11 0.116034 0.116048 0.4346 0.4339
12 0.116048 0.116055 0.4337 0.4335
13 0.116055 0.116058 0.4334 0.4333
14 0.116058 0.116059 0.4332 0.4332

between successive di↵erences of bifurcation parameter
values appear to converge to a number very close to the
eigenvalue �

max

. Indeed, consider the sequence k

0⇤
2,n

, such
that each of the ratios

k

0
2,n+1,± � k

0⇤
2,n

k

0
2,n,± � k

0⇤
2,n

(24)

between successive deviations from k

0⇤
2,n

of the grazing bi-
furcation parameter values equals �

max

. In this case, we
find that, as n grows, k0⇤

2,n

converges to k

0
2,grazing

to within
8 ⇤ 10�12 when n = 18.

2.4. A global bifurcation

As an alternative to the 9-dimensional model of the cell
cycle dynamics considered above, we restrict attention in
this section to a simplified 4-dimensional model (also given
in [4], whose continuous-time dynamics are governed by
the system of di↵erential equations

u̇

1

= k

1

� k

0
2

u

1

� k

00
2

u

1

u

2

, (25)

u̇

2

=
(k0

3

+ k

00
3

u

3

) (1� u

2

)

J

3

+ 1� u

2

� k

4

mu

1

u

2

J

4

+ u

2

, (26)

u̇

3

= k

0
5

+ k

00
5

(mu

1

)n

J

n

5

+ (mu

1

)n
� k

6

u

3

(27)

and
ṁ = rm

⇣

1� m

m̄

⌘

, (28)

and where a transversal intersection of the continuous-time
trajectory with the zero-level surface of the scalar-valued
function

h

mitosis

(u) := u

1

� ū

1

, (29)

in the direction of decreasing values of h
mitosis

, again re-
sults in the instantaneous state reset

m 7! ⇢m, 0 < ⇢ < 1. (30)

We retain identical values for the model parameters as in
the previous section, except that here r = 0.01 and k

0
2

is
allowed to vary over a considerably larger range.
With the identical methodology to that described in the

previous section, we again find an asymptotically stable,
two-cycle, periodic orbit of the four-dimensional dynami-
cal system for k

0
2

= 0.155. Numerical continuation with
k

0
2

as active continuation parameter of the corresponding
three-segment discretized boundary-value problem yields
the one-parameter solution manifold shown in Fig. 6a).
A novel element is the geometric fold at k

0
2

= k

0
2,fold

:=
0.15396 corresponding to a saddle-node bifurcation where
a single real Floquet multiplier leaves the unit circle in the
complex plane through 1. The solution branch terminates
at a Type I grazing bifurcation at k

0
2

= 0.15430 and at a
Type II grazing bifurcation at k

0
2

= 0.17133, preceded by
a discontinuity-induced period-doubling bifurcation.
When k

0
2

= k

0
2,fold

, two possible scenarios are found
in the case of forward iterates of g

divide

� ⇡

mitosis

or
g

turn

�⇡
minimum

, as appropriate, applied to initial perturba-
tions from the fixed point of �

short

� �
long

along the eigen-
vector v

fold

corresponding to the single eigenvalue 1 on
the unit circle. In the first case, the solution trajectory is
patterned upon the two-cycle periodic orbit for the entire
length of the transient, i.e., corresponding to alternating
application of �

long

and �

short

, such that the sequence of
terminal points on {h

mitosis

= 0} at the end of a long cell
cycle converges monotonically to the corresponding termi-
nal point on the nonhyperbolic periodic trajectory along
v

fold

with a local rate of convergence that approaches 1.
In the second case, the initial perturbation results in the
application of a finite number of iterates of �

short

� �

long

followed by one additional iterate of �

short

before again
following an alternating sequence of long and short cycles,
and an eventually monotonically convergent sequence of
terminal points on {h

mitosis

= 0}, at the end of each short
cycle, approaching the nonhyperbolic fixed point along the
eigenvector v

fold

(cf. Fig. 7).
Remarkably, for small and positive integer values of n,

numerical experiments again yield a sequence of windows
of periodic orbits corresponding to fixed points of the com-
position (�

short

� �
long

)n � �

short

for values of k0
2

close to,
but below k

0
2,fold

. Several examples are shown in Fig. 8a).
In each case, parameter continuation of the correspond-
ing multisegment boundary-value problem using hspo and
with k

0
2

as active continuation parameter yields a one-
dimensional solution manifold that terminates at the more
distal end from k

0
2,fold

at a Type I grazing bifurcation and
at the more proximal end from k

0
2,fold

at a Type II grazing
bifurcation (cf. panels b) and c) in Fig. 8). As before, the
corresponding Floquet multipliers approach finite limits
at the Type I grazing bifurcations, but exhibit unbounded
growth at the Type II grazing bifurcations. For n = 2 and
3, the periodic orbits are asymptotically stable near the
Type I grazing bifurcations. Discontinuity-induced period-
doubling bifurcations are found in the vicinity of the Type
II grazing bifurcations as one real Floquet multiplier passes

8



Figure 6: a) A one-dimensional branch of viable, three-segment so-
lution trajectories obtained with coco under variations in k0

2

for the
hybrid dynamical system in Sec. 2.4. Here, each point on the solu-
tion manifold is represented by the value of h

mitosis

at the terminal
point of the first solution segment. The saddle-node bifurcation (de-
noted by SN) correspond to a single eigenvalue of the Jacobian of
the composition �

short

� �
long

evaluated at the fixed point crossing
the unit circle at 1. The terminal points of the solution branch are
coincident with a Type I and a Type II grazing bifurcation, respec-
tively (both denoted by GR). The nonhyperbolic solution trajectory
is shown in panel b). Here, solid curves represent long cell cycles and
dashed curves represent short cell cycles. The filled circle indicates
the local minimum in the value of u

1

above the critical level ū
1

at the
terminal end of the first segment, whereas the open circles indicate
terminal points on {h

mitosis

= 0}, corresponding to the triggering of
cell division.

through �1 on its way to negative infinity.

We again obtain numerical values for the Type I and
Type II grazing bifurcation parameter values by relying
on the hspo toolbox for multisegment periodic orbits cor-
responding to fixed points of (�

short

� �
long

)n � �
short

with
the corresponding grazing condition on the last trajectory
segment that terminates on {h

minimum

= 0}, or on the first
trajectory segment, respectively. The grazing bifurcation
parameter values shown in Table 2 were obtained using
this methodology.

Let k0
2,n,+

and k

0
2,n,� again denote the parameter values

for the Type I and Type II grazing bifurcations, respec-
tively, of the periodic orbit corresponding to the fixed point
of the map (�

short

� �
long

)n��
short

. As seen from the third

Figure 7: Forward trajectory obtained by applying �
long

and �
short

alternately, and as implied by the viability conditions, to the initial
condition generated by applying a small perturbation along v

fold

to the fixed point of �
short

� �
long

corresponding to the period-two
orbit at the saddle-node bifurcation point, here represented by the
dashed curve. The figure shows trajectory segments near the local
minimum in u

1

above ū
1

during each long cell cycle. Minima located
below the dashed curve successively approach the critical level of u

1

.
The lowest curve belongs to a long cell cycle that is followed by two
consecutive short cell cycles and a return to a long cell cycle along
the topmost curve in the figure.

and fourth columns of Table 2, the sequences of di↵erences

d

n,± :=
1

q

k

0
2,n+1,± � k

0
2,fold

� 1
q

k

0
2,n,± � k

0
2,fold

(31)

appear to approach a finite limit as n grows, consistent
with the observation that

k

0
2,n+1,± � k

0
2,fold

⇠ n

�2 (32)

for large n.
A further notable distinction between the bifurcation

cascade observed here and in the previous section is illus-
trated in Figs. 5a) and 8a). In the case of cascade associ-
ated with the Type I grazing bifurcation of an asymptoti-
cally stable, two-cycle, periodic orbit, an accumulation of
trajectory segments along the higher-period orbits is found
in the vicinity of the grazing periodic orbit, and thus in
the vicinity of the discontinuity that separates locally be-
tween the application of �

short

and �

long

. In contrast, in
the case of the cascade associated with the saddle-node
bifurcation of the two-cycle, periodic orbit, an accumula-
tion of trajectory segments along the higher-period orbits
is found in the vicinity of the nonhyperbolic periodic or-
bit, and thus not in the vicinity of the discontinuity that
separates locally between application of �

short

and �

long

.

3. A piecewise-defined map

We proceed to develop an abstract model of the dynam-
ics of the hybrid dynamical systems considered in the pre-
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Figure 8: a) Branches of periodic orbits corresponding to fixed points
of the composition

�
�
short

� �
long

�n � �
short

for n = 1, 2, and 3, as
well as the two-cycle orbit discussed in Sec. 2.4, under variations in
k0
2

. Each point corresponds to the value of m at the beginning of a
cell cycle. The terminal points of the solution branches are coincident
with a Type I grazing bifurcations (distal from k0

2,fold and Type II

grazing bifurcations (proximal from k0
2,fold. The corresponding solu-

tion trajectories for n = 2 are shown in panels b) and c), respectively.
Here, solid curves represent long cell cycles and dashed curves rep-
resent short cell cycles. The dash-dotted curve represents the initial
short cell cycle.

Table 2: Sequences of Type I and Type II grazing bifurcation pa-
rameter values and successive di↵erences between the corresponding
reciprocal square roots of the deviations from k0

2,fold.

n k

0
2,n,+

k

0
2,n,� d

n,+

d

n,�
1 0.150127 0.152956 14.48 13.13
2 0.152896 0.153461 13.14 12.66
3 0.153440 0.153658 12.70 12.44
4 0.153649 0.153757 12.46 12.30
5 0.153752 0.153814 12.32 12.22
6 0.153811 0.153850 12.23 12.16
7 0.153848 0.153874 12.17 12.13
8 0.153873 0.153891 12.14 12.11
9 0.153890 0.153904 12.11 12.09
10 0.153903 0.153913 12.09 12.08
11 0.153913 0.153920 12.08 12.07
12 0.153920 0.153926 12.07 12.07
13 0.153926 0.153931 12.07 12.06
14 0.153931 0.153935 12.06 12.06

vious section, with the aim of establishing su�cient condi-
tions for the occurrence of cascades of grazing bifurcations
and period-adding sequences as observed in the numerical
analysis in Sec. 2.
To this end, consider again the description of the

forward-time dynamics for initial conditions on some
neighborhood on {h

mitosis

= 0} of the fixed point
(u⇤

,m

⇤) of the map �

short

� �

long

for k

0
2

= k

0
2,grazing

.
By transversality, it follows that there exists a locally
smooth, codimension-one, embedded submanifold through
this fixed point, characterized by the local properties that

1. trajectories based at points on this manifold reach
{h

minimum

= 0} at points of grazing contact with
{h

mitosis

= 0};
2. trajectories based at points on one side of the manifold

reach {h
mitosis

= 0} before {h
minimum

= 0};
3. trajectories based at points on the other side of the

manifold reach {h
minimum

= 0} before {h
mitosis

= 0}.

In the first case, the subsequent forward-time dynamics are
ambiguous and may be thought of as reflecting the limit-
ing behavior for initial conditions in each of the two other
cases. In particular, in the second case, the subsequent
imposition of the state reset g

divide

yields a new initial con-
dition on {h

mitosis

= 0} in the vicinity of �
short

(u⇤
,m

⇤).
As described in the previous section, subsequent iterates
of the return map to {h

mitosis

= 0}, including the impo-
sition of the state reset, are described by an alternating
application of �

long

and �

short

. Indeed, after a su�ciently
large number of iterates, the sequence of subsequent image
points accumulates on (u⇤

,m

⇤).
In contrast, in the third case, the subsequent forward-

time dynamics include the return to {h
mitosis

= 0} and im-
position of the state reset g

divide

to yield a new initial con-
dition on {h

mitosis

= 0} in the vicinity of �
long

(u⇤
,m

⇤). As
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the forward-time dynamics based at �
long

(u⇤
,m

⇤) are un-
ambiguously described by the application of ⇡

mitosis

, it fol-
lows that the subsequent dynamics in the third case, after a
second imposition of g

divide

, yield a new initial condition on
{h

mitosis

= 0} in the vicinity of (�
short

� �
long

) (u⇤
,m

⇤) =
(u⇤

,m

⇤).
It is important to recognize that the description of the

forward-time dynamics in terms of the maps �

short

and
�

long

does not generalize to initial conditions outside of
the local neighborhood of (u⇤

,m

⇤). Indeed, such initial
conditions may be associated with signatures of a di↵erent
form than could be obtained by compositions of �

short

and
�

long

. For the purposes of the required abstraction, how-
ever, we are only concerned with forward-time dynamics
based near (u⇤

,m

⇤), for which the maps �

short

and �

long

su�ce.
Finally, we observe that although the embedded sub-

manifold, corresponding to trajectory segments that reach
{h

mitosis

= 0} at points of grazing contact, depends on k

0
2

,
a smooth local coordinate transformation will render this
dependence of su�ciently high-order in the deviation from
k

0
2,grazing

so as to be negligible in the subsequent analysis.
Inspired by these observations, we proceed to restrict

attention to a piecewise-defined map

�

µ

: x 7!
⇢

�

L

(x, µ) when x 2 ⌦
L

⇢ Rn

,

�

R

(x, µ) when x 2 ⌦
R

⇢ Rn

,

(33)

for µ 2 R on some neighborhood of 0. In particular, let
B

r

(0) denote the ball of radius r centered on the origin.
We then assume that, for � su�ciently small,

⌦
L

\B

�

(0) = {h  0} \B

�

(0) (34)

and
⌦

R

\B

�

(0) = {h � 0} \B

�

(0) (35)

for some smooth function h : Rn ! R such that h(0) = 0
and @

x

h(0) 6= 0. Here, �

L

and �

R

correspond directly
to �

long

and �

short

, whereas h must be operationally de-
fined from the forward dynamics of the di↵erential equa-
tions in Sec. 2, as suggested above. We let µ represent
a characteristic bifurcation parameter, e.g., corresponding
to k

0
2,grazing

� k

0
2

in the case of the cell-cycle dynamics in
Sec. 2.3.

3.1. A border-collision bifurcation

Let
�

L,µ

(x) := �

R

(�
L

(x, µ), µ) (36)

and suppose that
�

L,0

(0) = 0, (37)

where �

L

(0, 0) 2 ⌦
R

. It follows that x = 0 is a period-two
point of the piecewise-smooth map �

0

and a zero of the
function

F (x, µ) := x� �
L,µ

(x) (38)

for µ = 0. Let
J

L

:= @

x

�

L

(0, 0) (39)

and
J

R

:= @

x

�

R

(�
L

(0, 0), 0) . (40)

A persistent family x

⇤
L

(µ) of such zeros under variations in
µ then follows by the implicit-function theorem, provided
that

@

x

F (0, 0) = I � J

R

· J
L

(41)

is invertible. In this case, let



L

:= @

µ

�

L

(0, 0) (42)

and


R

:= @

µ

�

R

(�
L

(0, 0), 0) . (43)

By implicit di↵erentiation of F (x⇤
L

(µ), µ) ⌘ 0 with respect
to µ and evaluation at µ = 0, it follows that

@

µ

x

⇤
L

(0) = (I � J

R

· J
L

)�1 · (
R

+ J

R

· 
L

) . (44)

Provided that

@

x

h(0) · (I � J

R

· J
L

)�1 · (
R

+ J

R

· 
L

) > 0, (45)

and for su�ciently small but negative µ, each member of
the family x

⇤
L

(µ) thus corresponds to a period-two point
of the piecewise-smooth map �

µ

. If, in addition, all eigen-
values of the Jacobian J

R

· J
L

have magnitude less than
1, the fixed point x

⇤
L

(µ) of �
L,µ

is asymptotically stable
in the Lyapunov sense and the corresponding period-two
orbit is orbitally stable with zero asymptotic phase for all
su�ciently small perturbations.
We proceed to assume that �

R

(0, 0) 6= �

L

(0, 0). It fol-
lows that µ = 0 is a terminal point on the branch of period-
two orbits described by x

⇤
L

(µ) and that asymptotic stabil-
ity in the sense of Lyapunov of x⇤

L

(µ) is lost at the cor-
responding border collision bifurcation. Now suppose that
the largest-in-magnitude eigenvalue �

max

of the Jacobian
J

R

· J
L

is real and positive, and that the corresponding
eigenvector v

max

is transversal to the zero-level surface of
h. Finally, assume that h 6= 0 on all iterates of the for-
ward trajectory under �

0

of the initial condition �

R

(0, 0),
and that there exists an integer N , such that the sequence
�

�

N+2i

0

(�
R

(0, 0))
 1
i=0

lies in ⌦
L

and converges (monoton-
ically in h) to 0 with asymptote given by the eigenvector
v

max

. In particular, for su�ciently large N ,

�

N+2i

0

(�
R

(0, 0)) = �i

L,0

�

�

N

0

�

�

R

(0, 0)
��

(46)

for all i � 0.
It now follows that there exists a �, such that

h

�

�i

L,0

�

�

N

0

�

�

R

(x, 0)
���

< 0 (47)

for i � 0 and x 2 {h = 0} \ B

�

(0). Moreover, since
@

x

h(0) · @
µ

x

⇤
L

(0) > 0, it follows that for 0 < µ

⇤ ⌧ 1, there
exists an integer M+(µ⇤), such that

h

�

�i

L,µ

⇤
�

�

N

µ

⇤
�

�

R

(x, µ⇤)
���

> 0 (48)
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for all i � M

+(µ⇤). As µ varies from 0 to µ

⇤, the surface

�M

+
(µ

⇤
)

L,µ

�

�

N

µ

�

�

R

(x, µ)
��

extrudes a volume with one ter-
minal face for µ = 0 in h < 0, and the other terminal face
for µ = µ

⇤ in h > 0 (cf. Fig. 11). Moreover, by the contrac-
tive nature of the composition �

L,0

near 0, it follows that
the intersection of this volume with the set of initial con-
ditions {h = 0} \B

�

(0) must be contained strictly within
the latter set, in such a way that the distance between
any two points has been reduced relative to the original
distance by some factor > 1. By the contraction mapping
theorem, it follows that, for each su�ciently large integer
n, there exists a µ

+

n

such that

�n

L,µ

+
n

⇣

�

N

µ

+
n

�

�

R

(x, µ+

n

)
�

⌘

= x, (49)

for some unique point x in {h = 0} \B

�

(0), i.e., that x is
a fixed point of the map �n

L,µ

�

�

N

µ

�

�

R

(·, µ)
��

for µ = µ

+

n

.
Since �

L,0

(0) = 0, we may rely on the identical argument
to conclude the existence of a µ

�
n

, for su�ciently large
integers n, such that

�n�1

L,µ

�
n

⇣

�

N

µ

�
n

�

�

R

(�
L,µ

�
n
(x), µ�

n

)
�

⌘

= x (50)

for some unique point x in {h = 0} \ B

�

(0), for some
� > 0, i.e., that �

L,µ

(x) is a fixed point of the map
�n

L,µ

�

�

N

µ

�

�

R

(·, µ), µ)
��

for µ = µ

�
n

.
It follows from the above analysis (and the assumptions

on 

L

, 
R

, J
L

, and J

R

) that, for su�ciently large n, the pa-
rameter values µ+

n

, µ

�
n

are associated with terminal points
along a family of periodic trajectories of period 2n+N+1,
corresponding to border-collision bifurcations with the dis-
continuity at {h = 0}. In the limit of large n, the fixed
points lie arbitrarily close to the origin and the iterated dy-
namics �

L,µ

in the vicinity of 0 may be described in terms
of a one-dimensional map with Jacobian �

max

whose iter-
ates represent projections of the deviation from the origin
onto v

max

. It follows that the bifurcation points accumu-
late monotonically on µ = 0 with a limiting scaling given
by �

max

.
We relate the border-collision bifurcation points to the

grazing bifurcation points in Sec. 2.3 by recognizing that
a fixed point of �n

L,µ

�

�

N

µ

�

�

R

(·, µ), µ)
��

on {h = 0} corre-
sponds to a Type II grazing bifurcation, whereas a fixed

point of �n�1

L,µ

�
n

⇣

�

N

µ

�
n

�

�

R

(�
L,µ

�
n
(·), µ�

n

)
�

⌘

on {h = 0} cor-

responds to a Type I grazing bifurcation. The near-grazing
dependence on the square-root of h associated with a Type
II grazing bifurcation must here be reflected in a locally
nonlinearizable form of the map �

R

at x = 0 (cf. Dutta and
Banerjee [18] and Pring and Budd [19]). For su�ciently
large n, the periodic orbits must therefore be highly un-
stable. In contrast, when �

R

is linearizable at x = 0 (as il-
lustrated by the example one-dimensional, piecewise-a�ne
map with a gap in 4.1), for su�ciently large n, the peri-
odic orbits are all asymptotically stable on their intervals
of existence.

3.2. A saddle-node bifurcation

In lieu of the assumptions made in the previous sec-
tion, suppose that for µ < 0 and su�ciently small, there
exists a pair of families of fixed points x

⇤
L

(µ) and x

⇤⇤
L

(µ)
of �

L,µ

, such that �
L

(x⇤
L

(µ), µ) ,�
L

(x⇤⇤
L

(µ), µ) 2 ⌦
R

and
such that the two families merge when µ = 0 at a saddle-
node bifurcation where a single eigenvalue crosses the unit
circle through 1, while all other eigenvalues remain within
the unit circle.
Denote by v

fold

the eigenvector corresponding to the
eigenvalue 1 of the Jacobian of �

L,0

evaluated at the de-
generate fixed point. Suppose that the part of the cen-
ter manifold, for which forward iterates of �

L,µ

move
away from the fixed point, intersects the zero-level surface
{h = 0} for the first time (in arclength from the degenerate
fixed point) at the origin, where �

L

(0, 0) 6= �

R

(0, 0) and
�

L

(0, 0) 2 ⌦
R

. Finally, suppose that h 6= 0 on all iterates
of the forward trajectory under �

0

of the initial condition
�

R

(0, 0), and that there exists an integer N such that the
sequence

�

�

N+2i

0

(�
R

(0, 0))
 1
i=0

lies in ⌦
L

and converges
monotonically to x⇤

L

(0) with asymptote given by the eigen-
vector v

fold

. For su�ciently large N , it again follows that

�

N+2i

0

(�
R

(0, 0)) = �i

L,0

�

�

N

0

�

�

R

(0, 0)
��

(51)

for all i � 0.
The argument that led us to conclude the existence of

the sequence µ

+

n

in the case of the grazing bifurcation of
the two-cycle periodic orbit carries over essentially verba-
tim to the present case, with the di↵erence that (following
[13] and Duarte et al. [20], but see also 4.2), µ+

n

⇠ n

�2 for
su�ciently large n. With µ = k

0
2,fold

� k

0
2

, the border col-
lision bifurcation sequence corresponds to the sequence of
Type I grazing bifurcations of the corresponding periodic
trajectories in Sec. 2.4.
Since we no longer assume that �

R

(�
L

(0, 0), 0) = 0, the
existence of a sequence µ�

n

must be obtained from an iden-
tical argument, but with the added and independent as-
sumption that h 6= 0 on all iterates of the forward tra-
jectory under �

0

of the initial condition �

R

(�
L

(0, 0), 0),
and that there exists an integer Ñ such that the se-

quence
n

�

˜

N+2i

0

(�
R

(�
L

(0, 0), 0))
o1

i=0

lies in ⌦
L

and con-

verges monotonically to x

⇤
L

(0) with asymptote given by
the eigenvector v

fold

. With µ = k

0
2,fold

� k

0
2

, the corre-
sponding border collision bifurcation sequence consists of
Type II grazing bifurcations of the corresponding periodic
trajectories in Sec. 2.4.
Notably, in the case that either of the two forward tra-

jectories under �

0

considered above fail to satisfy the re-
quired criteria, then no conclusion may be drawn about
the existence or nature of the corresponding sequence of
border-collision bifurcation points. In contrast, in the case
of a border-collision of the period-two orbit, the existence
of one of these sequences of bifurcation points implies the
existence of the other. In the saddle-node case, even if the
required criteria are satisfied, the orbital signature (the
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sequence of symbols L and R associated with the appli-
cation of �

L

and �

R

, respectively) may di↵er between the
two families of periodic orbits. In this case, the parameter
values µ+

n

and µ

�
n

no longer correspond to terminal points
along the same solution manifold.

4. Additional examples

4.1. Piecewise a�ne maps with gap

For purposes of illustrating the general theory for the
case of a grazing period-two orbit, as obtained in Sec. 3.1,
we focus in this section on example piecewise-a�ne maps
with a finite discontinuity.

A one-dimensional map. Let

�

L

: x 7! �+ 

L

µ+ v

L

x, (52)

and
�

R

: x 7! ��v

R

+ 

R

µ+ v

R

x (53)

where � > 0, v := v

R

v

L

2 (0, 1), and without loss of
generality



⇤
L

:=


R

+ v

R



L

1� v

> 0. (54)

In particular, when µ = 0, it follows that �

L

(0) > 0 and
�

R

(�
L

(0)) = 0.
Now consider the one-dimensional piecewise a�ne map

x

i+1

=

⇢

�

L

(x
i

) when x

i

 0,
�

R

(x
i

) when x

i

� 0.
(55)

We refer to the di↵erence �
L

(0)��

R

(0) = �(1+v

R

) as the
discontinuity gap. Notably, and in contrast to many previ-
ous studies, we do not identify a unique choice of �

R

or �
L

to be applied at the discontinuity. In the discussion that
follows, it proves useful to consider each of these choices
as giving the limiting behavior of the composite map as x
tends to 0 from above and below, respectively, since arbi-
trarily close to, but away from this limit, the image of the
map remains well-defined.

It is convenient to define the compositions �
L

= �

R

��
L

and �
R

= �

L

� �
R

. It follows, for example, that �
R

��i

R

=
�i

L

� �
R

for every integer i. Straightforward algebra then
shows the existence of a family of fixed points of �

L

given
by the formula

x

⇤
L

(µ) = 

⇤
L

µ (56)

or, equivalently, a family of fixed points of �
R

given by
the formula

x

⇤
R

(µ) = �

L

(x⇤
L

(µ)) = �+ 

⇤
R

µ, (57)

where



⇤
R

:=


L

+ v

L



R

1� v

. (58)

Together, the points x⇤
L

(µ) and x

⇤
R

(µ) constitute a period-
two orbit of the original dynamical system, if and only if

x

⇤
L

(µ)  0  x

⇤
R

(µ) , (59)

i.e., for su�ciently small, nonpositive µ. Under variations
in µ, the case of µ = 0 corresponds to a so-called border-

collision bifurcation, as the branch of period-two orbits
terminates at this parameter value with x

⇤
L

on the discon-
tinuity.
For µ < 0, the period-two orbit found above is locally

asymptotically stable, since @

x

�
L

and @

x

�
R

evaluated at
x

⇤
L

(µ) and x

⇤
R

(µ), respectively, both equal v. For µ = 0,
however, the period-two orbit is, ast best, only locally
asymptotically stable in the Lyapunov sense for the origi-
nal dynamical system for one-sided perturbations.

The case of positive slope. Suppose that v

R

, v

L

> 0 and
consider first the case when µ = 0. Then, for initial con-
ditions x

0

. 0,

x

2i

= �i

L

(x
0

) = v

i

x

0

" 0 = �i

L

(0) (60)

as i ! 1. In contrast, for initial conditions x
0

& 0,

x

2i

= �i

R

(x
0

) = �+ v

i (x
0

� �) (61)

which converges from below to

� = �i

R

(�
L

(0)) (62)

as i ! 1. In the limit as x
0

# 0, we conclude that

�i

R

(0) " �i

R

(�
L

(0)) (63)

and thus

�

�

R

� �i

R

�

(0) "
�

�

R

� �i

R

�

(�
L

(0)) (64)

or, since

�

R

� �i

R

� �
L

= �i

L

� �
R

� �
L

= �i+1

L

, (65)

that

�

�i

L

� �
R

�

(0) =
�

�

R

� �i

R

�

(0) " �i+1

L

(0) = 0. (66)

A cobweb representation of the corresponding trajectory
is shown in Fig. 9.

Claim 1. For arbitrary µ, fixed points of the map �

R

��n

R

for any integer n are given by

x

⇤⇤
R,n

(µ) = � v

R

v

n

1� v

R

v

n

�+


⇤
L

� 

⇤
R

v

R

v

n

1� v

R

v

n

µ. (67)

In particular,

�

�

R

� �n�1

R

� �

x

⇤⇤
R,n

(µ)
�

= � v

R

v

n�1

1� v

R

v

n

�

+

✓



⇤
L

+
v

R

v

n�1

1� v

R

v

n

(⇤
L

� 

⇤
R

)

◆

µ. (68)
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Figure 9: A cobweb representation of the forward trajectory of �R(0)
for µ = 0 in the case of vL = 2 and vR = 0.45. The asymptotic con-
vergence to the period-two limit cycle satisfies the criteria in Sec. 3.1.

Proof. It follows by induction that

�k

R

�

x

⇤⇤
R,n

(µ)
�

=

✓

1� v

k

1� v

R

v

n

◆

�

+

✓



⇤
R

+
v

k

1� v

R

v

n

(⇤
L

� 

⇤
R

)

◆

µ (69)

and

�

�

R

� �k

R

� �

x

⇤⇤
R,n

(µ)
�

= � v

R

v

k

1� v

R

v

n

�

+

✓



⇤
L

+
v

R

v

k

1� v

R

v

n

(⇤
L

� 

⇤
R

)

◆

µ. (70)

and the claims follow from the substitutions k 7! n and
k 7! n� 1, respectively, in Eq. (70).

The fixed points x⇤⇤
R,n

(µ) are periodic points of the orig-
inal dynamical system i↵

�k

R

�

x

⇤⇤
R,n

(µ)
�

� 0 (71)

for all 0  k  n and

�

�

R

� �k

R

� �

x

⇤⇤
R,n

(µ)
�

 0 (72)

for all 0  k  n� 1.

Claim 2. There exists a lower bound N , such that for

each n > N , x

⇤⇤
R,n

(µ) is a periodic point of the original

dynamical system i↵ µ 2 [µ+

n

, µ

�
n

] ⇢ R
+

, where

µ

�
n

:=
v

R

v

n

v

⇤
L

(1� v

R

v

n) + v

R

v

n (⇤
L

� 

⇤
R

)
� (73)

and

µ

+

n

:=
v

R

v

n



⇤
L

� 

⇤
R

v

R

v

n

�. (74)

Proof. It is straightforward to show that [µ+

n

, µ

�
n

] ⇢ R
+

for
su�ciently large n. It follows from Eq. (67) that x⇤⇤

R,n

� 0
for su�ciently large n if and only if µ � µ

+

n

, since equality
holds when µ = µ

+

n

and the slope of x⇤⇤
R,n

with respect to µ

is positive for large n. Similarly, for 1  k  n, it follows
from Eq. (69) that �k

R

�

x

⇤⇤
R,n

�

> 0 for su�ciently large n

and µ 2 [µ+

n

, µ

�
n

], since �k

R

�

x

⇤⇤
R,n

�

is linear in µ and positive
at µ = µ

+

n

and µ = µ

�
n

for large n. Furthermore, it follows
from Eq. (68) that

�

�

R

� �n�1

R

� �

x

⇤⇤
R,n

�

 0 for su�ciently
large n if and only if µ  µ

�
n

, since equality holds when µ =
µ

�
n

and the slope of
�

�

R

� �n�1

R

� �

x

⇤⇤
R,n

�

with respect to µ

is positive for large n. Finally, for 0  k  n�2, it follows
from Eq. (70) that

�

�

R

� �k

R

� �

x

⇤⇤
R,n

�

< 0 for su�ciently

large n and µ 2 [µ+

n

, µ

�
n

], since
�

�

R

� �k

R

� �

x

⇤⇤
R,n

�

is linear
in µ and negative at µ = µ

+

n

and µ = µ

�
n

for large n.

Since

µ

�
n+1

µ

+

n

=


⇤
L

� 

⇤
R

v

R

v

n



⇤
L

� 

⇤
R

v

R

v

n + 

⇤
L

v

R

v

n(1� v)
< 1, (75)

it follows that the intervals of existence of each such pe-
riodic orbit are mutually disjoint. From Eqs. (73-74), it
follows that µ

�
n

, µ

+

n

# 0 as n ! 1. Substitution now
yields the limiting scaling relationships

lim
n!1

µ

+

n+1

µ

+

n

= lim
n!1

µ

+

n+2

� µ

+

n+1

µ

+

n+1

� µ

+

n

= v (76)

and

lim
n!1

µ

�
n+1

µ

�
n

= lim
n!1

µ

�
n+2

� µ

�
n+1

µ

�
n+1

� µ

�
n

= v. (77)

Given the same lower bound N on n, the local asymp-
totic stability of each of these periodic orbits on their re-
spective interval of existence follows immediately from the
linearity of the component maps. As evidenced by the
proof of Claim 2, each interval is bounded by two border-
collision bifurcations, corresponding either to x

⇤⇤
R,n

= 0

(when µ = µ

+

n

) or
�

�

R

� �n�1

R

� �

x

⇤⇤
R,n

�

= 0 (when µ = µ

�
n

).
We thus observe an infinite sequence of border-collision bi-
furcations accumulating monotonically from the right on
µ = 0. Moreover, at µ = 0, a border collision of a period-
two orbit coexists with an infinite family of trajectories
based arbitrarily close to x = 0 and whose odd iterates
approach x = 0 arbitrarily closely in forward time.

The case of negative slope. Suppose that v

R

, v

L

< 0 and
consider again the case when µ = 0. Then, for initial
conditions x

0

. 0, it again holds

x

2i

= �i

L

(x
0

) = v

i

x

0

" 0 = �i

L

(0) (78)

as i ! 1. In contrast, for initial conditions x
0

& 0,

x

i

= �

i

R

(x
0

) = v

i

R

x

0

� 1� v

i

R

1� v

R

v

R

� (79)
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when3 v

R

> �1 and

x

2i+1

=
�

�i

R

� �
R

�

(x
0

)

= v

i

v

R

x

0

+
�

1� v

i (1 + v

R

)
�

� (80)

when v

R

< �1. In the former case, the forward trajectory
clearly converges to the unique fixed point of �

R

at x =
�v

R

�/ (1� v

R

), independently of x

0

, thus violating the
assumption on the forward trajectory of �

R

(0, 0) required
by the analysis in Sec. 3.1. In the case that v

R

< �1,
however, the odd iterates converge from above to

� = �i

R

(�
L

(0)) (81)

as i ! 1. In the limit as x
0

# 0, we conclude that

�

�i

R

� �
R

�

(0) # �i

R

(�
L

(0)) (82)

and thus

�

�

R

� �i

R

� �
R

�

(0) "
�

�

R

� �i

R

�

(�
L

(0)) (83)

or, since

�

R

� �i

R

� �
L

= �i

L

� �
R

� �
L

= �i+1

L

, (84)

that

�

�i

L

� �
R

� �
R

�

(0) =
�

�

R

� �i

R

� �
R

�

(0)

" �i+1

L

(0) = 0. (85)

A cobweb representation of the corresponding trajectory
is shown in Fig. 10.

Figure 10: A cobweb representation of the forward trajectory of
�R(0) for µ = 0 in the case of vL = �0.65 and vR = �1.35. The
asymptotic convergence to the period-two limit cycle again satisfies
the criteria in Sec. 3.1.

3The case when vR = �1 follows by taking the corresponding
limit in Eq. (79).

Claim 3. For arbitrary µ, fixed points of the composition

�

R

� �n

R

� �
R

for any integer n are given by

x

⇤⇤
R,n

(µ) =� v

R

(1 + v

R

) vn

1� v

2

R

v

n

�

+

✓



⇤
L

+
v

R

(1 + v

R

) vn

1� v

2

R

v

n

(⇤
L

� 

⇤
R

)

◆

µ. (86)

In particular,

�

�

R

� �n�1

R

� �
R

� �

x

⇤⇤
R,n

(µ)
�

= �v

R

(1 + v

R

) vn�1

1� v

2

R

v

n

�

+

✓



⇤
L

+
v

R

(1 + v

R

) vn�1

1� v

2

R

v

n

(⇤
L

� 

⇤
R

)

◆

µ.

(87)

Proof. It follows by induction that

�

�k

R

� �
R

� �

x

⇤⇤
R,n

(µ)
�

=

✓

1� (1 + v

R

) vk

1� v

2

R

v

n

◆

�

+

✓



⇤
R

+
(1 + v

R

) vk

1� v

2

R

v

n

(⇤
L

� 

⇤
R

)

◆

µ (88)

and
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(89)

and the claims follow from the substitutions k 7! n and
k 7! n� 1, respectively, in Eq. (89).

The fixed points x⇤⇤
R,n

(µ) are periodic points of the orig-
inal dynamical system i↵ x

⇤⇤
R,n

(µ) � 0,

�

�k

R

� �
R

� �

x

⇤⇤
R,n

(µ)
�

� 0 (90)

for all 0  k  n and
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R,n

(µ)
�

 0 (91)

for all 0  k  n� 1.

Claim 4. There exists a lower bound N , such that for

each n > N , x

⇤⇤
R,n

(µ) is a periodic point of the original

dynamical system i↵ µ 2 [µ+

n

, µ

�
n

] ⇢ R
+

, where
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and
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Proof. It is straightforward to show that [µ+

n

, µ

�
n

] ⇢ R
+

for
su�ciently large n. It follows from Eq. (86) that x⇤⇤

R,n

� 0
for su�ciently large n if and only if µ � µ

+

n

, since equality
holds when µ = µ

+

n

and the slope of x

⇤⇤
R,n

with respect
to µ is positive for large n. Similarly, for 0  k  n, it
follows from Eq. (88) that

�

�k

R

� �
R

� �

x

⇤⇤
R,n

�

> 0 for su�-

ciently large n and µ 2 [µ+

n

, µ

�
n

], since
�

�k
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� �
R

� �

x

⇤⇤
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�

is linear in µ and positive at µ = µ

+

n

and µ = µ

�
n

for large n. Furthermore, it follows from Eq. (87) that
�
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R

� �
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� �
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�

 0 for su�ciently large n if and
only if µ  µ

�
n

, since equality holds when µ = µ

�
n

and the
slope of

�

�

R

� �n�1

R

� �
R

� �

x

⇤⇤
R,n

�

with respect to µ is pos-
itive for large n. Finally, for 0  k  n� 2, it follows from
Eq. (70) that

�
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� �k

R

� �
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� �
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< 0 for su�ciently
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is
linear in µ and negative at µ = µ

+

n

and µ = µ

�
n

for large
n.

It is again straightforward to show that µ�
n+1

< µ

+

n

, i.e.,
that the intervals of existence of each such periodic orbit
are mutually disjoint. From Eqs. (92-93), it follows that
µ

�
n

, µ

+

n

# 0 as n ! 1. Substitution now yields the limiting
scaling relationships
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and
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The proof of Claim 4 shows that each interval is bounded
by two border-collision bifurcations, corresponding either
to x

⇤⇤
R,n

= 0 (when µ = µ

+

n

) or
�

�

R

� �n�1

R

� �
R

� �

x

⇤⇤
R,n

�

=
0 (when µ = µ

�
n

). We again observe an infinite sequence of
border-collision bifurcations accumulating monotonically
from the right on µ = 0. For n bounded below by N , the
periodic orbits are found to be locally asymptotically sta-
bility on their respective intervals of existence. Moreover,
at µ = 0, a border collision of a period-two orbit coex-
ists with an infinite family of trajectories based arbitrarily
close to x = 0 and whose even iterates approach x = 0
arbitrarily closely in forward time.

A two-dimensional map. A two-dimensional piecewise
a�ne map is obtained from the component maps

�
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: x 7!
✓

3x
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� x
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+ 1 + 5µ
�x

1

+ 3x
2
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(96)

and
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(97)

applied when x

1

 0 and x

1

� 0, respectively. The family

x

⇤
L

(µ) =
�

µ 0
�

T

consists of asymptotically stable fixed
points of the composition �

L

:= �

R

� �

L

that belong to
period-two orbits of the piecewise a�ne map for µ < 0.

The largest-in-magnitude eigenvalue of the Jacobian of �
L

equals 1/2 with the corresponding eigenvector given by
�

�1 1
�

T

.
We may solve explicitly for the critical values of µ that

correspond to border-collisions of periodic orbits of the
piecewise a�ne map corresponding to fixed points of the
composition �n

L

� �

R

for arbitrary n. Specifically, in the
notation introduced in previous sections,

µ

+

n

=
�1 + 2n+2 + 22n+2

4(2� 9 ⇤ 2n � 9 ⇤ 22n + 24+3n)
(98)

and the corresponding loci on the discontinuity are given
by

x

2

=
2n

�2 + 7 ⇤ 2n + 22n+4

(99)

In particular,

lim
n!1

µ

+

n+1

µ

+

n

=
1

2
(100)

as predicted by the general theory.
Let � = {(0, y), y 2 (��, �)}. An illustration of the gen-

eral argument for the existence of border-collisions of pe-
riodic orbits corresponding to fixed points of �n

L

� �

R

is
given by the image (�

L

� �
R

) (�) =

⇢✓

�3� y + 40µ

64
,

1 + 3y + 8µ

64

◆

, y 2 (��, �)

�

. (101)

as shown in Fig. 11.

Figure 11: As µ varies between 0 and 0.25, the image (�L � �R) (�)
of the line segment � = {(0, y), y 2 (�1, 1)} sweeps a quadrilateral
that intersects the interior of �. The induced map from � to its
interior is a contraction with a unique fixed point at y = 1/38.

When µ = 0, all points on the image segment lie
in the left half-plane and converge to the origin with-
out crossing into the right half-plane, provided that
� < 1. As µ increases from 0 to 0.25, the im-
age segment sweeps a quadrilateral bounded by the
lines (�3/64, 1/64) + ⌘(�1/64, 3/64) and (7/64, 3/64) +
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⌘(�1/64, 3/64), for ⌘ 2 (�1, 1), and (�1/16, 1/16) +
⌘(5/8, 1/8) and (�1/32,�1/32) + ⌘(5/8, 1/8) for ⌘ 2
(0, 0.25). The map from � to the intersection of the quadri-
lateral with � is then given by

y 7! 1 + 2y

40
(102)

with a unique fixed point at y = 1/38, identical to the
value obtained from Eq. (99) for n = 1.

More detailed analysis of general two-dimensional a�ne
maps is presented in [31].

4.2. Piecewise nonlinear map with gap

We illustrate the existence of border-collision bifurca-
tion cascades in the vicinity of a suitably constrained
saddle-node bifurcation of a period-two orbit, as obtained
in Sec. 3.2, by restricting attention to the special case of
the one-dimensional, piecewise nonlinear map with a gap
given by

�

L

(x) :=
11

10
+ x (103)

and

�

R

(x) :=

(

� 7

20

+ µ when x  1

2

x+ (x� 1)2 � 11

10

+ µ when x >

1

2

(104)

Here, x = � 1

10

and x = 1 constitute a nonhyperbolic
period-two orbit of the corresponding map �

0

obtained
from Eq. (55) when µ = 0. Indeed, for µ < 0, there
exist two branches of fixed points of the composition
�

R

� �
L

: x 7! x+ (x+ 1/10)2 + µ: a sink at

x = � 1

10
�
p
�µ (105)

and a source at

x = � 1

10
+
p
�µ. (106)

It is straightforward to numerically determine values of µ
for which x = 0 is a fixed point of the map (�

R

� �
L

)n ��
R

(i.e., µ

+

n

) and of the map (�
R

� �
L

)n�1 � �

R

� �

R

� �

L

(i.e., µ�
n

) for di↵erent values of the integer n. Indeed, it
follows from the form of �

R

� �

L

that such values must
exist for all n and must belong to a decreasing sequence4

that accumulates on 0. As an example, Fig. 12 graphs the
di↵erences

d

n

:=
1

q

µ

+

n+1

� 1
q

µ

+

n

(107)

against n. The convergence toward a nonzero number is
again evidence of the scaling relationship µ

+

n

⇠ n

�2 for
large n. Fig. 13 shows an example periodic orbit with
n = 40 obtained for µ = 0.0034.

4It is straightforward to show that, for this example, µ�
n = µ+

n�1

for n � 2.

Figure 12: A piecewise linear interpolant through the di↵erences dn
of the reciprocal square roots of the sequence µ+

n of border-collision
bifurcation values for the map given by Eqs. (103-104) near the
saddle-node bifurcation at µ = 0. For large n, the numeric anal-
ysis yields µ+

n ⇡ 10/ (n+ 15)2.

Figure 13: A cobweb representation of a periodic orbit of the map
given by Eqs. (103-104) for µ = 0.0034 corresponding to a fixed point
of the composition (�R � �L)

n � �R with n = 40. For small µ, the
number of iterates near the ghost of the nonhyperbolic period-two
orbit grows as 1/

p
µ [13, 20].

4.3. A forced oscillator

Finally, we note that it is not di�cult to construct
continuous-time dynamical systems that exhibit the bi-
furcation cascades considered here. A particularly sim-
ple example is the autonomous linear oscillator whose
continuous-time dynamics are given by the di↵erential
equations

ẍ+ cẋ+ kx = r cos ✓, ṙ = ↵, ✓̇ = �, (108)

and where the time history of r is further coupled to that
of x by means of the imposition of the state reset r 7! ⇢r

when x increases through a critical value x̄. A numerical
example of a near-grazing two-cycle orbit is obtained with
k = 0.3, c = 2, ↵ = 0.2, � = 1.3, ⇢ = 0.5, and x̄ = 1.2.
In the nearby bifurcation cascade obtained under varia-
tions in x̄, the branch of periodic orbits corresponding to
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n = 1 contains x̄ = 1.11 and the branch of periodic or-
bits corresponding to n = 2 contains x̄ = 1.16. Numerical
continuation may again be deployed to locate the solution
manifolds and the critical parameter values x̄+

n

and x̄

�
n

.

5. Concluding discussion

The numerical results in Secs. 2.3 and 2.4 establish
within numerical accuracy that the su�cient conditions
in Secs. 3.1 and 3.2 (for the existence of period-adding
bifurcation cascades) are satisfied by the implicitly de-
fined maps �

long

and �

short

at the critical parameter val-
ues k

0
2,grazing

and k

0
2,fold

, respectively. That the bifurca-
tion cascades observed in the numerical models are indeed
implied by these conditions is further supported by the
perfect agreement between the scaling relationships asso-
ciated with consecutive bifurcation values predicted by the
theoretical analysis and those found numerically. Simi-
larly, the relationship between grazing bifurcations in the
discretized continuous-time models and border-collisions
bifurcations in the piecewise-defined maps establishes with
great certainty the phenomenology and the theoretical ex-
planation.

The results of the analysis in Secs. 3.1 and 3.2 apply
without modification to the case where the maps �

short

and �

long

are defined not by the discretized boundary-
value problem (as in Sec. 2.2), but by the continuous-time
boundary-value problem obtained from the original system
of di↵erential equations modeling the cell cycle. In either
case, �

short

and �

long

are only implicitly defined by a set
of governing equations, finite in the case of the discretized
boundary-value problem and infinite in the case of the
system of ordinary di↵erential equations with a suitable
end-point condition. The theoretical treatment is clearly
impervious to the origin of the component maps.

In particular, it follows that the bifurcation cas-
cade observed for the discretized boundary-value prob-
lem is as close an approximation to that expected
in the infinite-dimensional problem as the approximate
piecewise-polynomial functions are to the time histories
of the state variables in the original hybrid dynamical sys-
tem. We chose to emphasize the discretized equations in
the treatment in Sec. 2.2 in order to establish a systematic
approach to generating numerical results across the entire
bifurcation cascade, without reliance on black-box shoot-
ing methods (that hide the discretization behind layers of
error estimation and step variability). A further benefit to
the collocation approach employed in the discretization in
Sec. 2.2 over a shooting-based method is the rapid eval-
uation of the boundary-value problem residuals and the
corresponding Jacobians.

Although the discussion in Sec. 3 is restricted to the case
of bifurcation cascades organized by period-two orbits, it is
straightforward to extend the results to the case of periodic
orbits with more complicated orbital signatures. Recall, in
particular, the assumed existence of an integer N beyond
which every second iterate of the forward trajectory based

at �
R

(0, 0) is obtained by successive application of �
L

. As
the subsequent analysis depended only on properties of
�

L

for (x, µ) ⇡ (0, 0), the conclusions apply immediately
to alternative definitions of �

L

appropriate for di↵erent
trajectory signatures. A relevant numerical example is ob-
tained by slightly decreasing r in the nine-dimensional cell
cycle model, yielding a period-adding cascade, through a
sequence of nonconsecutive odd periods, triggered by the
grazing of an orbit of period four, rather than two. An-
other immediate application is to the periodic orbits found
at the Type I grazing bifurcations at the distal end of the
various intervals of existence in a period-adding bifurcation
cascade, provided that these attract the forward iterates
of �

R

(0, 0).
Similarly, recall the description of the forward-time dy-

namics of the cell cycle model based at initial conditions
near the fixed point (u⇤

,m

⇤) in terms of the application
of �

short

followed by an alternating sequence of �
long

and
�

short

accumulating on the fixed point. As is evidenced
by the theoretical treatment, the exact signature of this
transient prior to the return to ⌦

L

\B

r

(0) is of no signif-
icance to the claimed existence of a bifurcation cascade.
It is thus quite possible to imagine that the application
of �

µ

to ⌦
R

\ B

r

(0) involves a return map of a distinctly
di↵erent form than that applied near �

L

(0, 0) (see, e.g.,
Eqn. (104)).
For su�ciently high period (i.e., large n), the analysis

in Sec. 3 establishes the period-adding bifurcation-cascade
phenomenology as essentially governed by the local dy-
namics along the one-dimensional slow-(or center-)stable
manifold of the fixed point of �

L

on the discontinuity.
No claim may be made for the existence of a single one-
dimensional map that approximates the behavior for pe-
riodic orbits in the bifurcation cascade further away from
the accumulation point. As an example, for larger values
of r, it is possible to obtain periodic orbits that exhibit
multiple oscillations in the value of u

1

above the critical
threshold ū

1

prior to the triggering of cell division. In this
case, for low values of n, one cannot exclude the possibility
of additional grazing bifurcations, leading to a return map
with multiple discontinuities.
It is appropriate to reflect on the biological significance

of the bifurcation scenarios observed in the numerical mod-
els. Notably, whereas the literature on the design of dy-
namic models of the cell cycle are particularly concerned
with the regulation and feedback cycles responsible for
achieving single-cycle periodicity, the numerical analysis
as well as explorations not shown here demonstrate a rich
dynamic repertoire of these models (cf. Gérard and Gold-
beter [21] and the simple autonomous oscillator model in
4.3) for physically reasonable parameters. Indeed, there is
an extensive literature in the cell-cycle community show-
ing both experimental and modeling evidence of the reg-
ulation of the growth rate of individual cells to ensure a
size homeostasis at division (e.g., Marshall et al. [22] and
Turner et al. [23], but see also Hoose et al. [24]).
If there is an evolutionary advantage to a robust cell-
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cycle duration, then it appears reasonable to assume that
the relevant chemical and mechanical activity has been se-
lected for regions of parameter space across which a struc-
turally stable behavior corresponding to single-cycle dy-
namics is found. In this interpretation, the analysis in this
paper gives examples of nontrivial bifurcation scenarios on
the boundaries of such operating regions. In fact, the two
cascade phenomena observed here appear robust enough
to be observed over a range of di↵erent values of the 39
parameters in the full model, or the 16 parameters in the
simplified model. The phenomenon is also quite robust un-
der alterations in the division rule in Eq. (13) to fractions
other than 1/2.

Although we have confined our theoretical attention in
this paper to codimension-one bifurcations, we invite fur-
ther study of the codimension-two scenario obtained with
a border collision of a nonhyperbolic periodic orbit with
a single eigenvalue at 1 and all other eigenvalues within
the unit circle. The work of Avrutin, Gardini, and col-
laborators [25, 26, 27, 28] on codimension-two bifurcations
that serve as organizing centers for piecewise-defined maps
as well as on nested period-adding structures should also
apply to the present treatment. There is also value in
elucidating the relationship between the “homoclinic” be-
havior associated with the fixed point on the discontinuity
and the notion of critical homoclinic orbits (see Gardini
et al. [29]). Of interest are also Farey tree sequences in
gaps (where such exist) between successive intervals of pe-
riodic orbits in the bifurcation cascade (cf. Yamaguchi and
Ohtagaki [30]). Finally, we are excited by the possibility of
finding additional bifurcation cascades induced by a global
saddle-node bifurcation.
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