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Abstract A piecewise-smooth ordinary differential equationmodel of a dry-friction
oscillator is studied, as a paradigm for the role of nonlinear and hysteretic terms
in discontinuities of dynamical systems. The friction discontinuity is a switch in
direction of the contact force in the transition between left and rightward slip-
ping motion. Nonlinear terms introduce dynamics that is novel in the context of
piecewise-smooth dynamical systems theory (in particular they are outside the
standard Filippov convention), but are shown to account naturally for static fric-
tion, and moreover provide a simple route to including hysteresis. The nonlinear
terms are understood in terms of dummy dynamics at the discontinuity, given a
formal derivation here. The result is a three-parameter model built on the mini-
mal mathematical features necessary to account for the key characteristics of dry
friction. The effect of compliance can be distinguished from the contact model,
and numerical simulations reveal that all behaviours persist under smoothing and
under small random perturbations, but nonlinear effects can be made to disappear
abruptly amid sufficient noise.

1 Smooth or nonsmooth, regular or singular?

Different physical and mathematical approaches have provided an increasingly
complex picture of the dynamics involved in friction, the contact force that arises
along the interface between two solid bodies. In the light of developments in non-
linear and nonsmooth dynamics, in particular in the field of piecewise smooth
dynamical systems, it is interesting to revisit the mathematical description of a
phenomenon that seems fundamental to physical interaction.

Whereas Amontons and Coulomb wrote the now classical friction laws that
give a coefficient µ relating the resistance force F to the normal load N as

F = µN ,

it has been proposed (see e.g. [17,51]) to add an adhesive contribution Na,

F = µ(N +Na) .
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There are of course many ways to go about this by different physical arguments.
The purpose of this paper is to obtain a simple form for such a term by mathemat-
ical principles alone, and study its consequences using recent ideas from piecewise
smooth dynamical systems theory.

We should emphasise from the outset that this paper is not intended to pro-
pose an ultimate friction model, rather it is intended to take certain behaviours
discovered in the theoretical study of piecewise-smooth dynamical systems, and
gain insight into their possible role in a well-studied application. The basic appear-
ance of stick-slip oscillations in Filippov’s approach to piecewise-smooth systems
is well established, but the role of nonlinear terms at the discontinuity, the intro-
duction of hysteresis, and their perturbation under smoothing and noise, are less
well understood.

One enduring challenge in seeking a mathematical understanding of friction
between solid bodies is the combined nonlinear and multi-scale nature of the pro-
cesses involved (see e.g. [38,44,51,53]), and this is typical of interactions not only
in mechanics, but in other physical, chemical and biological systems (e.g. [5,18,
22,31,33,40]). One approach is to take both features to their extreme limit by
collapsing certain of the nonlinearities and faster timescales into a sharp event: a
discontinuity. A parameter in the system is taken to switch abruptly as a quantity
v changes sign, say µ = sign(v). This carries with it the expectation that the true
system to lies ‘close to’ the switching model, perhaps via a regular perturbation

µ(v) ∼ sign(v) +O (ε) (1)

or perhaps a singular perturbation

µ(v) ∼ sign(v) +O (ε/v) , (2)

each for some small ε > 0 and for all v. The values before and after the switch
(v < 0 and v > 0) are well-known, whereas the complexity of the transition means
the precise value at v ≈ 0 is unknown, and crucially one seeks reasonable arguments
to define a value or set of values for µ(0).

Whether we choose the viewpoint of a regular (1) or singular (2) perturbation
implicitly determines the class of discontinuous systems we can study for ε = 0.
The former is limited to a direct switch, figure 1(i), and can be studied using the
theory of piecewise-smooth (or Filippov) dynamical systems [18,25]. The latter,
however, is free to explore wider values at the discontinuity because of the singu-
larity in the O

(

ε
v

)

term, permitting the generalization shown in figure 1(ii), and
also richer dynamics in transitions between v > 0 and v < 0. To solve a discon-
tinuous system with such a switch requires ‘blow up’ methods introduced in [34],
which we provide a formal derivation for here, giving a subtle but propitious exten-
sion of standard theory which can incorporate, for example, hysteretic effects as in
figure 1(iii) without having to smooth or otherwise ‘regularize’ the discontinuity
(for references to regularization see see e.g. [49,52], the relation between blow up
and regularization is described in [41]). In doing so we show that the distinction
between the regular and singular perturbations as a motivation of discontinuous
models is essential, because although they differ formally only at v = 0, they can
give rise to entirely different global dynamics, as we will show.

Various features illustrated in figure 1 — discontinuity in (i), static overshoot
in (ii), and hysteresis in (iii) — still form the prevailing model of friction (along



On the mathematical basis of solid friction 3

vstr

β

ε

μ(i) (ii) (iii)

v

μkμk
μs

μ

v

μ

v

Fig. 1 Switching characteristics for friction: (i) Coulomb model for kinetic friction, (ii) static
friction coefficient µs exceeds kinetic coefficient µk, (iii) smoothed-out law including hysteretic
“friction memory” over a scale β, speed dependence up to a Stribeck speed vstr, and smoothing
over a scale ε. Qualitatively (iii) tends to (ii) as we let β, ε, vstr → 0, and (i) is regained if we also
let µs → µk . To understand the difference on the dynamics of a system requires close consideration
of how discontinuities (i) or (ii) affect the dynamics of a system.

with an independence of contact area and proportionality to normal load), because
refinements seem not to retain the same universal applicability. The classic model
of friction attributed to Amontons and Coulomb are of the form in figure 1(i).
Complex microscale interactions over the body-to-body interface are modelled
by a force that is speed independent, except for a flip of direction as the slip
velocity between two surfaces passes through zero. The discontinuity arises from
the observation that the kinetic friction force depends on the direction but not
the magnitude of the slip velocity v (approximately), so its value jumps, say from
+µkN to −µkN under a normal load N , as v passes through zero. The force is
assumed to pass only through values on the interval [−µkN,+µkN ], the friction
cone, when v = 0.

An attraction of such a model is that it captures one feature that smoothly
differentiable models cannot, namely the irreversibility of stick-slip dynamics. Al-
though the onset of sticking can be predicted uniquely, once sticking occurs it
is not possible to infer uniquely when (or even if) slipping occurred in the past.
The information required to reverse stick-slip motion is lost to the environment
through heat and sound, and it remains a challenge to show how the small, and
even atomic, scale, interactions involved in this (e.g. [4,26,38,42,46,55]) reproduce
large scale dynamics. A full characterization of these problems is beyond our scope
here, though we refer to the literature a little further in section 9. Our purpose is
to investigate how much of the bulk behaviour can be qualitatively captured by a
discontinuous model, and for completeness, to show that such a model is robust
to smoothing of the discontinuity.

Throughout this paper we will assume a known constant normal contact force
N , or at least take a constant reference force N (balancing the object’s weight, for
example), with any complexities in the normal reaction forces on an object taken
inside the friction coefficient µ for our purposes.

In neglecting various details of the fine structure physics involved, the model
in figure 1(i), which is set-valued at v = 0 seems to fail in two respects. Firstly, the
friction force takes one kinetic value µk during slipping contact and another static

value µs when the surfaces stick together, (figure 1(ii)), meaning in practice that
the breakaway force required to instigate slipping between two surfaces is greater
than that required to maintain slip, an observation made first perhaps by Euler.
The coefficients µk and µs differ for some, though not all, materials and experi-
mental set ups. Secondly, (i) neglects features such as hysteresis (figure 1(iii)). To
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compound this mathematically, these problems manifest precisely where the con-
tact force suffers the discontinuity, where the graph of µ(v) becomes vertical and
therefore the value of µ ambiguous. Dealing with that ambiguity one must make
certain choices, such as imposing complementarity constraints [11] or sliding rules
[25]. We will show that giving formal expression to these ambiguities via nonlinear
switching terms leads to rich dynamics encompassing all behaviour in figure 1 in
a closed form discontinuous dynamical system.

While any of (i), (ii), or (iii), may be ‘better’ models given different physical
situations, the aim here is a more general dynamical approach to the discontinuity,
and in this regard to define a model in which (iii) reduces to (ii) in a definite
(though singular) limit, preserving the static friction overshoot, which reduces to
(i) in another limit, with the simplest mathematical assumptions possible.

The static friction overshoot is to be encoded in ‘nonlinear switching’ terms
suggested by the O (ε/v) term in (2), and we will show its effect on the piecewise-
smooth dynamics in the discontinuous limit ε = 0. We do this by first deriving a
model of discontinuity from the singular perturbation point-of-view in section 2,
then apply it to a simple dry-friction oscillator in subsequent sections, showing
how it allows us to introduce static-versus-kinetic friction, hysteresis, compliance
and noise, step by step into a discontinuous dynamical system. Conditions for
linear and nonlinear sticking are derived in section 5. The dynamics of the system
is sketched for the discontinuous model in section 6, requiring some application
of perturbation theory whose main technical points we give in section 7; similar
methods are employed for genetic networks in [40], where sigmoidal Hill functions
limit towards jumps similar to that in figure 1(i). Numerical simulations follow
in section 8 for the purposes of illustration, comparing the friction characteristic
to the features summarized in figure 1, and showing some novel dynamics related
to nonlinear terms responsible for static friction. Closing remarks are made in
section 9.

This study builds on a growing general understanding of dynamical systems
which, like friction, exhibit discontinuities, and will show that some of the com-
plexities of friction are a natural accompaniment to dynamical switching. In doing
so we find out what aspects are inherent in a discontinuous model, what dynam-
ics arises only when smoothing out the discontinuity, and what behaviours of a
discontinuous model are robust to perturbations like smoothing and noise.

2 From multi-scale oscillation to bulk-scale switching

It is not difficult to see how small-scale complexity can manifest as discontinuity
on a large scale, but as we can show with a heuristic but quite general argument,
the result is of the singular kind (2) rather than the regular (1).

To obtain a tractable model of the complex contact interactions involved in
dry-friction (as we review briefly in section 9), let us say only that they result in
a continuum of constitutive forcings, whose distribution over some variable k has
an envelope a(k), and an oscillatory part with phase θ(k). For a specific example
we might consider phonons which contribute overall to the friction force with
amplitudes a(k) and relative phases θ(k). We take a and θ to be real continuous and
even functions of k, such that positive and negative k represent forcings in opposite
directions; these assumptions are not too important and partly for simplicity. More
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crucially we assume that these forces are excited by motion of the bulk system,
represented by a quantity v, resulting in a cut-off at some k∗ = v/ε for ε > 0. In
this way we write the interaction force integrated over all k as Nµ(v), where N is
a normalization constant and

µ(v) =
1√
2π

∫ v/ε

0

dka(k) cos θ(k) , (3)

(the factor 1√
2π

is inserted for convenience). Asymptotic expansions of such inte-

grals often produce Stokes’ discontinuities (see Appendix A), found via stationary
phase methods to be of a typical form

µ(v) ∼ r sign(v) + q(v/ε)
∞
∑

n=0

cn
(v/ε)2n

(4)

in terms of a smooth function q, coefficients cn, and a constant r = Re

[

a(ks)e
iθ(ks)√

−ψ′′(ks)

]

where ψ = iθ+log a and ψ′(ks) = 0. This series is of the form (2) up to the constant
r, which can be absorbed into N . For more general discussion of such classes of
integrals and the Stokes’ phenomena they produce see also [7,20,50].

The graph shown in figure 2(i) is typical of (3), and tends towards a curve
like figure 2(ii) in the limit ε → 0, which has peak values µ = ±µs which are
ε-independent and therefore remain clearly defined in the limit ε → 0. (In the

example of Appendix A the peak has height µs ∼ 1 +
√

2
π

4ρ3

π2 e
−π2/8ρ2 and lies at

v ∼ ±πε/2ρ).

(i) (ii)

vs 
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Fig. 2 The contact coefficient µ integrated over a gaussian force distribution a(k): (i) shows the

exact integral (3) (full curve) for a(k) = e−k2/2 and θ(k) = 3k/2, along with the asymptotic
approximation (dotted curve) up to the first term of the series in Appendix A (37); in (ii) this
tends towards a step function with ε-independent spikes at v = 0 in the limit of small ε.

Neglecting r, we can express (4) as

µ(v) ∼ Λε(v) + ρLε(v)Γε(v)
ε→0−−−→ Λ(v) + ρL(v)Γ (v) (5)

(as described further in Appendix A). The function Λε is differentiable and mono-
tonic and satisfies

Λε(v) ∈
{

sign(v) +O (ε) if |v| > ε

[−1,+1] if |v| ≤ ε

}

ε→0−−−→ Λ(v) ∈
{

sign(v) if v 6= 0
[−1,+1] if v = 0

}

, (6)
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while Γε is differentiable and satisfies

Γε(v) ∈
{

O
(

ε
v

)

if |v| > ε

(0,1] if |v| ≤ ε

}

ε→0−−−→ Γ (v) ∈
{

0 if v 6= 0
(0,1] if v = 0

}

. (7)

For example we may fix
Γε(v) = 1− Λ2

ε(v) . (8)

The constant ρ is related (in a way that must be determined later) to the peak
height of the integral and therefore to µs; we relate ρ and µs in a particular example
later. This leaves the function Lε. For brevity in this paper we consider only the
case Lε = Λε (and hence L = Λ).

In (5), the function Λ directly replaces the sign term from (4), and when
defining it in (6) we take care to specify its range at v = 0, where it is set-valued.
The second term of (5) embodies the tail of the asymptotic approximation (4),
with the factor Γ contributing only where Λ switches sign, i.e. in the static mode
v = 0; the static contribution has a strength ρ.

While the functions Λε(v) and Γε(v) are continuous and single-valued, their
limits Λ and Γ are set-valued at v = 0, and it is useful to identify their values in
the sticking mode with new variables λ and γ, given by

λ ≡ Λ(0) ∈ [−1,+1] and γ ≡ Γ (0) ∈ (0, 1] . (9)

(These can be called ‘selections’ of the set-valued terms. If we neglect γ then this
in effect consistent with standard Filippov theory [25,18,39] ). Differentiating (6)
and comparing to (7) we can write asymptotically that ε ddvΛε(v) = Γ pε (v)+O (ε/v)
where p is some positive exponent, and use this to relate λ and γ formally via

dΛ

dv
= lim
ε→0

Γ pε (v)

ε
⇒ dΛ

dv/ε
= Γ p(v) ⇒ dλ

dv/ε
= γp(λ) . (10)

This relation will be of use later. In Appendix A and in simulations in section 8

we choose Λε(v) =
v/ε√

1+(v/ε)2
, which gives (10) with p = 3/2.

Functions of the form (6) are rather common in physical and biological models
as sigmoid functions describing switches or fast transitions, and it is common to ap-
proximate them with a sign function with little regard for what forms of behaviour
are possible at v = 0. The purpose of this paper is to show that the piecewise-
smooth systems implied by the argument above— specifically containing nonlinear
dependence on Λ via Γ — lie outside the standard theory of piecewise-smooth sys-
tems [25], but can be handled with a straightforward extension [34] which makes
that theory more widely applicable, and we present such an application in the
form of static friction.

3 A near steady-state model

The basic problem of interest is that of an object of mass m, resting on a surface
which exerts on it a normal reaction force N , and subjected to forces b(x, ẋ, t) that
drag the object along the surface. This satisfies the one degree of freedom system

mẍ = b(x, ẋ, t)− µ(v)N , (11)
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where x is the object displacement, ẋ its velocity, and v is the velocity of slip
relative to the surface. The friction coefficient µ is an odd function of the slipping
speed v.

We have then to form a model for the friction coefficient µ(v). The asymptotic
models in section 1 have a leading order term µ(v) = sign(v), which is clearly
consistent with Coulomb’s laws of kinetic friction (figure 1(i)). Let us then assume,
as suggested in the introduction, that this is only the leading order term of some
approximation of the form (2) for small ε. We shall use the form of µ derived in
section 1, namely (5) using (6)-(7). The ε-dependent expressions are not vital for
the subsequent analysis in this paper, but we carry them along throughout to show
where the discontinuous (ε = 0) expressions come from, and in section 7 give some
basic theorems on the persistence of the discontinuous system for ε > 0.

The description so far assumes a stationary model for the friction coefficient,
requiring the contact surface to be in some overall steady state during slip. If
small motions produce variations away from (5), we may consider Γ to be only
the equilibrium position of a surface variable z, and thus write instead of (5) as a
first approximation,

µ(v) = Λ(v) + ρΛ(v)z (12)

where z relaxes to Γ on a fast timescale t≈β for small β > 0, given by

βż = Γ (v)− z (13)

linearized around the steady state z = Γ (v).
Within the dynamical system (11), equations (12)-(13) now form the friction

model, endowed with discontinuity by Λ, nonlinearity by Γ , and relaxation by z.
We recall that the kinetic coefficient of friction for large |v| has been scaled to
unity, and static friction enters via the terms with coefficient ρ. It will turn out
that β introduces hysteresis on the timescale t≈β. The parameter ε plays only a
practical role in the definition of the discontinuous functions (6)-(7), but later will
become associated with compliance.

4 A friction oscillator

Below we show the different aspects of the model (12)-(13) in the context of a
single degree of freedom oscillator used in experimental studies of friction (e.g. in
[55], or for alternatives see [6,30]). A schematic model is shown in figure 3. The
set up consists of an object of mass m, supported via two springs with total spring
coefficient k, mounted on a shaking base plate with a controllable displacement
q(t). Friction between the object and the plate is introduced via a vertical sliding
contact, typically attached to a force transducer. Contact between the base and
the mass also introduces a linear damping coefficient c, so that the non-frictional
forces on the mass add up to

b(x, ẋ, t) = −(x− q)k − (ẋ− q̇)c . (14)

The relative displacement between the object and the plate is then y = x − q,
the relative velocity v = ẏ = ẋ − q̇, for which we obtain from (11) a differential
inclusion

ẏ = v ,

v̇ = q̈ − ky − cv −Nµ(v) ,
(15)
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Fig. 3 Schematic of the bouncer, a base plate shaken vertically with displacement q(t), transmitted
to an object mass m via total spring constant k, dashpot coefficient c, and friction slider with normal
load N and dry-friction coefficient µ.

along with (12)-(13) as a friction model. Here we have re-scaled so that m = 1. For
simulations we will also let N = 1, and apply a driving oscillation q̈(t) = −σ sinωt
through the base with amplitude σ and frequency ω.

5 Linear vs. Nonlinear sticking

A basic task in such a system is to determine when sticking will occur. This
happens at displacements y(t) for which v = v̇ = 0 is a solution of the system (15)
for Λ(0) ∈ [−1,+1], in which case the system evolves along the discontinuity surface
v = 0, and using (9) we replace the function values Λ(0), Γ (0), with variables
λ, γ(λ). We shall see how to derive the dynamics of these variables in the next
section, here we ask merely whether sticking solutions exist for some λ ∈ [−1,1]
at a given y and t.

For ρ = 0 the friction coefficient µ depends linearly on λ, in fact µ = λ by
(12), so that the sticking conditions v = v̇ = 0 in (15) for λ ∈ [−1,+1] imply
|ky − q̈| < N . We will refer to the dynamics in this region as linear sticking. The
boundaries correspond to the maximum and minimum of the graph y = 1

k (q̈−Nλ)
which lie at λ = ±1. Linear sticking is equivalent to applying Filippov’s convex
combination to find regions of so-called ‘sliding’ along the threshold v = 0 [25]. The
boundaries of the linear sticking region are the set of tangency points of the right
and left subsystems to the discontinuity surface, i.e. where limδ→0 v̇|v=±δ = 0 for
some δ > 0, which yields boundary curves ky = q̈ ∓N on v = 0.

For ρ 6= 0 the sticking conditions v = v̇ = 0 with λ ∈ [−1,+1] instead give
|ky − q̈| < (1 + ρz)N . Thus the variation of z implies that sticking may now occur
for a larger range of y and t, which we refer to as nonlinear sticking. The boundaries
correspond to maximum and minimum of the graph y = 1

k (q̈ −Nλ(1 + ρz)) as it
varies over λ ∈ [−1,+1], which now might not occur simply at λ = ±1, but may
lie instead at turning points of the graph if they exist inside λ ∈ [−1,+1].

If we assume z has reached its steady state value Γ , which on v = 0 becomes γ
by (9), then the turning points of y = 1

k (q̈ −Nλ (1 + ργ(λ))) lie at any λ = ±λs ∈
[−1,+1] such that

dµ(λs)

dλ
≡ 1 + ργ(λs) + ρλs

∂γ(λs)

∂λ
= 0 . (16)
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For a basic friction model it will be sufficient to assume (as we do hereon) that
(16) has at most one symmetric pair of solutions ±λs; see figure 4. Substituting
this into µ = λ(1 + ργ) gives peak values of the friction coefficient as µ = ±µs
where

µs :=

{

−ρ dγ(λs)
dv λ2s if |λs| < 1 ,

1 if |λs| ≥ 1 ,
(17)

and corresponding y-bounds on the sticking region as 1
k (q̈ − Nµs) < y < 1

k (q̈ +
Nµs). This determines the maximum force of static friction µsN , and thus sets
the maximum size of the nonlinear sticking region.

y

..
q/k

λ

z>0, |λs|>1

z>0, |λs|<1

z=0 (or ρ=0)

+λs−λs +1−1

Fig. 4 The graph y = (q̈ −Nµ(λ)) /k where µ(λ) = λ (1 + ργ(λ)), over {y, λ} ∈ R × [−1, 1].
If |λs| < 1 the graph has peaks y = (q̈ − Nµs)/k at λ = ±λs, otherwise its peak values lie at
λ = ±1.

Putting the two cases together, we identify regions of sticking depending on
whether we exclude nonlinear terms (ρ = 0) or include them (ρ 6= 0), defining:

linear sticking where v = 0 & |ky − q̈| ≤ N for ρ = 0 , (18)

nonlinear sticking where v = 0 & |ky − q̈| ≤ Nµs for ρ 6= 0 . (19)

In physical terms, ignoring the driving term q̈, these mean that the force ky the
spring must exert to overcome friction and cause breakaway from sticking is ±N
or ±µsN in the linear or nonlinear models respectively. To produce peaks in µ, the
even function γ must be at least of quadratic order in λ. If we assume for example
that γ(λ) is a quadratic polynomial, the requirement γ(±1) fixes γ(λ) = 1 − λ2

(consistent with (8)). Then λs =
√

(1 + ρ)/3ρ giving µs = 2ρ ((1 + ρ)/3ρ)
3/2 for

ρ > 1/2 and µs = 1 for ρ ≤ 1/2.
In standard theory with ρ = 0, solving the sticking conditions v = v̇ = 0 is

sufficient to find the value of λ that corresponds to sticking dynamics. If we take
ρ 6= 0 and include nonlinear dependence on λ, however, the sticking conditions v =
v̇ = 0 may lead to multiple sticking solutions. Nonlinear sticking therefore requires
dynamical theory introduced in [34], which we present in the next section. This will
include finding rich dynamics appears in the regularization of the discontinuity.
For example, the boundaries of the nonlinear sticking region are associated with
loss of hyperbolicity in the dynamics of {y, z, λ} treated as independent variables.

6 Piecewise-smooth dynamics

In slipping motion we have v 6= 0 so the system relaxes quickly (in time t = O (β))
to a state µ(v) = Λ(v) = sign(v), then the dynamics of (15) is rather simple to
sketch as in figure 5 (vertical planes). Viewed in the y-v plane (imagining z and
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t fixed), the flow curves towards v = 0 from both slipping regions. Similar phase
portraits appear in e.g. [30], and motion outside of sticking is relatively simple.

In between slipping directions we must resolve the dynamics in the discontinu-
ity surface v = 0. For this we require the rate of change of the λ variable, and as
stated in [34], it rather easily given relative to some dummy timescale as λ′ = ẋ·∇v
where x = (t, y, v) and ∇ is its associated gradient operator. This result appeared
in [34] and we give a more detailed justification here, with a formal derivation
(below) using the dummy infinitesimal ε.

The time derivative of λ is given, using (10), by

λ̇ = v̇
dλ

dv
= v̇γp/ε . (20)

As the dot denotes differentiation with respect to a time t, equation (20) says that
λ evolves on a timescale τ = tγ/ε. Letting γ ∈ (0,1] remain fixed as ε → 0, the
timescale τ is fast compared to t. Substituting v = 0 into the dynamical system
(15), recalling γ(λ) 6= 0 for v = 0 and denoting the derivative with respect to
τ = tγ/ε with a prime, we have a ‘fast’ system

t′= ε
γ(λ)

λ′= q̈ − ky −Nµ(v)
βz′= γ(λ)− z







ε→0−−−→







t′=0
λ′= q̈ − ky −Nλ (1 + ρz)
βz′= γ(λ)− z

, (21)

substituting in µ = λ (1 + ρz) by (12) on the righthand side. This fast dynamics is
sketched (double arrows) in figure 5 in the steady state z = γ(λ), in the v = 0 plane
which represents {t, λ, z} space. The discontinuous (i.e. ε = 0) system consists of
a {t, y, z}-parameterized one-dimensional system with a three-dimensional surface
of equilibria

B(z) =
{

(t, y, z, λ) ∈ R
3×(−1,+1) : q̈ − ky −Nλ (1 + ρz) = 0

}

. (22)

The manifold B is coordinatized by {t, y, λ}, while z determines its shape. In {y, λ}-
space, B(0) is a straight line with y-intercept q̈/k, and

Bγ ≡ B(γ(λ)) (23)

is a curve with turning points at λ = ±λs if |λs| < 1 as defined by (16); these are
just the curves shown in figure 4.

If a trajectory spends a sufficient time t = O (β) inside v = 0, the variable z
will relax to γ(λ) and hence B(z) will relax to Bγ . A brief consideration of the

sign of ∂λ′

∂λ = −N
(

1 + ργ(λ) + ρλdγ(λ)dλ

)

shows that Bγ always has an attracting

branch (where ∂λ′

∂λ < 0) over |λ| < min[λs, 1], using λs defined in (16), onto which
the system collapses on the timescale τ . If |λs| < 1 then B(z) also has two repelling
branches over λs < |λ| < 1, with the attracting and repelling branches separated
by sets of turning points at λ = ±λs, as depicted in figure 5.

The equation t′ = 0 in (21) means that this fast τ -timescale dynamics is instan-
taneous on the ‘slow’ timescale t, consisting of collapse to B(z) for y values inside
the sticking region (19), instigating sticking motion, while for y values outside this
λ will switching between λ = ±1 which signifies the transition between left and
right slip.
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  .
  t = 1
  .
 y = v
  .     ..
 v = q−ky−cv−N

 t’ = 0
       
 y’ = 0
         ..
  λ’ = q−ky−Nλ(1+ργ(λ))

  .
  t = 1
  .  
 y = 0
        ..
 0 = q−ky−Nλ(1+ργ(λ))

B(z)

v

λ

v=0
(t,y,z)

  .
  t = 1
  .
 y = v
  .     ..
 v = q−ky−cv+N Λ = −1

Λ = +1

Fig. 5 Discontinuous model showing: slipping in the vertical panels representing dynamics in
{y, v, t} variables (given by (15) with (6)); fast transition given by (21) in the surface v = 0;
sticking in the surface B(z) with dynamics in λ given by (24). The equations shown are for the
steady state z = γ(λ). For an example of γ consider γ(λ) = 1− λ2.

Dynamics inside B(z) takes place on the timescale t, given directly by setting
v = 0 in (15) and using (20) to find λ̇, as

ṫ=1
ε

γ(λ) λ̇= v̇ = q̈ − ky −Nµ(v)

βz′= γ(λ)− z







ε→0−−−→







ṫ=1
0= q̈ − ky −Nλ (1 + ρz)

βz′= γ(λ)− z

. (24)

The second line simply constrains the dynamics to B(z) by (22), and implies v̇ =
0, hence motion in B(z) represents sticking. The arrows inside B(z) in figure 5
indicate that sticking trajectories tend to move towards or away from the extrema
of B(z), simply because the position of B(z) itself moves if q̈ (and thereby (22)) is
t-dependent.

Trajectories of the full system transition between the subsystems (15), (21)
and (24). Left-slip or right-slip obey (15) with v 6= 0. Switches between the two
are made via the fast system (21), as shown by trajectory (i) in figure 6. For
{y, t} values that fall within (19), the fast system collapses to B(z), and sticking
dynamics ensues given by (24). This sticking dynamics continues while (19) is still
satisfied, otherwise the system transitions via the fast system back into slipping,
as shown by trajectory (ii) in figure 6.

B(z)

v

λ

v=0
(t,y)

(i)

(ii)

Fig. 6 Discontinuous model showing transitions. Trajectory (i) transitions between slipping motion
(vertical panels) via the fast system (double arrows). Trajectory (ii) transitions between slipping
motion but undergoes an interval of sticking on the manifold B(z).



12 Mike R. Jeffrey

To plot the friction characteristic µ(v)N for this system for comparison with
figure 1, consider a solution of the oscillator system which oscillates through both
slipping regions v > 0 and v < 0, with sticking in between. This yields graphs
of the form of figure 7(i) for λs < 1, with peaks that are clearly consistent with
the existence of static friction, whose heights are given by (17) and prescribe the
maximum coefficient of static friction.

The arrows in figure 7(i) come from considering how the dynamics will explore
the graph subject to the relaxation (13). We obtain them by heuristic argument,
but will verify them with simulations in the next section. During slipping the sys-
tem approaches z ≈ Γ = 0, so the friction coefficient (12) has no peaks and does
not exhibit static friction. Entering into stick or changing slipping direction, there-
fore, the friction coefficient transitions directly between ±1. During an interval of
sustained sticking, however, z will grow sharply by (13) to a value z ∈ (0,1], and
if λs < 1 then the coefficient (12) approaches µ → λ (1 + ργ(λ)) as z → γ ≡ Γ (0),
which has peaks at λ = ±λs. For the system then to exit back into slip from
v = 0 to v 6= 0 it must pass through these peaks in the friction coefficient at
|µ| = µs = −λ2s dγ(λs)

dv > 1, forming the spikes in figure 7(i). The static friction
response is therefore hysteretic.

The model sketched in figure 7(i) reproduces the phenomena of static friction
and hysteresis presented in figure 1, but it lacks two features shown in figure 1(iv),
namely a separation between the two vertical branches of the friction graph, and
smoothing. Both can now be attributed to compliance effects outside the discon-
tinuous model of the contact force. The model so far assumes the object mass to
be a point particle, but let us suppose that the object is an extended body, which
in resisting the contact force suffers a small shear proportional to the spring exten-
sion y, so that instead of v we plot a measured velocity of v̄ = v−εy for small ε > 0.
The effect on the characteristic is shown in figure 7(ii). The different branches of
the hysteresis loop are revealed, capturing all of the behaviour suggested in fig-
ure 1(iv) except for smoothing. Smoothing is now achieved by replacing Λ and Γ
with smooth functions Λε and Γε (and let us assume the two instances of ε in this
paragraph are the same); this will follow below.

−1       −0.5                     0.5          1−1       −0.5                     0.5          1 v

μ(v)

1

−1

(ii)(i)

_
v

μ(v)

1

−1

μs

Fig. 7 Friction characteristic for the bouncer, discontinuous model plotted against the relative
speed v in (i), and against the offset speed v̄ = v−εy representing compliance in (ii). Places where
the graph is horizontal correspond to slip, and where it is vertical corresponds to stick.

These sketches of the characteristics can be confirmed by numerical simulation,
which we perform in section 8. One may simulate the discontinuous model directly,
using event detection methods to switch between the four subsystems summarized
in figure 5. There are packages already programmed for solving ordinary differen-
tial equations with switching (e.g. [45,19]), but current event detection routines
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typically assume Filippov-type solutions and would thus neglect the crucial non-
linear terms γ(λ).

A simpler recourse than event detection sufficient for our purposes here, and a
usually reliable one (if stiff numerically), is to simulate using a standard numerical
ordinary differential equation solver, which requires replacing the discontinuous
function (6) with a smoothed-out sigmoidal curve with a slope sufficiently steep
to approximate the sign function (see e.g. [30]). The way to do this is already
suggested by the definitions (6)-(7), and has the added effect of emulating, though
rather crudely, any smoothing of the switching process arises through compliance
of the object and surface, and provides the final visual ingredient to reproduce all
aspects of figure 1. As a numerical tool we do not advocate the use of smoothing,
but it fits the analytical context here, particularly our interest in the asymptotics
and geometry behind frictional switching. For studies focussed on the numerical
results themselves, event detection or event capturing may be more appropriate,
see e.g. [12,13], but will require some consideration as to how to handle nonlinear
switching.

Before proceeding to a numerical simulation we verify that the dynamics as
sketched above is robust, by means of a few technical details regarding the per-
turbation to β > 0 and ε > 0.

7 Perturbation to β > 0 and ε > 0

Gathering together equations (15) and (12)-(13), the complete equations of the
discontinuous system are

ṫ = 1
ẏ = v

v̇ = q̈ − ky − cv −NΛ(v) (1 + ρz)
βż = Γ (v)− z















(25)

for small β > 0, in terms of variables {y, v, z} and the functions Λ(v), Γ (v), from
(6)-(7). On v = 0 the values Λ(0) and Γ (0) shall be replaced by dummy variables
λ and γ(λ) according to (9). For Nµs ≥ max |q̈(t)| the system (25) exhibits stick-
ing periodic orbits, and otherwise stick-slip or pure slipping periodic orbits are
expected; these are discussed briefly in Appendix B.

To understand the system above in practice it is desirable to know how robust it
is to perturbations. For example, what happens if we smooth out or stochastically
‘blur out’ the discontinuity? The effects of noise will be considered in section 8.
The remainder of this section considers the effects of smoothing, adapting standard
notions of fast and slow dynamics from geometric singular perturbation theory [24,
36] to show essentially that, if Λ and Γ are replaced by Λε and Γε according to (6)
and (7), we obtain dynamics that is ε-close to the discontinuous dynamics of (25)
as described in the previous section.

The third line of (25) introduces a relaxation towards z = Γ (v) on the fast
timescale t/β. The state z = Γ (v) is invariant for motion confined to either v < 0,
v > 0, or v = 0, but is not invariant to motion that transitions between them,
because the attractor z = Γ (v) is discontinuous; this is the feature that permits
hysteresis. One way to see this is to let w = Γ (v) − z, then βẇ = βv̇Γ ′(v) − w,
which has a well-defined attractor at w = βv̇Γ ′(v). For β → 0 this attractor
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becomes w = 0, except as v approaches zero, in which case Γ ′ → ∞ and w = 0 is
invariant only if βΓ ′ is finite. In (26) below and the subsequent propositions we
will make sense of this by smoothing the discontinuity.

The following propositions concern a class of smooth systems which tend to
(25) in the limit ε→ 0, namely

ṫ = 1
ẏ = v

v̇ = q̈ − ky − cv −NΛε(v) (1 + ρz)
βż = Γε(v)− z















(26)

in terms of functions Λε(v) and Γε(v) which satisfy (6)-(7). To study this will
require a number of re-scalings of the ‘slow’ time variable t to fast times τ = tΓε/ε,
τε = t/ε, and τβ = t/β, and we shall denote the derivative of a variable x with
respect to these fast times by x′, x′ε, and x′β, respectively.

Let us first consider the relaxation that takes place on the timescale of order
β. For |v| > ε the slow subsystem (26) satisfies

(26)
ε→0−−−→















ṫ = 1 ,
ẏ = v ,

v̇ = q̈ − ky − cv −N sign(v) (1 + ρz) ,
βż = −z

(27)

using the limits of Λε and Γε from (6)-(7). Moreover,

(27)
β→0−−−→















ṫ = 1
ẏ = v

v̇ = q̈ − ky − cv −N sign(v) (1 + ρz)
0 = −z

(28)

prescribes slow dynamics in the surface z = 0. The fast dynamics outside z = 0 is
found by rescaling (26) to the time τβ = t/β, denoting the time derivative of any
variable x by x′β, giving

t′β = β

y′β = βv

v′β = β [q̈ − ky − cv −NΛε(v) (1 + ρz)]
z′β = Γε(v)− z















β→0−−−→















t′β = 0
y′β = 0
v′β = 0
z′β = −z

. (29)

From the fast β timescale system and its singular limit in (29) we have:

Proposition 1 Relaxation dynamics in slipping: For |v| ≫ ε the system (26) pos-

sesses invariant manifolds C(β,ε)
slip that lie within O (β, ε) of and diffeomorphic to the

three-dimensional surface C0
slip =

{

(t, y, v, z) ∈ R
4 : z = 0

}

, on which the dynamics is

topologically equivalent to the limiting slow subsystem (28).

Proof The manifold C0
slip =

{

(t, y, v, z) ∈ R
4 : z = 0

}

is the set of normally hy-
perbolic equilibria of the one-dimensional system (29) with β = ε = 0, so by
Fenichel’s theorem [24,36] the system (27) for β > 0 possesses locally invariant

manifolds C(β)
slip that lie O (β) close to and diffeomorphic to C0

slip, on which the

dynamics is topologically equivalent to the β → 0 limit of (28). For ε > 0 and
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|v| > ε the system (26) is an O (ε) regular perturbation of (28), which therefore

possesses invariant manifolds C(β,ε)
slip which are an O (ε) perturbation of C(β)

slip and

therefore lie O (β, ε) close to and diffeomorphic to C0
slip, exhibiting dynamics which

is an O (β, ε) perturbation of the slow subsystem (28).

The dynamics in the region |v| < ε is somewhat richer. It depends acutely on
the balance of the small quantities β and ε, and for brevity here we assume ε≪ β,
since, though β is a small parameter in the model above, ε is a dummy parameter
assumed to be arbitrarily small.

First let us consider the relaxation dynamics on |v| < ε. Let u = v/ε, then by
(6)-(7) we have Λε(v) = Λ1(u) and Γε(v) = γ1(u), which are functions of u indepen-
dent of ε. Since Λ1(u) is then a differentiable and monotonic function of u, by the
implicit function theorem Λ1(u) has an inverse u = u(L). Therefore let us replace
Λ1(u) and Γ1(u) with a dependent variable λ and a function γ(λ) respectively. The
slow dynamics (on the timescale t) is given by (26), which becomes

ṫ = 1
ẏ = εu

εu̇ = q̈ − ky − cεu−Nλ (1 + ρz)
βż = γ1(λ)− z















. (30)

Letting ε → 0 we obtain sticking dynamics, that is, on the limiting surface v =

εu
ε→0−−−→ 0 we have slow dynamics

(30)
ε→0−−−→















ṫ = 1
ẏ = 0
0 = q̈ − ky −Nλ (1 + ρz)
βż = γ(λ)− z

, (31)

the constraint on the third line fixing this dynamics to the surface B(z) defined in
(22). Letting also β → 0 we have

(31)
β→0−−−→















ṫ = 1
ẏ = 0
0 = q̈ − ky −Nλ (1 + ργ(λ))
0 = γ(λ)− z

, (32)

which describes slow dynamics after trajectories in the surface B(z) relax to the
surface Bγ defined in (23). Associated with this is a dynamical system on the fast
timescale τβ = t/β, the derivative with respect to which we denote x′β for any
variable x, giving

t′β = β

y′β = εβu

εu′β = [q̈ − ky − cεu−Nλ (1 + ρz)]β
z′β = γ(λ)− z















ε,β→0−−−−→







t′β = 0
y′β = 0
z′β = γ(λ)− z

, (33)

which describes dynamics in the sticking state v = εu
ε→0−−−→ 0. This has equilibria

on B(z) as defined in (22), and implies the following:
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Proposition 2 Relaxation dynamics in the static mode. On u = 0 the system (31)

possesses locally invariant manifolds Cβstatic that lie O (β) close to and diffeomorphic

to the three-dimensional manifold C0
static =

{

(t, y, z, λ) : R3 × [−1,+1] : z = γ(λ)
}

.

Proof On u = 0, the three-dimensional manifold C0
static is the set of equilibria of

the limiting system (33) with β = 0 and ε = 0. These are normally hyperbolic since
∂z′β/∂z = −1, thus by Fenichel’s theorem the system (30) has a locally invariant

manifold Cβstatic that lies O (β) close to and diffeomorphic to C0
static.

Inside this relaxed state we have dynamics on the fast timescale τε = t/ε, the
derivative with respect to which we denote x′ε for any variable x, giving

t′ε = ε

y′ε = ε2u

u′ε = q̈ − ky − cεu−NΛ1(u) (1 + ρz)
βz′ε = (Γ1(u)− z)ε















ε→0−−−→















t′ε = 0
y′ε = 0
u′ε = q̈ − ky −NΛ1(u) (1 + ρz)
z′ε = 0

.

(34)
From this we have:

Proposition 3 Sticking manifolds: In the system (26) there exist invariant manifolds

Bε(z) in the ε-neighbourhood of B(z)as given by (22).

Proof The equilibria of the limiting (ε = 0) fast subsystem (34) are hyperbolic in a
region satisfying Γ1(u) > 0, since the system is one-dimensional and has eigenvalue

∂u′ε

∂u
= −N(1 + ρz0)

dΛ1(u)

du
= −N(1 + ρz)Γ1(u) < 0 ,

for z > −1/ρ, the quantity z being constant in the system (34). Thus by Fenichel’s
theorem there exist locally invariant manifolds Bε(z) that lie within O (ε) of and
diffeomorphic to B(z).

The condition Γs(u) > 0 is clearly important, and means that these manifolds
are only invariant for u sufficiently far away from ±1.

To show that the dynamics on Bε(z) is topologically equivalent to the sticking
dynamics (24) we must replace the variable u.

Proposition 4 Sticking dynamics: The dynamics on the manifolds Bε(z) is topologi-

cally equivalent to the sticking dynamics of (24).

Proof We define a new variable L = Λ1(u). Since Λ1(u) by (5) is single-valued,
continuous and monotonic, it has an inverse which we write as u = u(L). The
variation of L is found using (10), and gives the dynamics of the variables {t, y, L, z}
as

ṫ = 1
ẏ = εu(L)

ε
Γ̃p(L)

L̇ = q̈ − ky − εcu(L)−NL (1 + ρz)

βż = Γ̃ (L)− z















ε→0−−−→















ṫ = 1
ẏ = 0
0 = q̈ − ky −Nλ (1 + ρz)
βż = γ(λ)− z

(35)
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on the slow t timescale, and

t′ = ε
Γ̃ (L)

y′ = ε2u(L)/Γ̃ (L)
L′ = q̈ − ky − εcu(L)−NL (1 + ρz)
βz′ = (Γ̃ (L)− z)ε/Γ̃ (L)















ε→0−−−→















t′ = 0
y′ = 0
λ′ = q̈ − ky −Nλ (1 + ρz)
z′ = 0

(36)

on the fast t/ε timescale, denoting the relevant derivative by a prime. The limiting
systems are equivalent to those of the nonsmooth system (24) and (21) respectively.

(Similar methods for biological models regulated by monotonic ‘Hill’ switch-
ing functions can be found in [40], but here we have certain added complexities,
particularly non-monotonic switching due to Γ and hysteresis due to z).

These results are sufficient to show that simulations of systems of the form (26),
a smooth approximation of the discontinuous system (25), lie ε-close to those of
the discontinuous system described in section 6, and moreover can be studied
using further methods of singular perturbation theory with respect to the singular
perturbation parameters β and ε. For example, from the work of Eckhaus [21] one
expects the flow to take O (1) time to travel along the slow manifold B(z), until
reaching a turning point where normal hyperbolicity is lost, then jump off to rejoin
the fast flow. In the much studied van der Pol system this jumping off takes place

within a time O

(

ε1/3
)

and within a distance O

(

ε2/3
)

of the turning point, while

in the system above the result depends on q̈ and the calculations are lengthy, but
make an interesting subject for future work.

The final consideration is how the flow transitions between the |v| > ε dynamics
of Proposition 1 and the |v| < ε dynamics of Propositions 2-4. The transition
between the slow dynamics (27) that reigns in the region |v| > ε, and the fast
dynamics (34) that dominates the region |v| < ε by Proposition 3, is transversal if
v̇ 6= 0. This therefore holds away from the tangencies where v̇ = 0 on |v| = ε, which
are the points where the slow manifold B(z) meet the boundary layer |v| = ±ε, and
which form the boundaries of the linear sticking region as described in section 5.
The result of these transitions are seen in stick-slip dynamics in the following
section.

8 Smoothed-out simulation, ε > 0

For the sake of simulation we use the smoothed-out form of the system (25) given
by (26), in terms of functions Λε(v) and Γε(Λ) consistent with (6) and (7). For
the function Λε(v) which smooths out the discontinuity in sign(v), any monotonic
function Λε(v) that satisfies Λε(v) → Λ(v) as ε → 0 should suffice. For all simula-

tions made here we take Λε(v) =
v/ε√

1+(v/ε)2
and Γε(v) = 1

1+(v/ε)2
, but remark that

alternatives such as Λε(v) = Erf(v/ε) or Λε(v) = tanh v/ε reveal similar behaviour
to what follows. The resulting smoothly-varying system will be stiff near |v| . ε

for small ε.
We apply a driving oscillation q̈(t) = −σ sinωt, so the model consists of three

sets of parameters: ρ, ε, and β for the friction model; k, c and N , for the bouncer;
ω and σ for the shaker. Experimental, numerical, and analytical studies of similar
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oscillator models can be found in [23,37,28,30,48,15], but in analytical consider-
ations these predominantly consider ρ = 0 only.

The shading in figure 8 shows linear and nonlinear sticking regions. One period
of a stick-slip oscillation is shown. Once per period the trajectory sticks for a time
interval δt ≈ π/2, and once per period it crosses directly between right-slip and
left-slip at around t ≈ −3π/4. The relaxation time β is sufficiently fast for static
friction to be observed as of spikes in the friction characteristic in figure 8(top-left).
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v(t)
y(t)

t

Fig. 8 Simulation of (26) with ε = 0.1, β = 0.1, λs = 2/3 (ρ = 3), k = 3.1, c = 0.1, N = 1,
σ = 2.4, ω = 1. Top left: the friction characteristic µ(v) plotted along the simulated trajectory,
as a function of the ‘compliant speed’ v̄ = v − εy introduced in figure 7. Right: a trajectory of
the periodic orbit. Bottom left: a plot of the y and v variables. Shading indicates the regions of
linear sticking (dark grey) and nonlinear sticking (light grey) from (18)-(19). A stick-slip oscillation
is seen, with sticking occurring in the nonlinear region. This and all subsequent simulations are
performed in Mathematica R©.

As we take successively smaller ε, the friction characteristic (top-left in fig-
ure 8) tends towards the set-valued system in figure 7(ii); one such simulation is
shown in figure 9(i), comparing favourably with figure 1(iv), and providing a sim-
ple smoothing of figure 7(ii). If we take the relaxation time β to be slower than the
smoothing parameter ε then, during direct transition from left to rightward slip,
there will be insufficient time spent near v = 0 for static friction to be exhibited,
causing the spike in the upper branch of the friction characteristic to shrink as in
figure 9(ii). During sticking, however, the system spends sufficient time near v = 0
for the static friction coefficient to reach its peak, so the spike in the lower branch
at the transition from stick to left-slip is unaffected between (i) and (ii) of figure 9.

(i) (ii)

1

−1

_
v

μ(v)
ε=β=0.01

ε=0.01
β=0.1
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_
v

μ(v)

Fig. 9 The friction characteristic as ε is taken to zero. All value are as in figure 8, except: in (i)
ε = β = 0.01, in (ii) ε = 0.01, β = 0.1.

Note that the trajectory in figure 8 sticks (evolves along v = 0) in the nonlinear

sticking region (light grey), which only exists if we include the nonlinear depen-
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dence of µ on Λ, i.e. when ρ 6= 0. The kinetic friction model with ρ = 0 would
only stick in the linear region (dark grey), so upon setting ρ = 0 we obtain an
oscillation with left and rightward slip only, as in figure 10.

It is important to note here that the switching on or off of nonlinear terms by ρ
crucially changes the global dynamics — a cycle with stick in figure 8 but without
stick in figure 10.
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Fig. 10 Simulation corresponding to figure 8 but with ρ = 0, showing an oscillation with left and
rightward slip only, which pierces the nonlinear sticking region (light grey) without sticking.

In [34] it was predicted that nonlinear sticking of the kind seen in figure 8 was
robust to random perturbations only up to a certain magnitude (this might include
environmental noise or roughness of the contact patch, though the only specific
source of perturbations studied in detail so far has been that of external white noise
[35]). The results holds for perturbations κ on the order of the smoothing parameter
ε, when both are small. We introduce such perturbations to our simulation by
applying a random perturbation of size κ to the state {y, v} after every 1/500th of
a period (similar dynamics is obtained if perturbations are also made in z). The
simulation in figure 11 shows that nonlinear sticking persists for perturbations of
size κ = ε/5, but is destroyed in figure 12 by perturbations of size κ = 5ε. Note that
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Fig. 11 Simulation corresponding to figure 8 showing a stick-slip oscillation subject to no pertur-
bation (full curve) or to small noise of size κ (dotted curve), obtained with 5κ = ε = β = 0.001,
λs = 2/3 (ρ = 3), k = 3.1, c = 0.1, N = 1, σ = 2.4, ω = 1.

κ is small enough that the noisy and noise-less trajectories closely coincide almost
everywhere, the perturbations only having a significant effect near v = 0, where
they eliminate nonlinear sticking in the latter case, for small noise the nonlinear
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terms, and the difference between static and kinetic friction they produce, persist
under what are effectively two different perturbations: the small added noise, and
the smoothing of the discontinuity (figure 11). With sufficient noise the system
behaves as if ρ = 0, and hence neglects static friction (figure 12), removing the
segment of sticking.

−2

π/2

0

π

2 1 0 −1

−0.5

0.5

stick

slip

non.stick

t

v

y

-π/2

Fig. 12 Simulation corresponding to figure 8 showing a stick-slip oscillation subject to no pertur-
bation (full curve), and the effect on this trajectory of small noise of size κ (dotted curve), obtained
with κ/5 = ε = β = 0.001, λs = 2/3 (ρ = 3), k = 3.1, c = 0.1, N = 1, σ = 2.4, ω = 1.

Lastly we show in figure 13 the friction characteristics for these two simulations,
confirming for κ < ε that the peaks consistent with static friction still appear in
the presence of noise (dotted curve), but for κ > ε the perturbations are large
enough to cause the trajectory to miss the peaks that constitute static friction.
Very little compliance is visible here because ε is small.
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Fig. 13 Friction characteristics for the simulations in figure 11 and figure 12 respectively, consti-
tuting (i) small noise and (ii) large noise. The full curve shows the unperturbed simulation. The
dotted curve shows the perturbed simulation, which exhibits the static friction peaks in (i), but
misses them in (ii).

A similar two-dimensional problem without driving studied in [34,35] showed
that nonlinear sticking can mean the difference between decay to a steady state
(with ρ = 0), and trapping into a stick-slip oscillation (with ρ 6= 0). Moreover in
[35] it was shown in a stochastic setting that sticking modes can be interpreted as
potential wells, escapable under sufficient perturbation due to noise.

9 Closing remarks and friction-inspired models

In effect, the standard theory of piecewise-smooth dynamical systems amounts to
assuming the true system is a regular perturbation (1) of a discontinuous system
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(see [25] and also [2]). Discontinuous functions as approximations are, however,
more commonly encountered in singular perturbations, which may take different
analytic forms on disjoint domains, and therefore exhibit discontinuities in the
transition between regions (in this case at v = 0)

Other than the model considered in section 2, there are many specific phys-
ical bases upon which one might build an argument for the kind of nonlinear
switching terms considered here. While it is to be hoped that these models can be
improved by detailed comparison with experiment, improvements in our general
mathematical intuition are helpful in navigating the multitude of possible physical
considerations. Early theories modelled friction by considering interaction of sur-
face features such as asperities [4,9,16,42,43], but static friction and stick-slip are
observed even in asperity free and atomically smooth interfaces [38,32], and dissi-
pation of energy via phonons seems to play a crucial role [38,53,14]. Other models
attribute friction to a drag effect due to energy loss through phonon generation
[3,10,46], or electronic drag not due to van der Waals forces but to currents in
the electron cloud [44]. In seeking greater insight, attention turns to microscopic
effects such as atom-scale deformations [54], macro-microscale stress interactions
during relaxation [47], or third body effects of adsorbed molecules acting as pins
[29], and building from these to reproduce macro-scale behaviour is where dis-
continuous models may help. The model (5) provides a mathematical framework
by which such small-scale structure can be captured in a discontinuity, and using
a toy model based on its key properties, we showed how this leads naturally to
friction characteristics such as static friction and hysteresis.

One enduring attraction of Coulomb’s kinetic friction model is that it expresses
friction with only a single parameter: a coefficient giving a fixed proportionality to
the normal load, (and in mathematical analysis even this parameter can be scaled
to unity). Generalisations of the model that replace the discontinuity (figure 1(i))
with a smooth nonlinear function (e.g. figure 1(iv)) cause the list of parameters to
grow quickly. Models of a dynamically evolving friction force are traceable from
Dahl [16] through various developments to, for example, the LuGre model [8,4,
42] where a friction force F = ksz + csż + cv evolves according to the deflection
z of bristles on the surface, with stiffness ks and damping cs, including a viscous
friction coefficient c, and Stribeck velocity vstr below which speed dependence is
seen; bristle models capture the key effects of friction and yield a smooth force
law, and have inspired many variations on the model, usually bringing with them
more coefficients connected with nonlinearities, giving dependence on acceleration
or forming alternative models of asperities. For example in [55] it was proposed
to switch the contact force between accelerative, decelerative, and static modes,
requiring several quantifiers of effects including compliance or friction memory and
hysteresis, Stribeck velocity dependence, dwell times in stick-slip transition, and
static friction.

The interesting and most general open problem is then to relate the nonlin-
earity that enters via the second term of a switching model of the form µ(v) =
Λ(v) + L(v)Γ (v) to specific applications. The addition of nonlinear terms via the
function Γ is an obvious generalization of Filippov’s method [25] introduced in [34],
which furthermore gains an interpretation in terms of potential wells in a stochas-
tic framework discussed in [35]. The key property is that the nonlinear terms are
only of significant size at or near the discontinuity, introduced by functions of
the form (7). In typical applications these nonlinearities might be associated with
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an energy cost involved in the switching process (e.g. noise, adhesion, or adverse
heating), as one example. The choice L = Λ made in (5) was a simple example
that, as shown, is able to account for static friction, and one may seek to derive a
more precise form from any of the underlying physical processes mentioned above.

The practical problems of stick-slip (e.g. squealing brakes) and static friction
(jolt when released from stick) remain a source of wear and instability in me-
chanical engineering, and moreover with modern applications revealing stick-slip
dynamics on scales ranging from earthquake dynamics to atomic force microscopy,
the story of friction is far from its end. The interest in such dynamics also goes
beyond friction, since much of our mathematical modeling of social, biological, and
other neoteric physical or engineering dynamical systems, draws inspiration from
familiar notions in classical mechanics, among them relays in electronic circuits,
biochemical switching in neural pathways or cell growth, and decision making in
social behaviour. The mathematical description of friction therefore has implica-
tions for our understanding of interaction dynamics in the broader sciences. The
results we derive here can be applied to switching dynamics in all such systems.

A Switching asymptotics

The main contributions to the integral (3) come from the maxima of the envelope a(k). There
may be many such maxima, but near each we obtain expressions of the following form. We
expand the phase θ(k) as a Taylor series, and with a little manipulation we approximate the

integral as an envelope which is gaussian a(k) ≈ e−k2/2 or gaussian-like (e.g. a(k) ≈ 1/(1+k2)),

with a linear phase θ(k) ≈ ρk for constant ρ. Taking for example a(k) = e−k2/2 we have

µ(v) = Re

[

Erf

(

v/ε − iρ√
2

)]

∼ sign(v) −
√

2

π
e(ρ

2
−v2/ε2)/2 Re



eiρv/ε
∞
∑

n,m=0

(iρ)mCnm

(v/ε)2n+1+m





∼ sign(v) ×
{

1−
√

2

π

e(ρ
2
−v2/ε2)/2 cos (ρv/ε)

|v|/ε
+ ...

}

. (37)

The first line denotes the real part of the standard error integral [1] denoted Erf, the second

(with coefficients Cnm =
(−1)n(2n−1)!!(2n+1)!

(2n+1−m)!m!
) follows from its asymptotic approximation for

large argument and |v|/ε ≫ ρ, whose leading order terms are shown in (37). The v/ε limit
of the integral introduces a cut-off similar to Gibbs phenomenon in Fourier series or ringing

in signal control [27]. Taking a(k) to be any of e−k2/2, 1/(1 + k2) or sech2(k), even when
introducing more complex oscillations by replacing cos θ(k) with, say, cos(ρ1k) cos(ρ2k) or
cos(ρ1k) sin(ρ2k)/k, all yield the same asymptotic form (2). These all tend towards a curve
like figure 2(ii) in the limit ε → 0, which has peak values µ = ±µs which are ε-independent
and therefore remain clearly defined in the limit ε → 0. In the example (37) the peak has

height µs ∼ 1 +
√

2
π

4ρ3

π2 e−π2/8ρ2 and lies at v ∼ ±πε/2ρ.

To obtain (5) from (4) we can then define a continuous monotonic approximation of the
sign function, a suitable and convenient choice being

Λε(v) =
v/ε

√

1 + (v/ε)2
= sign(v) −

∞
∑

n=1

bn

(iv/ε)2n
, (38)
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which satisfies (6), with coefficients bn = sign(v)
(2n)!

∏n
m=1(2m − 1)2. Using (38) to replace the

sign function in (4), we obtain

µ(v) ∼ Λε(v) +
∞
∑

n=1

{

i2nbn + cnq(v/ε)
}

(ε/v)2n

:= Λε(v) + ρLε(v)Γε(v) , (39)

the second line being found by substituting v/ε with its inverse v/ε = Λε/
√

1− Λ2
ε. Based on

the qualitative form of (37) we approximate Lε(v) in (39) as Lε(v) = Λε(v) for the sake of
the friction model in (5). The constant ρ controls the peak height µs of the function µ(v), the
precise relation depending on the functional form of µ. The result (39) is expressed in terms
of the function Γε(v) = 1− Λ2

ε(v) which satisfies (7), and

Lε(v) =
1

ρ

∞
∑

n=1

i2nbn+cnq(v/ε))

Λ2n
ε (v)

(

1− Λ2
ε(v)

)n−1

=
c1q (v/ε)− b1

ρΛ2
ε(v)

+ O
(

1− Λ2
ε(v)

)

, (40)

where ρ serves as a normalisation constant at v = 0. The finiteness of Lε(v) at v = 0 follows
from that of µ. In (40) we separate the leading order term in Lε(v) from those of order
1− Λ2

ε(v), which vanish as |v|/ε → ∞.
The asymptotic form (37) lends some interpretation to the features of the friction curves in

figure 2. The sign(v) term is the dominant contribution to the integral, arising from wavenum-
bers associated with lower energies and thus independent of the speed-dependent high energy
cut-off at wavenumber k = v/ε, and this clearly corresponds to the kinetic friction component
figure 1(i). At small v the cut-off becomes important, creating decay away from the steady
value |µ| ≈ 1 towards µ ≈ 0, plus an oscillation dominated by wavenumbers near k∗ = v/ε
that results in peaks at ±µs; in the Gaussian model these occur at v = ±vs := πε/2ρ. The
peak amplitude µs is ε independent (since vs/ε can everywhere be replaced by π/2ρ), so the
peaks remain at the same height as ε → 0 as shown in figure 2(ii), reproducing the static
friction component of figure 1(ii). For ρ = 0 there are no peaks, while for larger ρ there appear
multiple peaks and dips at small but non-zero speeds (not shown); these dips in the friction
force may or may not have physical application.

The peak seen in figure 2 is just the first of a sequence of oscillations that grow as we
take ρ larger (i.e. a faster oscillating integrand), and they need not (though they do in this
case) grow so rapidly in amplitude with ρ. Such oscillations may be of interest for modeling
elsewhere, and can be dealt with using similar methods to those we introduce, but we limit
this paper to investigating the application of a single peak model to a simple friction problem.

B Perturbation to β > 0 and ε > 0

Consider the full discontinuous system (25) for small β > 0, in terms of variables {y, v, z} and
the functions Λ(v), Γ (v), from (6)-(7). On v = 0 the values Λ(0) and Γ (0) shall be replaced
by dummy variables λ and γ(λ) according to (9).

Proposition 5 For max[|q̈(t)|] ≤ Nµs there exists a strip of periodic orbits with fixed

{y(t), v(t), z(t)} = {y0, 0, γ(ζ)}

satisfying |y0| ≤ (Nµs −max[q̈(t)]) /k and with ζ any solution of

0 = q̈ − ky0 −Nζ (1 + ργ(ζ)) : |γ(ζ)| ≤ 1 .

If λs > 1 with λs defined by (16), these periodic orbits are all attracting, if λs < 1 those with
|ζ| < λs are attracting and those with λs < |ζ| ≤ 1 are of saddle-type.
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Proof A solution of (25) with fixed {y, v, z} must clearly have v(t) = 0 and z(t) = Γ (v), which
implies a sticking trajectory. Therefore we use the sticking variables (9). By (19) sticking
trajectories must satisfy q̈(t) − Nµs ≤ ky(t) ≤ q̈(t) + Nµs, and for fixed values y(t) = y0 to
exist it is sufficient to have max[q̈(t)] −Nµs ≤ ky0 ≤ −max[q̈(t)] +Nµs, which has solutions

for y0 only if max[q̈(t)] ≤ Nµs. The eigenvalue along the ζ-direction is ∂ż
∂z

= −1 by (25)
and therefore attracting, and note that y is stationary in the sticking mode by (21) and (24).
Finally, sticking solutions satisfy (24) and therefore lie in the surface B(z) defined in (22),
obeying λ(t) = ζ for some ζ, which implies 0 = q̈ − ky0 − Nζ (1 + ργ(ζ)). Such a fixed point

is attracting if ∂λ′

∂λ
< 0 and since ∂λ′

∂λ
= −N (1 + ργ(ζ)) substituting λ = λs and re-arranging

gives |ζ| < λs, which applies if λs < 1, and otherwise |s| < 1 if λs ≥ 1, in short |ζ| < max[1, λs].

As a simple corollary, when Nµs = |q̈| there is only one sticking periodic orbit, given by
{y(t), v(t), z(t)} = {0, 0, 0}, which passes through at least one point on the sticking boundary,
thus undergoing some form of sliding bifurcation. For example if we take q̈(t) = −σ sin(ωt)
then the sticking boundary and the periodic orbit contact tangentially at t = π

2ω
where the

right-slipping speed vanishes, i.e. limδ→0 v̇|v=+δ = 0 with δ ≥ 0, and at t = 3π
2ω

where the

right-slipping speed vanishes, i.e. limδ→0 v̇|v=−δ = 0 with δ ≥ 0.

When Nµs < |q̈| there no longer exist pure sticking periodic orbits (i.e. purely within
v = 0), but one expects, since the system is dissipative, there to exist at least one attractor.
Typical behaviour of piecewise-smooth systems suggests that these will take the form of stick-
slip periodic orbits for parameters close to Nµs = |q̈|, undergoing brief intervals of sticking
between intervals of right and/or left slipping motion, though a complete study is beyond
our scope here. Stick-slip orbits were found in the case of the undamped c = 0 and non-
hysteretic β = 0 oscillator, and for a sinusoidal forcing q̈, in [28,37]. Crucially these and
other previous works that use Filippov-type solutions assume linear sticking, i.e. ρ = 0. Some
numerical simulations and experiments are given in [15,55], showing periodic, quasi-periodic,
and irregular motions, suggesting that further in-depth analytical studies are an interesting
subject for future work; note that the analysis in [55] introduces hysteresis and static friction
using multiple switching laws, instead of nonlinear sticking as introduced here, and various
multi-period orbits are identified in numerical and experimental data. In simulations similar to
those in section 8 but not shown here, periodic left-right slip and periodic stick-slip oscillations
are found at a wide range of parameters.
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