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Abstract

Sharp switches in behaviour, like impacts, stick-slip motion, or electrical
relays, can be modelled by differential equations with discontinuities. A
discontinuity approximates fine details of a switching process that lie be-
yond a bulk empirical model. The theory of piecewise-smooth dynamics
describes what happens assuming we can solve the system of equations
across its discontinuity. What this typically neglects is that effects which
are vanishingly small outside the discontinuity can have an arbitrarily
large effect at the discontinuity itself. Here we show that such behaviour
can be incorporated within the standard theory through nonlinear terms,
and these introduce multiple sliding modes. We show that the nonlinear
terms persist in more precise models, for example when the discontinu-
ity is smoothed out. The nonlinear sliding can be eliminated, however,
if the model contains an irremovable level of unknown error, which pro-
vides a criterion for systems to obey the standard Filippov laws for sliding
dynamics at a discontinuity.

1 Dynamics at a jump

It is common to assume that underlying any physical system are a set of well-
determined, and more-or-less smoothly varying, physical laws. Nevertheless,
smooth variations can give rise to discontinuities by means of, for example,
bifurcations, shocks, or singular perturbations. Discontinuities are a common
feature of empirical models in engineering and biology particularly, for exam-
ple in rigid body impact, stick-slip due to friction, and switches in electrical,
biochemical, or social dynamics. The question arises: if an observer is able to
reconstruct a set of physical laws only at the piecewise-smooth level, i.e. to the
extent that they involve a discontinuity, to what extent can the system dynamics
be uniquely determined?

The key to handling switches in dynamical systems lies in recognising that
a discontinuous vector field places certain restrictions on the flow it generates.
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This means that, while a vector field may not be well-defined at a discontinu-
ity, its flow is limited to certain geometry by its values either side of the jump.
This observation gives birth to the field of piecewise-smooth dynamical systems.
In essence, if a flow crosses a discontinuity transversally (figure 1(a)) then it
poses little more than an analytical inconvenience, namely a loss of differen-
tiability. While challenging to overcome, most qualitative features of smooth
systems carry over to such scenarios, and the relevant extensions to the theory
of attractors, bifurcations, and chaos are making significant progress (see e.g.
[6, 37] as a starting point). Entirely new theory is required when a flow grazes
a discontinuity (figure 1(b)), creating singularities and bifurcations not seen in
smooth systems (see e.g. [6, 9, 19]). But the true novelty comes when a flow
sticks to (or slides along) a discontinuity (figure 1(c)), then the system loses a
dimension, and this creates a loss of uniqueness in one time direction or the
other. Loss of histories resembles a form of super-stability that can be used to
build robust control systems [13, 35]. Non-unique futures provide a geometric
origin of unpredictability [16].
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Figure 1: A vector field f switches between f
+ above a surface and f

− below it. In (a), a
trajectory crosses the discontinuity, remaining unique and continuous, but non-differentiable. In
(b), a trajectory of ẋ = f grazes the discontinuity from below. In (c), a sliding trajectory is
constrained to evolve along the discontinuity due to the directions of f± (reverse time in (c) to
get the ‘non-unique futures’ referred to in the text.

Discontinuities in dynamics were familiar even before the advent of calculus
made them an analytical nuisance. Friction is a good example. Push an object
along a rough surface and you can predict if and where it will become stuck due
to friction. But find an object being held at rest by friction, and you cannot
infer whether it was previously in motion at all. Such non-invertibility in a
bulk/macroscale model is the dynamical hallmark of discontinuity.

The discontinuity arises because the friction force opposes the direction of
motion, for example −sign(ẋ), while being proportional to the normal reaction
force FN between the objects in contact. Hence each object experiences a force
of the form mẍ = −FN sign(ẋ), and the phenomenon of sticking inhabits the
threshold ẋ = 0 in between. The discontinuity at ẋ = 0 remains at the heart
of macroscopic models of friction (e.g. [23, 14, 26, 38]). But the force law
mẍ = −FN sign(ẋ) is ambiguous, because the value of sign(ẋ) is not uniquely
defined at ẋ = 0. The functions

sign(ẋ) + (1 − [sign(ẋ)]2), [sign(ẋ)]3, sin [sign(ẋ)π/2] , ...

and infinitely many others, all have the value sign(ẋ) for ẋ 6= 0, yet they can
give very different behaviour at ẋ = 0 (as we will show). This is perhaps
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not surprising, and was remarked upon quite rigorously by Filippov and others
[1, 12], but less obvious is how to handle such ambiguity usefully. In general,
how we resolve the discontinuity matters, both for dynamical simulation and
for improving on empirical models. We show in this paper how such models
can be treated without destroying the powerful concepts of piecewise smooth
dynamics.

Friction exemplifies two crucial points that we formalize here. Firstly, the
precise physics of the switching process is often elusive, being governed by activ-
ity on faster timescales and smaller physical scales than the wider system, and
this leaves ambiguity in a macroscale dynamical model. Secondly, microscale ef-
fects that are infinitesimally small away from the discontinuity can nevertheless
dominate the macroscale dynamics near the discontinuity. These problems are
not built into the present theory of piecewise smooth dynamical systems, but
here we show that a few simple extensions to the theory are all that are needed.
This opens the way to deeper study using the language of singular perturbations.
Finally we ask why discontinuous models are effective in many practical appli-
cations despite these problems, developing a partly heuristic argument showing
that unmodelled errors can eliminate ambiguities at a discontinuity, if their
influence is sufficiently strong.

The canonical approach to sliding dynamics is paraphrased and generalized
in section 2. This leads to types of dynamics at the discontinuity that are
outside standard theory, so we begin their investigation in section 3. The relation
to smooth systems is studied via slow-fast dynamics in section 4, concluding
with the result that, in a smooth system, switch-like behaviour is sensitive to
exponentially small perturbations of the overall system. Both the ambiguity
and its elimination by unmodelled errors are illustrated in a friction model
in section 5, and the mechanism by which errors eliminate these ambiguities
is discussed more generally in section 6. A few closing remarks are given in
section 7.

As a general framework, consider a system that switches abruptly between
two different regimes of behaviour, say ẋ = f+(x) and ẋ = f−(x), when some
scalar function h(x) changes sign. We assume x is a vector variable, the dot
denotes differentiation with respect to time, and f± are smooth vector fields,
giving a prototype discontinuous system

ẋ =

{

f+(x) if h(x) > 0 ,
f−(x) if h(x) < 0 ,

(1)

Since the righthand side is not defined when h = 0, the first problem of
piecewise-smooth dynamical systems theory is to complete (1) by prescribing
the dynamics at the switching surface, i.e. when h = 0.

This is not the only way to set up this simple problem. The discontinuity
in (1) may occur because a particular term switches value. If we assume some
s switches between +1 and −1 as h changes sign, we can write

ẋ = f(x; s) =

{

f(x; +1) if h(x) > 0 ,
f(x;−1) if h(x) < 0 .

(2)
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The two systems (1) and (2) are equivalent for h 6= 0, simply by equating

f+(x) = f(x; +1) and f−(x) = f(x;−1) . (3)

Studying h = 0, however, the description (2) provides a more general theory,
from which (1) can be obtained as a special case (see Examples 1-2 in section 3).

We have already, in (1)-(2), the seed of two different ways of approaching
the problem of how to derive dynamics at h = 0. The model (1) is that of the
impotent observer, who measures the value of the vector field without knowing
its inner workings. The model (2) suggests that a certain physical parameter s is
known to be responsible for switching. In the next section we see how important
these perspectives can be in shaping our assumptions. Ideally, in applications,
one should like to move from a cruder model (1) to a more refined one in the
form (2) by improving one’s physical insight. Sections 2-4.1 provide tools for
such an approach, but along with sections 5-6 reveal inherent dangers too.

The lack of continuity at h = 0 has consequences for uniqueness. In the
classic works on nonsmooth dynamics [11, 12], this non-uniqueness is defined
in terms of differential inclusions (replacing f with some set whose elements
include f±), with the aim of showing that certain added assumptions can lead
to unique dynamics. Our interest here is in avoiding those assumptions, and
asking how one might give explicit expression to more general classes of systems
that represent the different possibilities at h = 0, allowing one to form more
versatile deterministic models of physical processes.

The fact that dynamics at a discontinuity is to some extent ambiguous was
discussed at length in the seminal works on discontinuous systems [1, 11, 12],
but the development of analytical tools to study the physical consequences of
such ambiguity have been inconspicuous in subsequent work. Instead, there is
one prevailing convention due to Filippov [12] that involves seeking a linear (or
convex) combination of the values f± to define dynamics along the discontinuity.
Known widely as Filippov’s sliding dynamics (referred to in this paper as linear
sliding), this is the founding principle of the thriving theory of so-called Filippov
systems [6, 24, 37]. Part of our aim in this paper is to review this convention, in
the light of theoretical and applied developments made since Filippov’s crucial
work.

We derive a generalized formalism for dynamics at a discontinuity. In the
process we reveal an irony to which we will give formal expression. In short,
one expects that any ambiguity at the discontinuity can be resolved by forming
a more precise smooth model of switching. Instead, we show that more precise
models only worsen the situation by propagating these ambiguities. Under
certain conditions these ambiguities can be isolated, however, in such a way
that unmodelled errors tend to eliminate them. The result states that a certain
level of uncertainty in a system is required for Filippov’s ideal notion of sliding
to be valid.
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2 Resolving the dynamics at h = 0

In essence, the standard theory of so-called Filippov systems is a good approxi-
mation for system whose behaviour at h = 0 is of the form

ẋ = 1
2 (1 + λ)f+ + 1

2 (1− λ)f− +O (ε) , λ ∈ [−1,+1] (4)

in the limit of some small ε > 0 (sometimes written instead with 1
2 (1±λ)

replaced by λ and 1−λ). Is (4) sufficiently general for physical or biological
switching processes? Consider the adverse effects of switching in practice, such
as mechanical chatter or electrical heating, or the energy required to activate
the switch at h = 0, which is less significant perhaps for an electronic relay, but
more significant for a mechanical actuator or an animal predator undergoing
physical adaption to switch between prey. These are all effects that are not
obviously related to the ideal behaviours of the system, ẋ = f±, away from the
switch. A more general formalism for dynamics at h = 0 promises more freedom
in the way such phenomena are modelled.

Fortunately, a more general framework will not require the abandonment of
Filippov’s far-reaching methods, merely a straightforward extension that opens
up a diverse world of new piecewise-smooth dynamics.

The most definitive statement we can make about the systems (1) or (2) is
that f+ applies for h > 0 and f− applies for h < 0, so the model

ẋ = ffil(x;λ) := 1
2 (1 + λ)f+(x) + 1

2 (1− λ)f−(x) (5)

is consistent provided that λ = sign(h) for h(x) 6= 0. However, any system

ẋ = ffil(x;λ) + (1 − λ2)g(x;λ) ,

is also consistent with (1) for any finite g, since λ = sign(h) implies 1− λ2 = 0
when h 6= 0. More generally, any system

ẋ = ffil(x;λ) + γ(λ)g(x;λ) , (6)

is consistent with (1) for some function γ that is zero almost everywhere except
h = 0. It is sufficiently general to fix λ to lie in the interval [−1, 1], and γ to lie
in [0, 1], hence

λ(h) ∈
{

sign(h) if h 6= 0 ,
[−1,+1] if h = 0 ,

γ(λ) ∈
{

0 if |λ| = 1 ,
[0, 1] if |λ| < 1 .

(7)

Clearly the righthand side of (6) can be more simply expressed as a function
f(x;λ) that takes the values specified by (1) for h 6= 0, in the form

ẋ = f(x;λ) =

{

f(x; +1) if h(x) > 0 ,
f(x;−1) if h(x) < 0 ,

(8)

which brings us back to (2). The relation of (6) and (8), however, makes the
ambiguity at h = 0 explicit in a way that will be of use later. Thus (6) defines
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a class of continuous but set-valued systems that are consistent with a given
discontinuous system (1), and these can take an infinity of different g’s, λ’s and
γ’s subject to (7).

To complete the problem of extending (1) to h = 0, we must now find values
of λ, call them λ∗, that give rise to viable dynamics. There are only two basic
possibilities. Trajectories of the system could cross the discontinuity from h < 0
to h > 0 or vice versa, in which case trajectories of (1) can be concatenated
across h = 0 and there is no need to know the vector field at h = 0 itself.
Otherwise trajectories slide along the discontinuity, and then the vector field
f(x;λ) they follow on h = 0 needs to be defined. This vector field must clearly
lie tangent to h = 0, i.e. f · ∇h = 0, and this condition provides sufficient
information to define λ∗:

Definition 1. If solutions to

0 = f(x;λ∗) · ∇h(x) ,

0 = h(x) ,

}

(9)

exist for some λ∗ ∈ [−1,+1], then the system

ẋ = f sl(x) := f(x;λ∗) , (10)

defines the sliding modes of (1). If f depends linearly on λ we call these linear
sliding modes. If f depends nonlinearly on λ we call these nonlinear sliding
modes.

This provides a generalized definition of sliding dynamics. Scholars of nons-
mooth dynamics will recognise this phrasing as closer to that of Utkin [35] than
of Filippov [12]; the important point here is not so much the definition, but how
we understand its solutions via equation (6) and section 3. (Note that nonlinear
sliding modes are not related to higher-order sliding modes, which follow the
same vector field as linear sliding modes but satisfy higher order discontinuity-
following conditions 0 = (f(x;λ∗)·∇)rh(x) for all r = 0, 1, 2, ... up to some finite
R > 1, as found e.g. in [8].)

3 Stability of multiple sliding

Definition 1 can have multiple solutions at a point x on the switching surface,
defining multiple sliding modes. These are not part of the standard theory of
(linear/Filippov) sliding modes, so we introduce some basic results for handling
such multiplicity here.

The sliding system given by (10) is found by first solving the two alge-
braic equations in (9), namely 0 = h(x) and 0 = f(x;λ∗) · ∇h(x) for some
λ∗ ∈ [−1,+1]. In general there may be multiple values of λ∗ that satisfy these
conditions for a given x (see e.g. figure 2(a-b)), and each defines a different
sliding mode (10). A set of points where a sliding mode exists is called a sliding
region. Places where (10) cannot be solved for λ ∈ [−1,+1] are called crossing
regions. Typically, sliding and crossing regions form open subsets of h = 0.
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Lemma 1. Different numbers of sliding modes exist on subsets of h = 0, whose
boundaries consist of points where f+ ·∇h = 0, or f− ·∇h = 0, or d

dλ f ·∇h = 0.

Proof. If λ∗ lies on the edges of the interval [−1,+1], each condition λ∗ = −1 or
λ∗ = +1 generically defines a codimension one subset of the switching surface,
given by {x : h = 0, |λ∗| = 1} where λ∗ is a solution of (9). Across this subset,
λ∗ enters or leaves the interval [−1,+1], therefore the number of sliding modes
changes by one. At λ∗ = −1 we have ∇h · f− = 0 by (8) and (3). At λ∗ = +1
we have ∇h · f+ = 0 by (8) and (3); see figure 2(c). Assuming generically that
f± 6= 0 at h = 0, these constitute tangencies between the vector fields f± and
the switching surface h = 0. In the remaining case, λ∗ is a degenerate solution
of (10) when

d

dλ
[f(x;λ) · ∇h(x)] = 0 at λ = λ∗ . (11)

This condition generically defines a codimension one subset of the switching
surface, on which two or more solutions λ∗ coalesce, so the number of solutions
λ∗ changes by at least two across this subset.

In linear sliding (see definition 1), when the system (10) has at most one
sliding mode at any x, the cases where λ = ±1 are the boundaries between
sliding and crossing (see e.g. [12, 24]). The singularity (11) does not feature in
the standard literature on linear sliding modes, and we term it a sliding fold if

it is non-degenerate, that is, if d2

dλ2 [f(x;λ) · ∇h(x)] 6= 0 at λ = λ∗; an example
is shown in figure 2(d).
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Figure 2: Linear and nonlinear sliding dynamics. The vector fields f+(x) = f(x; +1) and
f
−(x) = f(x;−1) are shown at a point x on the switching surface h = 0. A sliding vector exists
wherever the interpolation {f(x;λ) : −1 ≤ λ ≤ +1} lies tangent to h = 0. Linear sliding (whose
vector f

fil rests on the dotted line) assumes the dependence on λ is linear, and gives: (a) one
sliding vector ffil; (b) one sliding vector labelled fil; (c) a sliding boundary where λ = +1; (d) no
sliding (i.e. crossing). Nonlinear sliding (whose vector f sl rests on the bold curve) gives, in this
example: (a) one sliding vector f sl; (b) three sliding vectors f sl labelled 1,2,3, each corresponding
to a different solution λ∗ of definition 1; (c) a sliding boundary where λ = +1; (d) a sliding fold.

If nonlinear sliding occurs (definition 1 with nonlinear dependence on λ), we
must determine how the presence of multiple sliding modes affects the dynamics.
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In particular we would like to know which of the sliding modes the system will
evolve along from a given initial condition. To understand this we need some
notion of whether sliding modes attract or repel the flow outside h = 0. We can
achieve this by fixing a point x on h(x) = 0, and considering sliding modes to
be fixed points of a dummy system

λ′ = f(x;λ) · ∇h(x) on h(x) = 0 , (12)

where the prime denotes differentiation with respect to a dummy time variable.
Let

S(x;λ) :=
d

dλ
f(x;λ) · ∇h(x) , (13)

then we say:

Definition 2. A sliding mode (a fixed point of (12)) is attracting if S(x;λ) is
negative, and repelling if S(x;λ) is positive.

Note that sliding modes are neither attracting nor repelling at a sliding fold,
because (13) vanishes, corresponding to a fixed point bifurcation in the dummy
system (12). A trajectory of the full system chooses between multiple sliding
modes as follows.

At a time t = t0 let a trajectory x(t) of (10) lie at (x(t);λ) = (x0;λ0) on
h(x0) = 0, with λ0 ∈ [−1,+1]. Then λ evolves according to (12) until it reaches
a fixed point, or leaves the interval [−1,+1]. If λ reaches a fixed point λ∗, then
the trajectory x(t) evolves continuously as a sliding mode according to (10)
from the initial condition (x(t);λ) = (x0;λ

∗). If λ leaves the interval [−1,+1]
at λ∗ = −1 or λ∗ = +1, the trajectory x(t) evolves away from h = 0 according
to (2) with the corresponding value λ = −1 or λ = +1.

A deeper intuition for why the dummy system correctly selects between
sliding modes will be left until the singular perturbation analysis of section 4.2.
We conclude this section with two examples and a lemma that contrast linear
and nonlinear sliding modes.

Example 1. In the case of linear dependence on λ we can write f = ffil using
(5), a sliding mode exists where (10) is satisfied, implying simply that f+ · ∇h
and f− · ∇h must have the same signs for crossing to occur, and opposite signs
for sliding. From (13), the stability of the sliding flow is given by

S(x;λ) = ∇h(x) · d

dλ
f(x;λ) = f+(x) − f−(x) ,

so sliding modes are attracting if f+ · ∇h < 0 < f− · ∇h, and repelling if
f− · ∇h < 0 < f+ · ∇h. Hence, in this case, ‘attracting’ and ‘repelling’ translate
directly into a unique system of sliding modes which attract or repel the flow
outside the switching surface. This is consistent with the standard Filippov
convention for so-called ‘sliding’ or ‘repelling’ dynamics at h = 0 [12].

Example 2. Consider a system in the plane x = (x, y), where s = sign(y) and

(ẋ, ẏ) = (2s2 − 1, 2s2 − s− x) .
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The discontinuity is at y = 0. Writing this in a form similar to (6), we have

(ẋ, ẏ) = (1, 2− s− x)− 2(1− s2)(1, 1)

so we can set x = (x, y), h(x, y) = y, f± = (1, 2∓ 1 − x), g = (−2,−2), λ = s,
and γ = 1 − s2. We can parameterize the system by (λ or) s ∈ [−1,+1]. Then
on y = 0 we apply:
◦ Linear sliding modes: Using definition 1, we treat the 1 − s2 simply as

1 − s2 = 0 everywhere, then by (9) there is an attracting sliding mode on
y = 0 for 1 < x < 3 and crossing elsewhere. By definition 2 the sliding mode
is attracting. In figure 3 the set

{

ffil(x;λ); λ ∈ [−1,+1]
}

(Filippov’s convex
combination from (5)) is indicated by the dotted straight line between the ends
of the vectors f±.
◦ Nonlinear sliding modes: Using definition 1, there are regions of 0, 1, or 2

sliding modes on y = 0 depending on the coordinate x. By (9), sliding modes
are found by solving 0 = 2s2 − s − x for s = λ∗, giving λ∗ = 1

4 (1 ±
√
1 + 8x),

which has real solutions for x ≥ − 1
8 , and they lie in the interval [−1,+1] for

1 ≤ x ≤ 3. Solutions correspond to the types (i)-(iv) illustrated in figure 3 as
follows: (i) for x < − 1

8 , (ii) for x = − 1
8 , (iii) for − 1

8 < x < 1, and (iv) for
x > 1 and x < 3; in (iii) the two sliding vectors f sl have opposite directions

for x < 25−
√
113

162 and the same directions otherwise. At x = − 1
8 there is a

sliding fold, where two sliding modes coincide. The repelling mode vanishes at
x = 1 where ∇h · f+ = 0, where s = +1. The attracting mode terminates at
x = 3 where ∇h · f− = 0, where s = −1. Thus there are two sliding modes for
− 1

8 < x < 1, but only an attracting mode (given by λ∗ = 1
4 (1 +

√
1 + 8x)) for

1 < x < 3, with crossing elsewhere.
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( i ) ( i i ) ( i i i ) ( iv)
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Figure 3: Linear and nonlinear sliding dynamics in Example 2. The dotted line joining f
± is

Filippov’s linear combination 1

2
(1 +λ)f+ + 1

2
(1− λ)f− with λ ∈ [−1,+1]. The bold curve is the

nonlinear combination f(x;λ) with λ ∈ [−1,+1]. Note that in (i)-(iii) the vectors f+ and f− do
not change qualitatively, so linear sliding predicts no sliding modes for (i)− (iii). Nonlinear sliding
predicts: (i) no sliding modes, (ii) a sliding fold, (iii) attracting and repelling sliding modes f sl

a
and

f
sl
r
. In (iv) there are unique attracting sliding modes both in the linear and nonlinear approach,

but their vector fields (labelled f
fil and f

sl) are different.

Observe in Example 2 that the region of linear sliding is a subset of the
region of nonlinear sliding, according to definition 1. This suggests a simple
rule that, when passing from a linear sliding model to a nonlinear sliding model
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(f has linear or nonlinear dependence on λ in definition 1), sliding regions can
extend into crossing regions, but not the converse:

Lemma 2. If there is a linear sliding mode at a point x, there will be at least
one nonlinear sliding mode, both solutions of (9)-(10) for different dependencies
on λ. If there are no sliding modes (i.e. crossing) at a point x, there may or
may not exist nonlinear sliding modes at x.

Proof. This is a straightforward consequence of the boundary conditions either
side of h = 0. If there is a linear sliding mode at a point p, then (9) has
one solution, implying that the normal components f±(x) · ∇h have opposite
signs. Therefore f(x;λ) · ∇h passes through zero at least once in the range
−1 < λ < +1, implying that, if f depends nonlinearly on λ, then (9) has at
least one solution giving at least nonlinear sliding mode. On the other hand, if
there are no solutions (crossing) to the linear sliding system, this implies that
the normal components f± · ∇h must have the same signs, but this does not
prevent f(x;λ) · ∇h passing through zero in the range −1 < λ < +1, in which
case (9) has solutions and defines nonlinear sliding modes.

A simple extension of this is that crossing/sliding in the linear sliding model
typically imply an even/odd number of nonlinear sliding modes respectively.
The dummy system (12) implies also that multiple sliding modes alternate,
when ordered by their λ values, between attracting and repelling (corresponding
to whether f · ∇h as a function of λ is decreasing or increasing, respectively, as
it passes through zero).

4 Asymptotic switching

One way of deriving Filippov’s convention [12] for switching dynamics is to
model the discontinuity as the limit of a boundary layer. Such regularizations
of the discontinuity are used for developing more intricate physical models, and
for smoothing a system to render it amenable to standard analytic or numerical
tools. In this section we consider the effect of smoothing out the discontinuity
at h = 0 over a boundary layer |h| < ε, for small ε > 0.

To do this we can simply replace the switching parameters λ and γ in (6)
with single-valued functions λ(h/ε) and γ(h/ε) that satisfy

λ (η) ∈
{

sign(η) if |η| > 1
[−1,+1] if |η| ≤ 1

}

+ ξ (η) , (14)

γ(η) ∈
{

0 if |η| > 1
[0, 1] if |η| ≤ 1

}

+ ξ (η) , (15)

where we define the function ξ(η) as satisfying

ξ(η) = O
(

e−r|η|
)

for some r > 1 , (16)
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(similar results are possible for weaker asymptotics, e.g. ξ(η) = O (|η|−p) for
some positive integer p). The functions λ and γ are then consistent with (7)
when ε = 0. For example we might have λ(η) = tanh η and γ(η) = sech2 η, then
ξ(η) = O

(

e−2|η|) (as in the proof of Observation 4 to follow in section 4.1).
Substituting (14) into (8) we have

ẋ = f(x;λ(h/ε)) =

{

f(x; +1) if h(x) > +ε
f(x;−1) if h(x) < −ε

}

+ ξ (h(x)/ε) . (17)

Lemma 3. The righthand side of (17) is asymptotic to the original discontin-
uous system (1) for |h| > ε.

Proof. This is a simple consequence of the fact that ξ = 0 for |h| 6= 0 in the
limit ε → 0.

This means that, for some function λ subject to (14), the system (6) with
(14)-(15) and some choice of ξ such as (16), is the general way of smoothing the
problem (1) across the discontinuity.

4.1 Exponentially small terms dominating the switch

As a consequence of the smoothing above, we have:

Observation 4. Terms that are exponentially small for |h| > ε in the system
(17) can be dominant inside the boundary layer |h| < ε.

Proof. Consider the system (6), assuming f+, f−, and g are finite vector fields.
It is convenient to define g̃ = g+ ffil, then (6) becomes

ẋ =
{

1
2 (1 + λ)f+(x) + 1

2 (1− λ)f−(x)
}

(1− γ(λ)) + γ(λ)g̃(x;λ) . (18)

If λ and γ are given by (7), then (18) has a switch at h = 0. To smooth this we
replace λ and γ with the functions (14)-(15). The choice of functions

λ(η) = tanh(η) and γ(η) = sech2(η)

satisfy the requirements of (14) and (15). We will use these to form an example
proving the observation. Substituting them into (6), for |h| > k > ε for some
fixed k, we have | tanh(h/ε) − sign(h)| < 2e−2k/ε and sech2(h/ε) < 4e−2k/ε,
implying

ẋ = f±(x) +O
(

e−2k/ε
)

ε < k < |h|,

where ± indicates the sign of h. Yet when we consider |h| < k < ε, for which
| tanh(h/ε)| < k/ε and | sech2(h/ε)− 1| < k2/ε2, we have

ẋ = g̃(x;λ) +O
(

k2/ε2
)

ε > k > |h| .

Putting these together,

ẋ =







f+(x) +O
(

e−2h(x)/ε
)

if h(x) > +ε ,
f−(x) +O

(

e+2h(x)/ε
)

if h(x) < −ε ,
g̃(x;λ) +O (h(x)2/ε2) if |h(x)| ≤ ε .

(19)
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Hence the term γg̃, which is exponentially small outside |h| > ε and not de-
termined by f+ or f−, dominates inside |h| < ε where the term (1 − γ)ffil is
polynomially small.

Despite being lost in the exponentially small terms for |h| > ε, the vector
field g contributes crucially inside |h| < ε, and can even dominate up to order
h2/ε2 in the ε-neighbourhood of the switch around h = 0.

4.2 Stability analysis in the boundary layer

Here we derive basic results of dynamics in the boundary layer from of viewpoint
of singular perturbations (see e.g. [10, 21]). The system (8) with (14) is a
singular perturbation of (1), in the sense that, for h 6= 0 at least, it reduces to
(1) in the limit ε = 0. The fate of (1) under singular perturbation has been of
interest recently, see e.g. [34], but previous studies assume linear sliding modes
only, i.e. the ramifications of γ and g in smoothing a discontinuity have not
been considered.

Taking the smoothed system (8) with (14), writing

ẋ = f ( x;λ(h(x)/ε) ) , (20)

let us introduce a scaled or ‘fast’ variable z = h/ε. The equation for the system
becomes ẋ = f (x;λ(z)), and in particular ḣ = ẋ · ∇h = f · ∇h, so

εż = f ( x;λ(z) ) · ∇h . (21)

Putting (21) together with h = εz for ε = 0, we have

0 = f ( x;λ(z) ) · ∇h
0 = h

(22)

which reproduces the discontinuous system (9)-(10) in definition 1. Still with
ε = 0, (20) with (21) defines a differential-algebraic system

ẋ = f ( x;λ(z) ) ,
0 = f ( x;λ(z) ) · ∇h ,

(23)

known as the slow subsystem in the literature on slow-fast systems. The con-
straint in the second line is known as the critical manifold, given in coordinates
x = (x1, ..., xn−1, εz) by

C =
{

(x1, ..., xn−1) ∈ R
n−1, z ∈ R : 0 = f ( (x1, ..., xn−1, 0); λ(z) ) · ∇h

}

. (24)

If we denote the derivative with respect to the fast timescale t/ε by a prime,
then set ε = 0 again, we obtain fast dynamics on z,

x′
i = 0 i = 1, ..., n− 1

z′ = f ( x;λ(z) ) · ∇h
(25)
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of which C is a set of fixed points of (25), parameterized by x1, ..., xn−1. These
fixed points are normally hyperbolic if

Ŝ(x;λ) = λ′(z)S(x;λ) (26)

is non-vanishing, where S(x;λ) = d
dλ f(x;λ) is the stability function in (13). If

we assume λ′(z) > 0 for |z| < 1, then the equation for hyperbolicity of C is

Ŝ(x;λ) 6= 0 ⇔ S(x;λ) 6= 0 . (27)

For ε nonzero, geometric singular perturbation theory [10, 21] guarantees the
existence of invariant manifolds of slow dynamics, approximated by (23), in an
ε-neighbourhood of C provided that (27) holds. Evidently the slow system (22) is
equivalent to the nonlinear sliding system in definition 1 on the critical manifold.
In the simple case when f depends linearly on λ, the sliding system (10) and
the slow system (23) have been shown to be topologically equivalent [33]; the
results of this section suggest that such a result can be extended rigorously to
the general case, that is, topological equivalence of (10) and (23).

Hyperbolicity breaks down at singularities where (26) vanishes. Generically,

when d2

dλ2 [f(x;λ) · ∇h(x)] 6= 0, these constitute geometric folds of the critical
manifold C. These are clearly associated with the sliding folds where (11) van-
ishes.

We are now equipped to express a vital consequence of Observation 4:

Proposition 5. Any discontinuous system (1) is the singular limit of infinitely
many qualitatively different smooth systems (20).

Proof. Let pm(λ) denote a polynomial in λ of order m > 0, such that pm(+1) =
+1 and pm(−1) = −1. Firstly, we can replace λ in (17) with any pm(λ). Then
for any f+(x) and f−(x), there exist infinitely many vector fields f(x; pm(λ)),
m = 1, 2, ...,∞, with different families of solutions to the sliding condition 0 =
f(x; pm(λ)) · ∇h for pm(λ) ∈ [−1,+1]. In the singular perturbation analysis
above, this means we can choose infinitely many different pm(x) for each of
which ẋ = f(x; pm(λ)) has a different family of branches of slow manifolds in
the critical limit ε = 0.

Restating this argument in terms of the alternative description (6) with (14)
and (15), we can introduce arbitrarily many different functions g and γ in (19)
such that: the order of g is independent of ε, the contribution γg vanishes for
h 6= 0 in the limit ε = 0, each g gives rise to qualitatively different dynamics
inside the boundary layer |h| < ε.

We conclude this section with a simple illustration of how linear sliding and
nonlinear sliding lead to different dynamics when smoothed out as described
above.

Example 3. Let us revisit Example 2, and smooth the system by replacing the
switching parameter s = sign(y) with s = tanh(y/ε) for small ε. Recall for this
system that λ and s are interchangeable, and γ = 1− s2 = sech2(y/ε), hence λ
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and γ are of the form (14) and (15). Starting from either a linear or nonlinear
sliding model we obtain the upper or lower panels of figure 4, where the labels
(i)-(iv) correspond to the smoothed-system counterparts of (i)-(iv) in figure 3.
Briefly, these are found as follows:
◦ Linear sliding modes: The linear method disregards terms which are ex-

ponentially small for |h| > ε, so we neglect the term 1 − s2 by setting γ = 0
everywhere. This yields the upper system in figure 4, we let z = y/ε, to find
that an attracting slow manifold z = −arctanh(x) exists for 1 < x < 3, losing
hyperbolicity and diverging to large z at x = 1 and x = 3.
◦ Nonlinear sliding modes: Using the full system with both λ and γ, setting

z = y/ε we find that the critical manifold is given by z = arctanh(1±
√
1+8x
4 ),

having an attracting branch for x > −1/8, and an repelling branch in −1/8 <
x < 1. This gives the lower system in figure 4. Near x = 1 the repelling branch
diverges to large z, and as it does so it loses hyperbolicity at x = 1 where
Ŝ = (4 tanh z − 1) sech2 z = 0. The attracting branch similarly diverges and
loses hyperbolicity near x = 3 (not shown). The two branches annihilate in a
geometric fold at x = −1/8.

( i ) ( i i ) ( i i i ) ( iv)
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x

x
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Figure 4: Slow-fast dynamics in the boundary layer |h| < ε. The cases of sliding modes f sl

given by (i)-(iv) correspond to those in Example 2. Top: when we smooth the system and neglect
terms that are exponentially small for |h| > ε, only an attracting slow manifold exists in region
(iv), corresponding to linear sliding. Bottom: smoothing using definition 1 without neglecting
small terms, where the slow dynamics on C is given by (23); gives: (i) no slow dynamics, (ii) a
geometric fold that gives rise to (iii) a slow manifold with attracting and repelling branches. In
(iv) only the attracting branch remains in the boundary layer and gives slow dynamics.

This analysis suggests that, when we smooth a discontinuous system, differ-
ent dynamics is possible in the boundary layer depending on how we smooth,
because we can allow nonlinear dependence on λ, and we can insert a function
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g that vanishes almost everywhere in the discontinuous system. In section 6
we will study the relative robustness of these different approaches to sliding
dynamics. First, let us apply these ideas to an example, namely a toy model of
friction, to see their potential for physical application.

5 Nascent effects at the discontinuity:

a friction example

We consider an everyday example from classical mechanics — the stick-slip mo-
tion of an object on a flat surface. The aim here is not to create a realistic dry
friction model. Despite its elementary nature in mechanics, the problem of mod-
eling friction with any generality remains an open challenge. This also makes it
an ideal setting to explore the novelties of switching outlined in sections 1-4.

The morphology and nonlinear interactions of the contact surface between
moving bodies, with the different forces and physical scales involved, earn this
basic contact problem a place in the modern fashion of complex systems. The
theoretical and experimental models of friction are diverse, and a review is
beyond our scope here, so we limit ourselves to particular references through
the text. In short, most models retain some resemblance to Coulomb’s “constant
times normal force resisting the direction of motion” (see e.g. [14]), which means
the contact force between objects switches abruptly as their relative direction
of motion changes.

The basic form for the friction force F felt by an object moving at speed u
over a rough surface is

F (u) = FN ×







+µ if u > 0 ,
−µ if u < 0 ,
µs if u = 0 ,

where µ is the coefficient of kinetic friction, µs is the coefficient of static friction,
and FN is the force on the object normal to the surface. Empirical evidence
suggests that µs is not simply related to the kinetic coefficient µ, indeed it
is often larger than µ, thus giving a friction force during a sticking phase of
F = µsFN /∈ [−µFN ,+µFN ]. Contrast this with the method of finding linear
sliding modes in definition 1, which would find the friction force at u = 0 by
interpolating F = λµFN for λ ∈ [−1,+1], placing it in the narrower range
F ∈ [−µFN ,+µFN ]. The fact that experiment allows |F | = µsFN > µFN

suggests that linear sliding is inadequate for modeling friction. An added force
g (as in (6)) can be applied to account for the excess static friction coefficient,
however, and dealt with using nonlinear sliding.

To see the friction force at work let us give our object on a surface just
enough dynamics to be interesting. Let the surface move at a constant speed
v = −1. Attach the object to a spring that exerts a force −x, and apply a linear
damping −0.3ẋ. Give the object a unit mass, subject to a unit normal force
FN , with a coefficient of kinetic friction µ = 1. (The values are convenient for
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illustration and not crucial to the results). The friction force depends on the
relative speed u = ẋ+ 1 between the object and the surface, so we have

ẋ = u− 1 , u̇ = −F (u)− x− 0.3(u− 1) . (28)

We let µ = 1, and take a large static coefficient µs ≈ 3 for ease of illustration.
A possible model for this is

F (u) = s+ 2πs(1− s2) , s = sign(u) . (29)

In terms of the quantities in (10) we have x = (x, u) and

f± = (u− 1, −s− x− 0.3(u− 1)) ,

g = (0, 2πs) , λ = s , γ = 1− s2 .

5.1 The nonsmooth models

We then consider dynamics under the approaches of linear or nonlinear sliding
in definition 1. In linear sliding we ignore the term 1− s2 because it is invisible
for u 6= 0, and thus consider only F ∈ [−1,+1] on u = 0. Trajectories in (x, u)
space can be sketched by inspection as in figure 5(a). In nonlinear sliding we
include the 1 − s2 term on u = 0, thus allowing F ∈ [−µs,+µs], giving the
sketch in figure 5(b).
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0
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2
x

0−2
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F

0
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Figure 5: Sketch of the system (28), using the linear sliding model (a) where F ∈ [−µ, µ] on
u = 0, and the nonlinear sliding model (b) where F ∈ [−µs, µs] on u = 0; the graphs of F are
shown inset. A trajectory that crosses, sticks, then releases, is shown, but in the stiction model
the sticking phase begins earlier and terminates later.

In the linear sliding model, the flow crosses from u > 0 to u < 0 if x > 1.3,
and from u < 0 to u > 0 if x < −0.7. In between these lie the sliding region,
−0.7 < x < 1.3, where the flow sticks to the switching surface u = 0 until it
reaches x = −0.7, and then decay towards an equilibrium position at a spring
extension x = −1 and slipping speed u = 1. In the nonlinear sliding model
the sticking region is larger, −2.7 < x < 3.3. In this case, if trajectories stick
to u = 0 then they slide until they reach x = −2.7, and then enter a periodic
stick-slip cycle. In figure 5 we sketch trajectories for an object starting at
(x, u) = (2.4, 1) in both models, calculated by solving the system (29) subject
to the rules for crossing or sliding described in section 3. Sticking starts earlier
in the nonlinear sliding model (b), and a greater spring extension x = −2.7 is
then required to pull the object free. Also, while linear sliding leads to eventual
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decay to a steady slipping speed u = 1, nonlinear sliding creates a stick-slip
cycle.

In essence, linear sliding is consistent with a simple Coulomb model of kinetic
friction, while nonlinear sliding is consistent with a ‘stiction’ model, exhibiting
different static and kinetic coefficients of friction. The paper [15] considers the
different dynamical effects that result with stiction, both numerically and exper-
imentally; little is discussed in that paper about how to analyse the dynamics
in the sticking phase, and a common assumption is made that the friction dis-
continuity can be smoothed. The present paper provides a way to model the
sticking dynamics in more detail, a way to analyse it rigorously (using nonlinear
sliding and slow-fast dynamics, both left to further work), and suggests that
smoothing is a less than trivial process.

Now we shall explore what happens to the friction example when the dis-
continuity at u = 0 is smoothed.

5.2 The smoothed models

Assume that the switch actually takes place over a length scale ε = 10−4, so the
friction law should be a smooth sigmoid-like function. Using (29) we can easily
achieve this by substituting

s = tanh(u/ε)

in (29). Such friction models are motivated by observations (see e.g. [3, 4, 14,
23, 25, 31, 32, 38]), though here we choose a simplified form to highlight the
problems of interest. (In particular we ignore hysteresis, to be included as an
error later, and we ignore the Stribeck effect which involves a non-constant F
away from u = 0, see e.g. [38], and is not relevant to the problem of dynamics
local to u = 0). The resulting functions λ and γ are consistent with requirements
(14) and (15), so the friction models then obtained from the linear sliding model
and from the nonlinear sliding model (shown inset in the top panels of figure 6)
are indistinguishable for |u| > ε up to exponentially small terms.

By solving the equations (28) with these smoothed friction models for F (u/ε),
we obtain numerical simulations as shown in the top panels of figure 6, corre-
sponding to the smoothing of the linear (a) and nonlinear (b) sliding models
in figure 5 respectively. These depict a trajectory (bold curve) with initial
conditions as in figure 5, and the dynamics in these smoothed models is indis-
tinguishable from the respective discontinuous systems in figure 5. In particular,
when we smooth out the nonlinear sliding model, the longer sticking phase and
stick-slip cycle persist.

The small parameter ε in the smoothing s = tanh(u/ε) introduces a slow-
fast separation of timescales. By scaling z = u/ε we obtain the dynamics of the
fast variable z,

εż = −F (z)− x− 0.3(εz − 1) ,

which implies, by setting ε = 0, that an invariant manifold of slow dynam-
ics exists near the surface 0 = −F (z) − x + 0.3. This is shown on the lower
row of figure 6 for the two models, where we zoom on the region |u| < ε by
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Figure 6: Simulation of (28) for the friction models F (u) = s (a) and F (u) = s+ 2πs(1− s2)
(b) with s = tanh(u/ε); graphs of F shown inset. A simulation of the overall flow is shown,
including the trajectory corresponding to those in figure 5 (bold curve), which switches smoothly,
but rapidly, at |u| < ε = 10−4. In the lower panels we zoom on the region |z| = |u|/ε . 1,
showing the simulation (bold curve), and the critical manifold x = 0.3− F (y) (thick grey curve).

transforming to the coordinate z. As described in section 4.2, existence of the
invariant manifold is only guaranteed in an ε-neighbourhood of points where the
surface x = 0.3−F (z) is normally hyperbolic. In this case normal hyperbolicity
implies that ∂ż/∂z ≈ −F ′(z) is not vanishing, which fails where F (z) = ±1,
and also near turning points of the graph x = 0.3 − F (z), where F ′ = 0. In
the smoothed linear sliding model (figure 6(a)) we see that F has no folds,
while in the smoothed stiction model (figure 6(b)) there is a fold at x ≈ −2.7
(independent of ε).

Solutions cross through the boundary layer |z| < 1 (or |u| < ε) unless they
encounter the slow manifold, to which they become stuck until the slow manifold
loses hyperbolicity, triggered by z approaching +1 in the smoothed linear sliding
model (figure 6(a) lower panel), and triggered more sharply in the smoothed
stiction model (figure 6(b) lower panel) when the trajectory meets a turning
point at x ≈ −2.7, after a longer phase of sticking.

5.3 The effect of modeling errors

We have seen that the important feature of the stiction model above is not
whether it is smooth or discontinuous, but that it is nonlinear in the switching
parameter – this nonlinearity reveals itself similarly whether the simulation is
smooth (figure 6) or nonsmooth (figure 5). We have neglected perhaps equally
important effects such as hysteresis in the force law, and irregularity in the
contact surfaces, but we will now show that a more refined model like the
stiction-like model in figure 6(b) is more sensitive to errors than the simpler
Coulomb-like model (obtained using linear sliding) in figure 6(a).

In figure 7 we repeat the simulations of the smoothed models, except that
we numerically simulate the effect of unknown errors of size κ > 0 by adding a
random vector κ = (κx, κu) to the state (x, u) after every time interval ∆t =
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0.16, with a normalization condition κ2
x + κ2

u = 1; these errors will be described
further in section 6. When we add such errors to the smoothed linear sliding
model in figure 6(a), they have a negligible effect, and we omit the simulations.
Let us then apply them to the smoothed nonlinear model from figure 6(b).
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Figure 7: Repeating the simulation of the stiction model (bold curve) in figure 6(b), with the
addition of unmodelled error of size κ = ε/2 (top) and κ = 3ε (bottom), shown by the dotted
curve. On the right we zoom on the region |z| = |u|/ε . 1, and to illustrate the simulation of
unmodelled errors we show the region (hatched) explored by repeated simulations from the same
initial condition.

We begin with a small error, κ = ε/2, which has little effect in figure 7(top),
and excess sticking is still observed. On the right we magnify the vertical co-
ordinate around the region |u| < ε (or |z| < 1), the hatched region shows the
range of these errors around the unperturbed trajectory. Due to the smallness
of the error and the stretched vertical scaling, the error is visible only near the
attracting branch of the slow manifold (grey curve), where the trajectory is
close to horizontal. The errors are too small for the trajectory to escape the
attraction of the slow manifold. For κ > ε the error quickly begins to have
a more noticeable effect, and in figure 7(bottom) the same simulation is made
with κ = 3ε. The error now eliminates the extended sticking phase, restoring
the linear sliding dynamics seen in figure 5(a). The magnification on the right
shows that these errors are sufficient to kick the trajectory outside the influence
of the attracting branch of the slow manifold, allowing it to escape the stick-
ing phase in the boundary layer |z| < 1 near x ≈ 1. Hence the sticking phase
terminates earlier, as predicted by the linear sliding model of figure 6(a).

The outcome of these different simulations is that the simplest Coulomb-type
model of friction is well described by the Filippov’s linear sliding convention,
leading to figure 5(a). Reassuringly to the casual user of discontinuous mod-
els, smoothing out the discontinuity has little effect (figure 6(a)). This can be
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misleading, however, because terms that are vanishingly small away from the
discontinuity can have a marked physical effect at the discontinuity, as in the
stiction model of figure 5(b). These effects are readily observable globally as
a stick-slip cycle, which persists when we smooth out the model (figure 6(b)).
Thus introducing an additive effect (the “+γg” in (6)) localised at u ≈ 0, can
account for phenomena such as differing static and kinetic friction coefficients,
at least in principle. Moreover, we see that introducing such terms suggests
the existence of static friction from mathematics alone. It remains an ongoing
challenge to accurately model friction in dynamical equations in a closed form,
and a more precise model should take account of likely complexities near the
discontinuity such as hysteresis, delays, and other time-dependent effects. Fig-
ure 7 suggests, however, that such refinements are eliminated if there remains a
sufficient level of error from unmodelled effects, which tend to push the system
towards linear sliding (figure 7(lower)). In section 6 we outline a scheme for
determining when and why this happens.

6 Unmodelled error

Equations such as ẋ = f(x), when used as idealized models of physical processes,
neglect various influences that can be described as unmodelled errors. One
assumes that any behaviours that are clearly discernible are included in the
ideal model, while unmodelled errors are perhaps too complex, or too fleeting, to
encapsulate in a tractable system of equations. The usefulness of the idealization
assumes the errors have no significant effect on the longterm dynamics.

This may seem obvious, but it runs into trouble precisely in a model like (1),
where the presence of a discontinuity is known, but the exact dynamical laws at
the discontinuity are unmodelled. We have seen that terms which do not appear
in the model (1), while vanishingly small almost everywhere, can nevertheless
dominate at the discontinuity and thence massively alter the global dynamics.
A similar phenomenon appears in control applications, where unmodelled errors
are negligible except when excited by nonlinearities, of which discontinuities are
an extreme example (see e.g. [22, 29, 36]). These excitations can lead to high
frequency dynamics such as chattering, resulting in mechanical wear, power loss,
adverse heating and controllability degradation.

Let us take an idealized model in the smoothed form given in (6) with (14),

ẋ = f(x;λ) = ffil(x;λ) + γ(h(x)/ε)g(x;λ) ,

where ffil = 1
2 (1 + λ)f+ + 1

2 (1− λ)f−.
The quantity γ can be interpreted as the residence time (following [30]) in

the boundary layer, which is the fraction of each infinitesimal time interval for
which the state resides in the region dominated by the vector field g̃ = g+ ffil.
(This extends an interpretation that can be made in the case of linear sliding,
where λ gives the residence time in the region dominated by f+, leaving 1 − λ
as the residence time of f−). If a trajectory crosses the boundary layer then
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γ = O (ε). A trajectory that slides remains inside |h| < ε, so γ will be of order
unity.

In a system where we do not know the state x with certainty, the residence
time γ will instead be given by the probability, Pγ , that the true state of the
system lies inside the boundary layer. Let us formally denote the true state as
x + κ(x), where κ = |κ| is small. We will say little to specify κ except that
it assigns a vector-valued perturbation at the point x, which may come from a
continuous function or from some distribution, and may be time dependent. At
a specific point x when the error perturbation κ is applied, we can then write

ẋ = f(x′;λ) = ffil(x′;λ) + Pγ(h(x
′)/ε)g(x′;λ) ,

where x′ = x + κ(x). Although the vector fields ffil and g only contribute for
certain values of x, we can assume they are defined continuously for all x, and
therefore expand their Taylor series for small κ,

ẋ = ffil(x;λ) + Pγ(h(x+ κ(x))/ε)g(x;λ) +O (κ) , (30)

providing a model of the form (6), neglecting terms of order κ. The probability
Pγ(η) equals 1 if |η| > 1 and lies in [0, 1] otherwise, and therefore by (15), Pγ is
a valid replacement for the function γ.

To find Pγ , let the values x+ κ(x) be distributed inside a set Sκ(x) with a
density a(x), then define

Pγ (h(x+ κ(x))) =

∫

Sκ(x)∩|h|<ε
a(x)dS

∫

Sκ(x)
a(x)dS . (31)

In the limit of small κ we have Pγ = 1 if |h(x)| < ε, and Pγ = 0 if |h(x)| > ε,
consistent with (15).

For simplicity consider a point x on h(x) = 0, and assume that the size
of the error, κ, is constant, then Sκ(x) is an (n dimensional) spherical shell of
radius κ centred on x. Then for κ < ε we immediately have Pγ = 1. For κ > ε,
if x is uniformly distributed on the unit circle then a = 1, and we have

Pγ (h(x+ κ(x))) = surface area of Sκ(x)∩{x:|h(x)|<ε}
surface area of Sκ(x)

= 2 arcsin(ε/κ)
π ≤ 2ε

πκ +
(

2ε
πκ

)2

in two dimensions, and with different expressions in n > 2 dimensions, but
always scaling with ε/κ. If the distribution is not uniform then the probability
that the corrected location x+κ(x) lies in |h| < ε might be greater, for example
if κ has a preference to lie along h = 0. Consider in that case a Gaussian
distribution a = e−h2

, so the error tends to push x along the discontinuity.
Again, in two dimensions but easily generalized, for κ > ε we have

Pγ (h(x+ κ(x))) =
4
∫ ε

0
dhe−h2

/
√
κ2 − h2

4
∫ κ

0 dhe−h2/
√
κ2 − h2

≤
∫ ε

−ε
dhe−h2

∫ κ

−κ
dhe−h2

=
erfε

erfκ
,
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which is again of order ε/κ for ε ≪ 1 and κ ≪ 1, where erf denotes the standard
error function. (The inequalities in both calculations above can be verified
numerically.) In either case we can let Pγ (h(x+ κ(x))) = ε

κµ(x) for some
µ ∈ [0, 1], then (30) becomes

ẋ = ffil(x;λ) +
ε

κ
µ(h(x+ κ(x))/ε)g(x;λ) +O (κ) , (32)

and since the second term is of order ε/κ, it vanishes as ε → 0. Putting the two
results for κ greater or less than ε together, we have

ẋ = ffil(x;λ) + Pγ(h(x+ κ(x))/ε)g(x;λ) +O (κ) for κ < ε ,
ẋ = ffil(x;λ) +O (κ, ε/κ) for κ > ε .

(33)

Errors of size κ > ε therefore imply that an unknown vector field g, which is
significant only inside the boundary layer, will have an effect of order ε/κ. In
the limit ε → 0, the dynamics is then well described by Filippov’s linear sliding
modes. On the other hand, if unmodelled errors are smaller than the size of the
boundary layer, κ < ε, then the nonlinear sliding modes (10) that result from
the presence of g remain significant.

To make this heuristic argument more rigorous requires choosing particular
sources of unmodelled error. The case where unmodelled errors take the form
of external white noise is considered in [20]. The results are consistent with the
above and, of course, a more detailed picture emerges. White noise is seen to
destroy nonlinear sliding modes if the stochastic penetration of the boundary
layer is sufficient to overcome potential wells that represent sliding modes in the
solution of a Fokker-Planck equation. Similar studies remain to be carried out
for other sources of unmodelled error, and with such studies one hopes a clearer
general understanding will emerge.

In summary, in the simple models considered above, κ > ε ≥ 0 gives an
estimate of the balance of switching rate ε against the size of unmodelled errors
κ, for which either linear or nonlinear sliding modes are valid. More precise
and rigorous balances should be obtainable by assuming particular forms for
the errors, for example hysteresis or delay in the switching law, and stochastic
noise or otherwise distributed errors that alter the state; such specializations
are left to further study in specific applications.

7 Closing remarks

In section 5 we took a general model of discontinuous dynamics in terms of
nonlinear sliding modes, along with its perturbation by smoothing and its re-
sponse to errors, and applied it to a heuristic model that captures some key
characteristics of dry friction.

Another practical example we could consider besides friction is an electronic
relay-control circuit. Indeed, switching dynamics has its very roots in electronic
sliding-mode or variable structure controllers, whose design is guided by applying
Utkin’s method of equivalent control [35] (essentially definition 1) to a design of
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the form (2), rather than of the form (1), which permits nonlinear dependence
on λ and hence nonlinear sliding modes. Due to the resulting multiplicity of
sliding modes and a lack of theoretical formalism comparable to Filippov’s to
describe them, systems ẋ = f(x; s) that depend nonlinearly on a switch-control
parameter s are not used as standard in control applications. The results here
show that nonlinear switch design is possible in principle, creating multiple
attracting and repelling sliding modes and thus the potential for more versatile
dynamic control.

We also showed that unmodelled errors of size κ will tend to push the ob-
served dynamics towards that of a similar linear system (given by Filippov’s
dynamics), if the switch takes place over a region of size ε < κ. This outcome
was suggested informally by early authors. Andronov [2] remarked that Filip-
pov’s “real sliding” would be obtained if minor non-idealities of delays, small
time constants, and hysteresis, are taken into account, while ideal sliding, as
represented by our unknown function g, would win out in an idealized limiting
process. Slotine [30] distinguishes between unmodelled dynamics (which we refer
to ‘unmodelled errors’), versus uncertainties of the model (given by our function
g). It is hoped that the results presented here will stimulate closer study of the
way switching dynamics is modelled, including more rigorous investigations of
how distributions of noise, hysteresis, delay, and other perturbations evolve near
the discontinuity, and how these affect the robustness of dynamical models.

In the example above we smoothed out the friction law to allow two standard
tools to be applied: singular perturbation analysis (giving the slow manifolds
in figures 6-7), and numerical simulation of the initial value problem. The
computational and analytic effects of smoothing are actually poorly understood.
Indeed, we have shown that a system (1) may be the limit of any system (8) with
(14), the latter representing infinitely many possible functions with a different
dependence on λ, which is not fixed by the limiting system (1).

There are many reasons why a review of the fundamentals of piecewise-
smooth dynamics is necessary. Filippov’s convention is very powerful, but as
noted above, at least one alternative is familiar to users of variable structure
control [35]. The Filippov convention is strongly motivated by a predilection
for a flow that not only exists, but is unique, and it is becoming apparent that
this view is overly restrictive. Indeed, even in Filippov’s idealization, losses of
uniqueness of trajectories in forward time have been shown to be both generic
and physically observable [18, 19]. They give rise to physically useful notions
such as discontinuity-induced explosions [16, 17], and steps have been made to
understand them via singular limits of smooth systems [5, 33].

Attempts have been made to verify Filippov’s convention by smoothing out
the discontinuity [7, 27, 33, 34], or perturbing switches with noise [28], or inves-
tigating the effects of hysteresis and delay [36]. One must exercise caution with
such studies, because, as we showed generally in sections 1-4 and in the context
of friction in section 5, different assumptions can produce different outcomes.
One way to interpret different assumptions is now to express them as different
nonlinear terms γg, though which the discontinuity in (1) can be resolved in
different ways, each physically reasonable and mathematically solvable, yet each
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having different dynamical behaviour.
Evidently, not only can linear and nonlinear sliding modes be highly differ-

ent in the discontinuous system, but such dynamics persists when the system
is smoothed out, in the form of slow dynamics on invariant manifolds whose
attractivity corresponds qualitatively to that of the sliding modes. These can
then be studied rigorously (and in more detail than we have explored here) in
the setting of singular perturbation theory.

Finally, the ideas presented here highlight a danger of over-modeling complex
behaviour. In a system with switching, unknown errors can cause a system to
behave more like a crude model (with linear sliding) than a more refined one
(with nonlinear sliding). Stated another way, discontinuous models owe their
unreasonable effectiveness to unmodelled errors, which wash out effects that are
almost invisible away from the jump and yet would otherwise vastly alter the
dynamics. But this washing out of nonlinearities is not universal. By analyzing
the ambiguity in how we treat the discontinuity we can quantify the effect of
unmodelled errors, and estimate when they can be neglected.
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