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The method of solving piecewise-smooth differential equations by interpolating across their discon-
tinuities is discussed. An example is given of stick-slip motion of a block on a surface, where the
discontinuity of Coulomb’s friction force is resolved using Filippov’s standard method of differential
inclusions. We first show that this method cannot be justified in general, because the equations ei-
ther side of a discontinuity do not restrict dynamics on the discontinuity to the extent that Filippov’s
method assumes. We then show that allowing for unknown errors in the model restores Filippov’s
dynamics. The outcome is that a balance between accuracy and precision of a model determine
when piecewise-smooth systems methods are applicable. The result is particularly important in un-
derstanding how discontinuities relate to singular limits of smooth systems. In a practical sense the
effect of error here is analagous to the practical effect of dither: the presence of an imperfection to
eliminate the appearance of undesirable structure, in this case, lack of uniqueness at a discontinuity.

One assumes that underlying any system are a set
of well-determined, and more-or-less smoothly varying,
physical laws. Nevertheless, smooth variations can give
rise to discontinuities by means of, for example, bifurca-
tions, shocks, or singular perturbations. If an observer
is able to reconstruct a set of physical laws only at the
piecewise-smooth level, i.e. to the extent that they in-
volve a discontinuity like an impact or a switch, can
the system dynamics be uniquely determined? In other
words, does determinism survive a discontinuity?
Discontinuities arise in the mechanics of stick-slip dy-

namics or impact. They describe control switches in elec-
tronics and in living nervous systems, and transitions in
social, political, or economic models; see e.g. [7]. Their
practical utility suggests that differential equations can
have physically sensible solutions even at a discontinuity.
The theory of piecewise-smooth dynamics hails from

the Russian literature [1, 5, 14], from which a very ide-
alized notion of a ‘solution’ has grown. It is becoming
apparent that this traditional view is overly restrictive
(see e.g. [6]). The aim here is to lift the veil slightly by
giving formal expression to an irony, that the idealized
solution in common use is justified not by ignoring im-
perfections in the discontinuous model, but by carefully
accounting for their perturbative effect.
Consider the model of a system that switches sharply

between different regimes of behaviour, say ẋ = f(x; c)
where the parameter c switches between values c+ and
c− when some function h(x) changes sign. In the case
of friction, for example, c = µF sign(h) might be the
force between two rough surfaces with relative speed h =
u, for some normal force F and friction coefficient µ.
Typically we have no detailed knowledge of the equations
that apply at h = 0 as the switch occurs.
We have then a prototype discontinuous system

ẋ = f(x; c) =

{

f(x; c+) if h(x) > 0 ,
f(x; c−) if h(x) < 0 ,

(1)

where x and f are vectors. The righthand side is not
defined when h = 0, reflecting a lack of knowledge of
(possibly complex) processes that occur during switching
between f(x; c+) and f(x; c−) as h changes sign.

In practice we may know only the function values

f+(x) = f(x; c+) & f−(x) = f(x; c−) , (2)

without explicitly knowing the c-dependence of f(x; c).
With this in mind, Filippov completed the system (1)
by interpolating between f+ and f− at h = 0, making
a differential inclusion. There is no unique way to do
this, but Filippov (and the majority since) focussed on
the convex combination,

ẋ = λf+(x) + (1− λ) f−(x) , λ ∈ [0, 1] . (3)

This physically reasonable result arises, for example, in
the limit of small hysteresis or noise in the switching pro-
cess (see e.g. [4–6, 9, 14]). An interpretation which we
will find useful is to consider λ as the fraction of any time
instant for which ẋ is dominated by f+, and 1−λ as the
remaining fraction for which ẋ is dominated by f−.
As stated above, this is a reasonable convention, but

a convention nonetheless. The hope that Filippov’s dif-
ferential inclusion is the correct choice has given birth to
a thriving piecewise-smooth dynamical systems commu-
nity, of broad use from designing electronic controllers
to studying population dynamics. Unfortunately, there
are infinitely many alternatives to (3) that do not give
equivalent dynamical solutions. Moreover there exist sit-
uations where (3) is demonstrably incorrect, seeming to
condemn this approach to be esoteric and system-specific.
This letter is devoted to analysing if, and when, Fil-

ippov’s method is valid. We first show that the method
is not generally correct if we assume a model to be ex-
act, and this has implications, in particular, for attempts
to approximate the discontinuity by a smooth transition.
However, since any model is only an idealization that ig-
nores certain errors, we can isolate the only robust part
of the dynamics, which we show is indeed the commonly
used result, namely (3). Moreover, conditions can be
found for when this rule applies.
Let us assume that the switch actually takes place

within a small neighbourhood |h| < ε for some small
constant ε, so (1) becomes

ẋ =

{

f+(x) if h(x) > +ε ,
f−(x) if h(x) < −ε .

(4)
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We can set ε = 0 at any time to obtain the original
discontinuous system, but resisting this affords a more
general argument. To continue the system to |h| ≤ ε, let
(4) be subsumed into

ẋ = f
(

x; λ(h)c+ + [1− λ(h)] c−
)

, (5)

introducing a function λ(h) that satisfies

λ(h) ∈







1 if h > +ε ,
0 if h < −ε ,
[0, 1] if h ≤ ε ,

(6)

so that the righthand side equals (4) for |h| > ε. Equation
(5) is an alternative to (3) which interpolates between
the parameter values c± instead of the function values
f± inside |h| ≤ ε. Are the two consistent? An attempt
to write (5) closer to the form (3) gives

ẋ = φ(x)f+(x) + (1− φ(x)) f−(x) , (7)

using φ in place of λ. Unlike (3), however, where λ was
limited to the interval [0, 1], the function φ is given by

φ(x) =
[f(x; c) − f−(x)] · ∇h(x)

[f+(x)− f−(x)] · ∇h(x)
, (8)

which depends on x, not just on h(x). So if f(x; c) is
unknown for |h| ≤ ε, then the way φ varies with x near
h = 0 is unknown. To make this lack of knowledge more
explicit let us seek a form closer to (3), insisting that
the vector fields are multiplied by functions of h only.
This is achieved by introducing a new function µ(h) that
satisfies

µ(h) ∈

{

0 if |h| > ε ,
[0, 1] if |h| ≤ ε ,

(9)

and writing

ẋ =
[

λ(h)f+(x) + (1− λ(h)) f−(x)
]

(1− µ(h))

+ µ(h)fε(x) , (10)

by subtituting fε = f− + (f+ − f−) (λµ− λ+ φ) /µ. For
some functions λ and µ subject to (6) and (9), and a
function fε which is unknown (since φ(x) is unknown in
|h| < ε), the system (10) is actually the general way of

regularizing the problem (1) across the discontinuity.
Filippov’s convention (3) assumes that µ is identically

zero, but we have no justification for this in |h| < ε. To
see why, we can interpret the quantities λ, 1 − λ − µ,
and µ, as fractions of any time instant for which the dy-
namics is dominated by each vector field f+, f−, and fε,
respectively; this can be called the residence time in each
field (following [10]). Since trajectories can slide along
the discontinuity for arbitrarily long times, the fraction
µ may be close to unity, and µfε may not be negligible.
The outcome of this is that the velocity ẋ depends on

fε (or f0 if ε = 0). This is fatal because the function fε is
unknown and need not be restricted by the values f+ or
f−. The fε-dependent dynamics near the discontinuity is
therefore entirely unknown. Filippov himself comments
on this [5], but leaves the notion that his method works
only for systems ‘close to’ the µ = 0 model, in a sense
that has never fully been established.

The outcome from (10) is that in general physical ap-
plications there is no way to uniquely “fill in” a disconti-
nuity in a differential equation. Since the success of dis-
continuous dynamics in applications suggests otherwise,
let us reconsider why we write a model in a form like (1)
to begin with, then see where the result (10) leads us.
When modeling even simple real world systems we ne-

glect many sources of error, some knowingly, and some
which can never be quantified. We rely on the stability
of a system to preserve its qualitative behaviour despite
such errors, and we are wary that nonlinearity can make
this fail spectacularly, as happens with chaos. In the
problem above it seems that the system becomes uncer-
tain near the discontinuity, particularly when trajectories
spend a significant time in its vacinity. The source of un-
certainty is our lack of knowledge of the exact laws of
some real system, so let us consider how effects omitted
from our model would affect solutions of (10).
If changes in state over small time intervals δt take the

form δx(x) = f(x)δt, we write an empirical model for
the system as ẋ = f(x). Then let us assume that this
contains errors in both the state and the vector field, so
that the true system evolves according to δx = f(x +
κξ(x)) +κg(x), where κ is a small constant, while ξ and
g are finite vector functions (if these are time-dependent
we can include t in the vector x). The shifts ξ and g

may account for effects such as hysteresis, delay, random
noise, or other neglected errors; the important point is
that they are not known exactly.
When we attempt to integrate small intervals δx to

find a solution x(t) =
∫

δx(t), we have

x(t) =

∫ t

0

dtf(x(t) + κξ(x(t))) + κ

∫ t

0

dtg(x(t)) . (11)

Expanding f in powers of κ we can write f(x + κξ) =
f i(x) + κξf ′(x) + O

(

κ2
)

, where i is either +, −, or ε
depending on the value of h(x+ κξ). We therefore have

x(t) =

∫ t

0

dt

{

f±(x) if h(x+ κξ(x)) > ε
fε(x) if h(x+ κξ(x)) < ε

}

+κ

∫ t

0

dtξ(x(t)) + κ

∫ t

0

dtg(x(t)) + O
(

κ2
)

. (12)

The second line is of order κ (though for large time pe-
riods, of order 1/κ, these integrals can give significant
deviations, as in chaotic systems for example). So the
integral is given, for moderate time periods at least, by

x(t) =

∫ t

0

dt

{

f±(x) if h(x+ κξ(x)) > ε
fε(x) if h(x+ κξ(x)) ≤ ε

}

+ O (κ) .

(13)

We can assign weights to these two outcomes. For sim-
plicity assume |ξ| = 1, and express the probability that
x+ κξ lies inside the ε-neighbourhood of h = 0, as

P [h(x+ κξ(x)) ≤ ε] =

∫

Sκ(x)∩|h|<ε
a(x)dS

∫

Sκ(x)
a(x)dS

, (14)

integrating over surface elements dS on the (n dimen-
sional) spherical shell Sκ(x) of radius κ centered on x.
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The function a(x) gives a probability distribution for ξ.
If x is uniformly distributed on the unit circle we have

P [h(x+ κξ(x)) ≤ ε] =
area of Sκ(x) ∩ {x : |h(x)| < ε}

surface area of Sκ(x)

≤
ε band around equator of Sκ(x)

surface area of Sκ(x)

≈
4ε

2πκ
=

2ε

πκ

in two dimensions, and with different expressions in n > 2
dimensions, but always of order ε/κ. If the distribution is
not uniform, ξ could have a preference to lie along h = 0
which will raise the probability that the corrected loca-
tion x + κξ lies in |h| < ε. Consider instead a Gaussian

distribution a = e−h
2

, so the error tends to push x along
the discontinuity. Again, in two dimensions but easily
generalized, we have,

P [h(x+ κξ(x)) ≤ ε] .

∫ ε

−ε
dhe−h

2

∫ κ

−κ
dhe−h2

=
erfε

erfκ
,

which is again of order ε/κ for ε ≪ 1 and κ ≪ 1, (where
erf denotes the standard error function).
Thus we find that adding a random correction κξ at

each time instant gives typically an order ε/κ chance of
landing in the region |h| < ε, the region where the un-
known vector field fε dominates. This implies that the
fraction of time µ(x) for which the vector field fε dom-
inates is typically of order ε/κ. Let us therefore write
µ(h) = η′(h)ε/κ where η(h) lies between 0 and 1, then
(10) becomes

ẋ = λ(h)f+(x) + (1− λ(h))f−(x) +
ε

κ
η(h)×

[

fε(x)− λ(h)f+(x) − (1− λ(h))f−(x)
]

. (15)

In the limit ε → 0 we recover the simple result (3). Thus
Filippov’s method is justified provided that the size of
the error, κ, be nonzero (or arbitrarily small provided
ε/κ → 0 as ε → 0). We should also assume that the
unknown function, fε, which dominates near the switch,
has order less than 1/ε, which means simply that the
vector field remains bounded, a reasonable assumption
that requires no detailed knowledge of fε itself.
Let us illustrate all this with an everyday example from

classical mechanics – an object in stick-slip contact with
a surface. Attempts to form dynamical models for the
basic force of dry friction between rigid bodies continues
to humble modern dynamical theory. The morphology
of the contact surface between moving bodies, the dy-
namics of microscopic irregularities and their nonlinear
responses, earn this simple phenomenon a place in the
modern fashion of complex systems. Most models retain
some resemblance to Coulomb’s “constant times normal
force resisting the direction of motion”: the force switches
abruptly as the object changes direction.
The discontinuity in the dynamical laws of friction

manifests, on the macroscopic scale at least, by destroy-
ing information. Push an object along a rough surface

and you can predict if and where it will become stuck.
But find an object at rest and you cannot infer whether
it was previously in motion at all. Such non-invertibility
is the dynamical hallmark of discontinuity.
The basic form for the friction force F felt by an object

moving at speed u over a rough surface, is

F (u) = FN ×







+µ if u > 0 ,
−µ if u < 0 ,
µs if u = 0 ,

where µ is the coefficient of kinetic friction, µs is the
coefficient of static friction, and FN is the force on the
object normal to the surface. Empirical studies give a
value of µs not clearly related to, and often larger in size
than, the kinetic coefficient µ. Contrast this with the
Filippov method (3) which would give the coefficient of
friction for u = 0 in the narrower range λµ+(1−λ)(−µ)
for λ ∈ [0, 1], i.e. in [−µ,+µ]. The fact that experiment
allows µs /∈ [−µ,+µ] suggests that (3) is inadequate for
this case, and an added force fε as in (10) must be applied
to account for the excess static friction force.
To see this friction force at work let us give our ob-

ject on a surface just enough dynamics to be interesting.
Let the surface move at a constant speed v = −1. At-
tach the object to a spring that exerts a force −x, and
a damper exerting a force −ẋ. Give the object a mass
m = 5, a constant normal force FN = mg = 50, with a
coefficient of kinetic friction µ ≈ 1

10 . (These values are
convenient for illustration and not crucial to the results).
The friction force depends on the relative speed u = ẋ+1
between the object and the surface, so we have

ẋ = u− 1 , 5u̇ = F (u)− x− u+ 1 . (16)

Applying the Filippov method, on u = 0 we let F ∈
[−5, 5]. The phase space trajectories can be sketched by
inspection as in fig.1. On u = 0, the force field is such

u

0

2

10−2
x

0−10

u

F

0

1

5x10
−4

−5x10
−4

−1

FIG. 1. Sketch of the system (16), using the Coulomb friction model
shown inset, with Filippov’s rule giving F ∈ [−5, 5] at u = 0.

that solutions cross from u > 0 to u < 0 if x > 6, and
from u < 0 to u > 0 if x < −4. In between, where
−4 < x < 6, solutions stick to the disconituity surface
u = 0 until they reach x = −4, whereupon they are
released to spiral in towards an equilibrium at (x, u) =
(−5, 1). In the figure we sketch a trajectory for the object
starting at x = 9 with speed u = 1: it undergoes a
change in direction as u becomes negative for a brief time,
then sticks until the spring is under enough tension, at
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x = −4, to pull the object free and attract it towards the
equilibrium. Now we will simulate the same trajectory
in more complex models with and without errors.

Assume that the friction law should actually be a
smooth sigmoid-like function. Two toy models of fric-
tion motivated by observation (e.g.[2, 3, 8, 11, 12, 15])
are shown inset in fig.2. In both models we take ε = 10−4

(the precise functions taken have little bearing on the nu-
merical results). Simulations for these two friction mod-
els are shown in fig.2, depicting a trajectory over time
t = 26 with initial conditions as in fig.1.

2

u

F

0

u

u

0

2

10
x

0−10

u

F

0
5x10

−4
−5x10

−4

5x10
−4

−5x10
−4

5

−5

5

−5

0

x
0 10−10

FIG. 2. Simulation with error (dotted path) and without error (full
curve), using friction models F (u) = − tanh(u/ε) (top) and F (u) =

−(1 + 2πe−u2/ε2) tanh(u/ε) (bottom) shown inset.

The full curves show solutions of (16) for the two dif-
ferent smoothed friction models. The first model closely
agrees with the Filippov method in fig.1. In the second
model the object becomes stuck to the surface earlier and
for a longer time, requiring a greater tension in the spring
to pull it free at x ≈ −14. The object can stick more than
once before going to the equilibrium, contrary to the first

model where only one sticking phase is possible.
The dotted curves show the same solution, except that

we add a random vector (κξx, κξu) to (x, u), applied af-
ter every interval ∆t = 0.26, with ξ2x + ξ2u = 1 and
κ = 5 × 10−3. For the first model in fig.2 this error
has little effect. In the second model the error removes
the extended sticking phase, restoring the Filippov-type
dynamics seen in fig.1. So in both cases, with sufficient
error κ & ε the simple system (3) is valid near u = 0.
Another practical example is an electronic control cir-

cuit. The dynamics of ideal ‘sliding-modes’ is found by
applying Utkin’s method of equivalent control [14] to (1),
giving (5). When f depends nonlinearly on c this is not
equivalent to Filippov’s result (3). But the results here
show that unmodelled errors of size κ will tend to push
the observed dynamics towards Filippov’s dynamics if

the switch takes place over a region of size ε < κ. The
pioneers of nonsmooth dynamics suggested such a result
without formulating it in any detail (see e.g. [1]). It is
hoped that the present letter allows this argument to be
developed formally, with more rigorous treatments con-
sidering how distributions of noise, hysteresis, delay, and
other perturbations evolve near the discontinuity.
In the example above we smoothed out the friction law

to facilitate simulation. The computational and analytic
effects of smoothing are actually poorly understood. In-
deed, we have shown that any system (1) may be the
limit of a system (10), the latter representing infinitely
many possibilities because fε is unknown. The fate of (3)
under singular perturbation has been of recent interest,
see e.g. [13], but no attention has been given to the effect
of µ, λ, or fε, in the general regularization (10).
The idea presented here highlights a danger of over-

modeling complex behaviour. Unknown errors can cause
a system to behave more like a crude model (3) than a
more refined one (10). Stated another way, discontin-
uous models owe their unreasonable effectiveness to un-
modelled errors that cancel themselves out. By analyzing
the ambiguity in how we treat the discontinuity we can
quantify the possible effect of such errors, and determine
when they can be neglected.
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