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ABSTRACT: We will show that determinism can break down ataersingularities that arise in the mechan-
ics of semi-rigid bodies. An example system consists of aelvbigping and rolling along a surface, such that
dry friction applies a torque to the wheel via a standard ineal tyre-like interaction. In a certain configuration
the force on the wheel and its ensuing motion acquire mangilplesvalues. The subsequent motion is there-
fore infinitely sensitive to perturbation, constituting @iqt of non-determinism in an otherwise deterministic
system. Moreover the device returns to the singularity aggally, so that it suffers repeated bursts of unpre-
dictability, constituting an extreme non-deterministicrh of chaos. A non-deterministic chaotic attractor was
found for a range of parameters and tyre/friction model2013). Here, we explore the building blocks of this
dynamics by stripping the model down to its key elements. WWestigate the non-deterministic phenomenon
when subjected to relaxations of the model that allow for atiniag, noise, and hysteresis. This is part of a
wider theory currently emerging in the study of dynamicatsyns that undergo sharp switches in behaviour,
whereby singularities can violate traditional rules of stfodynamical systems.

1 INTRODUCTION The singularity occurs due to switching associated
with stick-slip mechanics in (2013), and with a su-
In dynamical systems modeling, discontinuities areperconductivity threshold in (2011). A general classi-
widely used to model abrupt switches such as elecfication of such singularities appears in (2011). Per-
tronic relays, mechanical impact, and stick-slip mo-haps the most provocative outcome of these stud-
tion; see e.g. (1999, 2008). Their application is in-ies is an unconventional form of chaotic dynamics,
creasingly reaching beyond traditional problems todriven by a loss of determinism at the so-callksiix-
include extreme nonlinearity and slow-fast timescaleeira singularity(2011). The singularity can occur in
separation in electronics, mechanics, and the life sciMIMO (multiple-input multiple-output) circuit mod-
ences; e.g. (2011, 2010, 2003). Previous studies haws (2010), and was shown to creatm-deterministic
progressed largely by extending established concepthaosin a mechanical friction model (2013).
from dynamical systems theory for smooth models, The simplicity of the phenomenon itself is some-
into a theory opiecewise-smooth dynamids recent  what obscured in these preliminary studies, due to
years, however, certain discontinuity-induced pheirrelevant nonlinearities in the practical models, and
nomena have come to light that have no counterpaue to the rigours of normal form analysis in the gen-
in smooth systems. They represent novel topologicatral theory. Is the loss of determinism an artefact of
sources of unpredictable behaviour, and offer insightnodelling fundamentally smooth underlying physics
into the idealizations that are made in deriving empir-using discontinuities, or does it provide insight into
ical models of switching behaviour. behaviour that is encountered daily, but dismissed as
In (2010, 2011, 2013), certain physical modelsunmodelled error? To begin addressing these ques-
were shown to exhibit singularities at which deter-tions we focus here on the simple mechanism behind
minism breaks down, meaning that, when the systemon-deterministic chaos, and the complex behaviour
is in one particular configuration, solutions of its dif- it creates; both appear for the first time in this paper.
ferential equations become multi-valued.



In the mathematical sense, the configurations of in- The constraint by which the wheel moves along a
terest are described by so-calledo-fold singulari- line is also not crucial here, but is achieved by mount-
ties. They aregenericin systems with at least two ing it on a slider, embedded in a housing which is
dimensions with one switch (2009), or two dimen-essentially another disc mounted coaxially above the
sions with more than one switch (2013). In the rela-lower disc; constants,, ¢,, and k,,, give damping
tively young field of piecewise-smooth systems, how-and spring coefficients between the housing and lower
ever, it remains unclear whether ‘genericity’ implies disc (subscript) or wheel (subscripi).

a prevalence of such configurations in real systems. For the time-varying displacementind velocityv

It also remains unclear exactly how one should recof the wheel, and the angular speed of the housing,
ognize such behaviour in experimental data. Here wene obtains dynamical equations of the form

will present simulations of the typical dynamics in

a stripped down model, which we then subject to 7’ = v .
smoothing, hysteresis, and noise. b = ay(r,v,w) = bi(r,v,w)sign(h) 1)
We introduce the phenomenon of non-deterministic?” = az(r,v,w) — ba(r,v,w)sign(h)

chaos by deriving a caricature encapsulating only the

essential features of previous mechanical and eleq rr‘:;ﬁgisagge%argorxgtlrmeﬁ;i';:?ég%ﬁaﬂ:ﬁ eC(E:lCE)I‘-I-
tronic models. Our starting point is a mechanical sys- y 9 Y

tem involving friction between a tyre and a dry re- tact model (for details we refer the reader to (2013)).

volving surface. In this conceptual model introduced™°"® crucial is the function sigih), which expresses
the relative direction of the wheel’s motion with re-

in (2013), a rolling wheel experiences a torque due . .
to standard tyre-like contact forces, and this create Fr)uzcgutr?ctt?:nglissc’ measured in the plane of the wheel.

highly unpredictable rattling due to a singularity. The
wheel system is introduced in sec.2, and in sec.3 thg _ (v —d(
concept of non-deterministic chaos is introduced. A
caricature model is derived in sec.4, generalized t&hen this quantity vanishes for a period of time it
consider smoothing, noise, and hysteresis, and themeans the wheel and the disc are in sticking contact.

W —wp))siny + r(w — wp) cos7y . 2

these systems are simulated in sec.5. The equations governing sticking motion can be de-
rived using Filippov’'s method (1988, 2003), which
2 A MECHANICAL EXAMPLE we describe briefly in the next section, and the result-

ing equations can be solved to simulate the device’s

The mechanical device depicted in fig. 1 consists offynamics (see (2013)). An alternative to Filippov's
a disc rotating with constant angular speggon top  Method, particularly suited to numerical simulation,
of which sits a wheel, which is free to roll along a S t0 sSmooth out the discontinuity in the sign function
line placed a distancéfrom the disc axis. The wheel &7 = 0, S0 that it transitions smoothly between

is fixed at an angle to this line. A tyre model for 1N @ small regions| < ¢ for smalle. The system is
the contact force between the wheel and the disc thefimulated by this method in fig. 2.

translates the frictional contact force into a torque on
the wheel. The specifics of the tyre model (discussed
in (2013)) are not vital to the dynamics observed.

singularity

Figure 2: Simulation of the dynamics of the wheel assembly in
fig. 1, indicating the sticking surfade= 0, and the singularity.

A solution of (1) is found by replacing the function sigr by
tanh(h/e), with stiffness parameter= 10~3; [all simulations
made in Mathematidd' using NDSolve].

Figure 1: Sketch of the wheel assembly. Friction between the

revolving disc, and a tyre on the wheel rim, apply linear and ~ Although a smoothed-out model of the system is
angular forces on the wheel as it rolls along the dashedTihe.  gglvable using standard numerical tools, the system is
wheel-disc contact can stick or slip at different times. then more stiff, as controlled by the parameteBe-




sides affecting computation time, smaklentroduces sliding vector fieldon z = 0. This ‘sliding’ dynamics
instability to the simulation in ways that are poorly prescribes ‘sticking’ motion (double arrows in fig. 3),
understood. As we describe below, the dynamics irand the requiremenit < [0, 1] (meaningg* lies some-
fig. 2 involves the funnelling of solutions into and where betweerft andf~), confines sticking to the
out of a singularity. In the discontinuous system thisshaded regions in fig. 3, whefé andf~ have oppos-
means that all trajectories at some time pass througimg directions with respect to = 0. Elsewhere, the
the same point. That point represents a configuratiofields f* cause trajectories to crogs= 0 transver-
of the physical device which can be reached from anyally. The boundaries between sticking and crossing
initial conditions, and from which many different con- are wherd™ orf~ lie in the planer = 0, and a singu-
figurations of the system are possible at some latearity forms wherebothf™ andf~ lie in the plane.
time. If the discontinuity is smoothed out, the system Various forms for this singularity are possible. Here
becomes extremely sensitive to initial conditions neawe are interested in the case shown in fig. 3, when all
the singularity. These problems are general propersticking trajectories traverse the singularity, but more-
ties, not specific to one system, but attributable to aver, they do so in the counterintuitive directifsam
specific class of singularities. Let us therefore isolatehe attractive regioto the repulsive region. A local
the features of the model that create these conditiongiormal form for this scenario is known (1988, 1990,
2009), given by (3) with

3 A SCHEMATIC DEFINITION fi(y) = (—y,1,v), fo(z) = (z,w,1) 4)

At the heart of the mechanical system in fig. 2 liesin terms of constants, w < 0 satisfyinguw > 1; from

a Teixeira singularity, a generic feature of discontin-these equations one can easily sketch fig. 3. The point
uous systems first studied in (1988, 1990). The dis{z,y, z) = (0,0,0) is the Teixeira singularity. Observe
continuity surface can be divided into regions wherethat a whole volume of trajectories will fall into the
trajectories cross through it, are attracted to it, ofattractive sticking region, and then enter the singular-
are repelled from it. All three types of behaviour areijty. Conversely, a whole volume of trajectories can be
brought together at the singularity, as shown in fig. 3traced backwards in time to the repulsive sticking re-
gion, and thence to the singularity.

It is easy to show that passage through the singu-
larity takes a finite amount of time (2009). This im-
plies that when a trajectory traverses the singularity,
its possible histories and possible futures are momen-
tarily multi-valued — an instant of non-determinism.

The dynamics becomes more striking if we intro-
duce a feedback to the system, as exists in the me-
Figure 3: The Teixeira singularity — an isolated point inetar chanical problem of sec.2, so that every trajectory,
dimensions, or am — 3 dimensional set im dimensions. At once ejected from the repulsive side of the singular-
a discontinuity surfacex(= 0) trajectories can cross (unshaded ity, is eventually re-injected via the attractive side (see

regions) or stick (double arrows, shaded regions). Th&istic . - :
regions attract or repel the surrounding trajectories. Adend- fig. 4). Although the system’s immediate future be-

aries of the different regions intersect at the singularity comes unpredictable when it arrives at the singular-
ity, whichever exit path it follows will lead eventually
Consider a system back to the singularity, giving rise to repeating yet un-
predictable dynamics, describablecisotic(2009).
o M (zy,2) if >0 Without specifying the method of re-injection,
(#,9,2) = f~(z,y,2) if 2<0 (3 we can understand very powerfully what thisn-

deterministic chaosepresents. Takingnytwo points
(we can increase the dimensionality, but three isn the chaotic set, we can find a finite-time trajectory
the minimum required to understand the singularthat connects them (see fig. 4). This means any con-
ity), wheref* are smooth vector fields. The systemfiguration of the system can evolve into any other con-
switches betweefi” andf~ at the discontinuity sur- figuration (within the chaotic set). In deterministic
face z = 0 (which wash = 0 in sec.2). The stan- system, chaos arises when all trajectories pass expo-
dard way to define dynamics at= 0 (1988) is to nentially close to one other given sufficient time. In
take a linear combination of the two vector fields, saya discontinuoussystem this is taken to an extreme,
g* = M + (1 — M)f~, and if there exists € [0,1] for  so that all trajectories intersect given sufficient time,
which g lies tangent to the surface, thghdefines a when they pass through the singularity.



By simulating this system, respecting crossing and
sticking dynamics as described in the previous sec-
tion, one finds that there exists a region around the
origin where all trajectories intersect the origin in for-
ward and backward time.

At the origin, the singularity dictates that no sin-
gle path can be chosen uniquely from the continuum
of possible trajectories. Nor is there any unique way
to resolve this ambiguity. The discontinuous model is
representative of a range of systems that become ex-
tremely sensitive to initial conditions near the singu-
larity. To gain some insight we will smooth out the
discontinuity, which restores determinism, and then
Figure 4: The mechanism of non-deterministic chaos: a Teix2dd noise and hysteresis to the model. We define these
eira singularity onz = 0, and a re-injection, that forces all tra- models in the rest of this section, then we simulate
jectories to repeatedly visit the singularity. Any two psitan  each of them in sec.5.
be connected by a trajectory passing through the singylact As a preparatory step, we relax the definition of (3)
which of these connections will persist under perturbation so that the switch takes place over a regioh< e,
which collapses to a discontinuity at= 0 ase tends
to zero. We replace the system (3) with

If we approximate the system by something deter
ministic, which of the possible trajectories through
the singularity will persist? In the spirit of determin- (i,9,2) = (z,y,2) (6)
istic chaos, we expect the singularity to lead to an in-
finite sensitivity to initial conditions. To investigate for some smalt > 0, such that
its effect on the dynamics let us now give a specific r+ i
form for the re-injection described above. To the locallim ¢ (z, y, 2) = { Ty) i x>0, (7)
normal form (3), we must add a nonlinear term that—° f7(z) if 2<0.

dpminates far from ‘the s_ing_ularity,_steering tr""jeCto'This can be achieved by lettirfg be a linear combi-
ries from the repulsive sticking region, back towardsnation off*, and considering

the attractive region.
(#,9,2) = ="+ (" —1)¢ (8)

where (7) places a requirement githat

The required effect is easily achieved by adding a drifty — 1 for » >~ 42 & 0 for z < —c} + O (2) . (9
term in the(0, 1, 1) direction, of strengtla, and an at- % { ’ © v =) =)

traction term(0, —y, —z) of strength3, for some con- .
stantsy, 8 > 0. Multiplying these bylx|? = 22 + 42+ %1 Smoothing

4 ANALYSIS OF A SIMPLIFIED MODEL

singularity, and we obtain a model smooth function¢ = ¢(x/¢) (e.g. for the simula-

tions to follow, we will mainly consider) = %[1 +
f(z,y,2) = (—y,1,v) + (0,0 — By, — B2)|X|? , o ) 2
O 2L ) e e pae | () tanh(r/). Substiuting: = cugives

Any initial condition in a neighbourhood of the origin (€49, 2) =" (eu,y,2) + [f* (eu,y,2) =~ (eu,,2)] P () -

leads to a trajectory of the form shown in fig. 5. . .
The result is a system where varies on a fast

timescalet/s, while y and z vary on the slow
timescalet. For such slow-fast systems, much is
known about the correspondence between, for ex-
ample, Fenichel’'s slow manifolds (1979), which oc-
cupy a region of space where thecomponent of

f~ + (ft — )¢ vanishes, and the sticking regions
which form as= — 0 (2007); these are recent but well
established developments, so we do not explore them
Figure 5: A typical trajectory of (5). more deeply here.




4.2 Noise z

A thorough study of how noise distributions propa-=
gate in the system is beyond the scope of the prese) ]
paper. For brevity, we simulate noise in the system (8
by adding a random perturbation of sizéo the state
(x(t),y(t),z(t)), after each time interval\t = 0.3.
We let¢ = 1[1 + tanh(z/e)].

4.3 Hysteresis 2

To introduce hysteresis to (8), let be a variable '
(which adds a dimension to the system), by adding;

‘_-\":-'
to (8) the equation -
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1 / Figure 6: Simulation of: (i) the system in sec.4.1 foe %[1 +
eo=v(z+e2p-1)]/e") = ¢ (0)  {ann(s/=)]: (i) the hysteretic system (10), (iii-iv) the noisy sys-
tem described in sec.4.2, showing two separate simulafions

wherey is another function that satisfies the same initial conditions.

¢ ={1 for w>+¢ & 0 for w< —'} +0(e) We first highlight the sensitivity of the system to
the method of simulation itself. One could use differ-
ent numerical iteration schemes with different levels
of precision to solve the dynamical system. We show
one simple variant in fig. 7, dividing the total trajec-

s | ., tory time into fixed intervals that force the adaptive
One further generalization that will not be consid- \Gsolve function to restart periodically. With this

ered here (due to space restrictions, and because t Eemingly redundant change, the numerical simula-

e.ZECt isdinlsor_ne ;/]vays fsimhilar ;EO hy.sterfesis), Is tolcon’[ion settles to different attractors (for the same time
sider a delay in the switching functien for example 54 jnitial conditions); we present examples of a pe-

=1+ (" 1 )o(x(t —9)/c) for somed > 0. riodic orbit, a period three orbit, and the seeming ap-
pearance of deterministic chaos.

for some small’. Then¢ is attracted (on the fast
timescale /&) towards+1 if © +¢(2¢ — 1) > ¢ and
towards0 if =+ ¢(2¢ — 1) < —¢’. For the simulations
to follow we lety = 1[1 + tanh(w/e’)] ande’ = 10e.

5 SIMULATIONS

O] (i)
The purpose of the simulations below is to demon- 11
strate the sensitivity of the model (5). For a stan-
dardized method we solve the ordinary differential
equations using the default NDSolve function in
Mathematic&". All simulations start from an initial
point (z,y, z) = (0.2,0,—1), with f* fixed by param-
etersvt = —1.2, v = 14, a = 1073, 8 =107,
and with stiffness parameter= 1073. _ o . . .
Each image in fig. 6 shows a single trajectory T6UT T Fenears secions L e Sy cec it
\;I)Vg;?g:j?y %r\?g:‘g 321% re"l';g'”getshgtes'ggr‘#:r'g\/lerre‘ frajectory into time intervals (0, (ii) 40, (iii) 100.
all similarity, the detailed shape of the orbits differs
markedly, exhibiting less organisation in the basi
smoothed model (i) than when hysteresis is applie

in (ii), and revealing changes in structure sensitive e system, such as the choice of how to smooth out

random noise in (iii)-(iv). : L : . .
Given the complexity of the phase space trajecto:[he discontinuity. In fig. 8 we repeat the simulation

. o R / - . 7 in fig. 7(iii) using a perturbed smoothing functien
ries, more insight is gained by taking a Poincare Sec\'/\/high siill)tendgto F;ig(m) ase — 0; thisgis no Iggs
tion, recording only coordinates where a trajector ’

Yvalid, therefore, as an approximation of the discon-
passes through the plape= 0. All of the sections be- /5, tem Il ch in the si f thi
low are simulated over a tinte= 2 x 10°, but plotting Inuous system (5). Small changes in the size of this

; - : erturbation give different attractors, as before.
only the latter half of the trajectory to omit transients. P g

0 1 O

-1 1ok

-1 0 z 1 -1 0 z 1 1

One assumes that a more sophisticated simulation
ill reveal which result from fig. 7 is correct, but
he ambiguity is compounded by other sensitivities in



(i) (i) a model, modeled dynamically by a breakdown of de-
! ® r terminism. In this paper we described a mechanical
model that exhibits such behaviour, constructed a toy
model to study the phenomenon itself, and simulated
. its dynamics under relaxations of the model that take
o LN account of smoothing, hysteresis, and noise. This re-
vealed unpredictability, partially organised by under-

lying structure, that survives from such a singularity

when the idealization of discontinuity is relaxed.

-1 0 z 1 -1 0 z 1 -1 0 z 1

Figure 8: Poincaré sections for the system in sec.4.1 yvith

111 + tanh + ==* and: (o = 0.01, (i) o = 0.1,
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