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ABSTRACT: We will show that determinism can break down at certain singularities that arise in the mechan-
ics of semi-rigid bodies. An example system consists of a wheel slipping and rolling along a surface, such that
dry friction applies a torque to the wheel via a standard nonlinear tyre-like interaction. In a certain configuration
the force on the wheel and its ensuing motion acquire many possible values. The subsequent motion is there-
fore infinitely sensitive to perturbation, constituting a point of non-determinism in an otherwise deterministic
system. Moreover the device returns to the singularity repeatedly, so that it suffers repeated bursts of unpre-
dictability, constituting an extreme non-deterministic form of chaos. A non-deterministic chaotic attractor was
found for a range of parameters and tyre/friction models in (2013). Here, we explore the building blocks of this
dynamics by stripping the model down to its key elements. We investigate the non-deterministic phenomenon
when subjected to relaxations of the model that allow for smoothing, noise, and hysteresis. This is part of a
wider theory currently emerging in the study of dynamical systems that undergo sharp switches in behaviour,
whereby singularities can violate traditional rules of smooth dynamical systems.

1 INTRODUCTION

In dynamical systems modeling, discontinuities are
widely used to model abrupt switches such as elec-
tronic relays, mechanical impact, and stick-slip mo-
tion; see e.g. (1999, 2008). Their application is in-
creasingly reaching beyond traditional problems to
include extreme nonlinearity and slow-fast timescale
separation in electronics, mechanics, and the life sci-
ences; e.g. (2011, 2010, 2003). Previous studies have
progressed largely by extending established concepts
from dynamical systems theory for smooth models,
into a theory ofpiecewise-smooth dynamics. In recent
years, however, certain discontinuity-induced phe-
nomena have come to light that have no counterpart
in smooth systems. They represent novel topological
sources of unpredictable behaviour, and offer insight
into the idealizations that are made in deriving empir-
ical models of switching behaviour.

In (2010, 2011, 2013), certain physical models
were shown to exhibit singularities at which deter-
minism breaks down, meaning that, when the system
is in one particular configuration, solutions of its dif-
ferential equations become multi-valued.

The singularity occurs due to switching associated
with stick-slip mechanics in (2013), and with a su-
perconductivity threshold in (2011). A general classi-
fication of such singularities appears in (2011). Per-
haps the most provocative outcome of these stud-
ies is an unconventional form of chaotic dynamics,
driven by a loss of determinism at the so-calledTeix-
eira singularity(2011). The singularity can occur in
MIMO (multiple-input multiple-output) circuit mod-
els (2010), and was shown to createnon-deterministic
chaosin a mechanical friction model (2013).

The simplicity of the phenomenon itself is some-
what obscured in these preliminary studies, due to
irrelevant nonlinearities in the practical models, and
due to the rigours of normal form analysis in the gen-
eral theory. Is the loss of determinism an artefact of
modelling fundamentally smooth underlying physics
using discontinuities, or does it provide insight into
behaviour that is encountered daily, but dismissed as
unmodelled error? To begin addressing these ques-
tions we focus here on the simple mechanism behind
non-deterministic chaos, and the complex behaviour
it creates; both appear for the first time in this paper.



In the mathematical sense, the configurations of in-
terest are described by so-called⁀two-fold singulari-
ties. They aregeneric in systems with at least two
dimensions with one switch (2009), or two dimen-
sions with more than one switch (2013). In the rela-
tively young field of piecewise-smooth systems, how-
ever, it remains unclear whether ‘genericity’ implies
a prevalence of such configurations in real systems.
It also remains unclear exactly how one should rec-
ognize such behaviour in experimental data. Here we
will present simulations of the typical dynamics in
a stripped down model, which we then subject to
smoothing, hysteresis, and noise.

We introduce the phenomenon of non-deterministic
chaos by deriving a caricature encapsulating only the
essential features of previous mechanical and elec-
tronic models. Our starting point is a mechanical sys-
tem involving friction between a tyre and a dry re-
volving surface. In this conceptual model introduced
in (2013), a rolling wheel experiences a torque due
to standard tyre-like contact forces, and this creates
highly unpredictable rattling due to a singularity. The
wheel system is introduced in sec.2, and in sec.3 the
concept of non-deterministic chaos is introduced. A
caricature model is derived in sec.4, generalized to
consider smoothing, noise, and hysteresis, and then
these systems are simulated in sec.5.

2 A MECHANICAL EXAMPLE

The mechanical device depicted in fig. 1 consists of
a disc rotating with constant angular speedω0, on top
of which sits a wheel, which is free to roll along a
line placed a distanced from the disc axis. The wheel
is fixed at an angleγ to this line. A tyre model for
the contact force between the wheel and the disc then
translates the frictional contact force into a torque on
the wheel. The specifics of the tyre model (discussed
in (2013)) are not vital to the dynamics observed.
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Figure 1: Sketch of the wheel assembly. Friction between the
revolving disc, and a tyre on the wheel rim, apply linear and
angular forces on the wheel as it rolls along the dashed line.The
wheel-disc contact can stick or slip at different times.

The constraint by which the wheel moves along a
line is also not crucial here, but is achieved by mount-
ing it on a slider, embedded in a housing which is
essentially another disc mounted coaxially above the
lower disc; constantscd, cw, andkw, give damping
and spring coefficients between the housing and lower
disc (subscripth) or wheel (subscriptw).

For the time-varying displacementr and velocityv
of the wheel, and the angular speed of the housing,ω,
one obtains dynamical equations of the form

ṙ = v
v̇ = a1(r, v,ω)− b1(r, v,ω)sign(h)
ω̇ = a2(r, v,ω)− b2(r, v,ω)sign(h)

(1)

whereai andbi are nonlinear functions. Theai cap-
ture the system geometry, while thebi contain the con-
tact model (for details we refer the reader to (2013)).
More crucial is the function sign(h), which expresses
the relative direction of the wheel’s motion with re-
spect to the disc, measured in the plane of the wheel.
The functionh is

h = (v− d(ω− ω0)) sinγ + r(ω − ω0) cosγ . (2)

When this quantity vanishes for a period of time it
means the wheel and the disc are in sticking contact.
The equations governing sticking motion can be de-
rived using Filippov’s method (1988, 2003), which
we describe briefly in the next section, and the result-
ing equations can be solved to simulate the device’s
dynamics (see (2013)). An alternative to Filippov’s
method, particularly suited to numerical simulation,
is to smooth out the discontinuity in the sign function
at h = 0, so that it transitions smoothly between±1
in a small region|h| < ε for small ε. The system is
simulated by this method in fig. 2.
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Figure 2: Simulation of the dynamics of the wheel assembly in
fig. 1, indicating the sticking surfaceh = 0, and the singularity.
A solution of (1) is found by replacing the function sign(h) by
tanh(h/ε), with stiffness parameterε = 10−3; [all simulations
made in MathematicaTM using NDSolve].

Although a smoothed-out model of the system is
solvable using standard numerical tools, the system is
then more stiff, as controlled by the parameterε. Be-



sides affecting computation time, smallerε introduces
instability to the simulation in ways that are poorly
understood. As we describe below, the dynamics in
fig. 2 involves the funnelling of solutions into and
out of a singularity. In the discontinuous system this
means that all trajectories at some time pass through
the same point. That point represents a configuration
of the physical device which can be reached from any
initial conditions, and from which many different con-
figurations of the system are possible at some later
time. If the discontinuity is smoothed out, the system
becomes extremely sensitive to initial conditions near
the singularity. These problems are general proper-
ties, not specific to one system, but attributable to a
specific class of singularities. Let us therefore isolate
the features of the model that create these conditions.

3 A SCHEMATIC DEFINITION

At the heart of the mechanical system in fig. 2 lies
a Teixeira singularity, a generic feature of discontin-
uous systems first studied in (1988, 1990). The dis-
continuity surface can be divided into regions where
trajectories cross through it, are attracted to it, or
are repelled from it. All three types of behaviour are
brought together at the singularity, as shown in fig. 3.
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Figure 3: The Teixeira singularity – an isolated point in three
dimensions, or ann − 3 dimensional set inn dimensions. At
a discontinuity surface (x = 0) trajectories can cross (unshaded
regions) or stick (double arrows, shaded regions). The sticking
regions attract or repel the surrounding trajectories. Thebound-
aries of the different regions intersect at the singularity.

Consider a system

(ẋ, ẏ, ż) =

{

f+(x, y, z) if x > 0
f−(x, y, z) if x < 0

(3)

(we can increase the dimensionality, but three is
the minimum required to understand the singular-
ity), where f± are smooth vector fields. The system
switches betweenf+ andf− at the discontinuity sur-
face x = 0 (which wash = 0 in sec.2). The stan-
dard way to define dynamics atx = 0 (1988) is to
take a linear combination of the two vector fields, say
gλ = λf+ + (1−λ)f−, and if there existsλ ∈ [0,1] for
whichgλ lies tangent to the surface, thengλ defines a

sliding vector fieldonx = 0. This ‘sliding’ dynamics
prescribes ‘sticking’ motion (double arrows in fig. 3),
and the requirementλ ∈ [0,1] (meaninggλ lies some-
where betweenf+ and f−), confines sticking to the
shaded regions in fig. 3, wheref+ andf− have oppos-
ing directions with respect tox = 0. Elsewhere, the
fields f± cause trajectories to crossx = 0 transver-
sally. The boundaries between sticking and crossing
are wheref+ or f− lie in the planex = 0, and a singu-
larity forms wherebothf+ andf− lie in the plane.

Various forms for this singularity are possible. Here
we are interested in the case shown in fig. 3, when all
sticking trajectories traverse the singularity, but more-
over, they do so in the counterintuitive directionfrom
the attractive regionto the repulsive region. A local
normal form for this scenario is known (1988, 1990,
2009), given by (3) with

f+0 (y) = (−y,1, v) , f−0 (z) = (z,w,1) (4)

in terms of constantsv,w < 0 satisfyingvw > 1; from
these equations one can easily sketch fig. 3. The point
(x, y, z) = (0,0,0) is the Teixeira singularity. Observe
that a whole volume of trajectories will fall into the
attractive sticking region, and then enter the singular-
ity. Conversely, a whole volume of trajectories can be
traced backwards in time to the repulsive sticking re-
gion, and thence to the singularity.

It is easy to show that passage through the singu-
larity takes a finite amount of time (2009). This im-
plies that when a trajectory traverses the singularity,
its possible histories and possible futures are momen-
tarily multi-valued — an instant of non-determinism.

The dynamics becomes more striking if we intro-
duce a feedback to the system, as exists in the me-
chanical problem of sec.2, so that every trajectory,
once ejected from the repulsive side of the singular-
ity, is eventually re-injected via the attractive side (see
fig. 4). Although the system’s immediate future be-
comes unpredictable when it arrives at the singular-
ity, whichever exit path it follows will lead eventually
back to the singularity, giving rise to repeating yet un-
predictable dynamics, describable aschaotic(2009).

Without specifying the method of re-injection,
we can understand very powerfully what thisnon-
deterministic chaosrepresents. Takinganytwo points
in the chaotic set, we can find a finite-time trajectory
that connects them (see fig. 4). This means any con-
figuration of the system can evolve into any other con-
figuration (within the chaotic set). In adeterministic
system, chaos arises when all trajectories pass expo-
nentially close to one other given sufficient time. In
a discontinuoussystem this is taken to an extreme,
so that all trajectories intersect given sufficient time,
when they pass through the singularity.
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Figure 4: The mechanism of non-deterministic chaos: a Teix-
eira singularity onx = 0, and a re-injection, that forces all tra-
jectories to repeatedly visit the singularity. Any two points can
be connected by a trajectory passing through the singularity, so
which of these connections will persist under perturbation?

If we approximate the system by something deter-
ministic, which of the possible trajectories through
the singularity will persist? In the spirit of determin-
istic chaos, we expect the singularity to lead to an in-
finite sensitivity to initial conditions. To investigate
its effect on the dynamics let us now give a specific
form for the re-injection described above. To the local
normal form (3), we must add a nonlinear term that
dominates far from the singularity, steering trajecto-
ries from the repulsive sticking region, back towards
the attractive region.

4 ANALYSIS OF A SIMPLIFIED MODEL

The required effect is easily achieved by adding a drift
term in the(0,1,1) direction, of strengthα, and an at-
traction term(0,−y,−z) of strengthβ, for some con-
stantsα,β > 0. Multiplying these by|x|2 = x2 + y2+
z2 ensures they only become significant far from the
singularity, and we obtain a model

f+(x, y, z) = (−y,1, v) + (0, α− βy,α− βz)|x|2 ,
f−(x, y, z) = ( z,w,1) + (0, α− βy,α− βz)|x|2 . (5)

Any initial condition in a neighbourhood of the origin
leads to a trajectory of the form shown in fig. 5.
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Figure 5: A typical trajectory of (5).

By simulating this system, respecting crossing and
sticking dynamics as described in the previous sec-
tion, one finds that there exists a region around the
origin where all trajectories intersect the origin in for-
ward and backward time.

At the origin, the singularity dictates that no sin-
gle path can be chosen uniquely from the continuum
of possible trajectories. Nor is there any unique way
to resolve this ambiguity. The discontinuous model is
representative of a range of systems that become ex-
tremely sensitive to initial conditions near the singu-
larity. To gain some insight we will smooth out the
discontinuity, which restores determinism, and then
add noise and hysteresis to the model. We define these
models in the rest of this section, then we simulate
each of them in sec.5.

As a preparatory step, we relax the definition of (3)
so that the switch takes place over a region|x| < ε,
which collapses to a discontinuity atx = 0 asε tends
to zero. We replace the system (3) with

(ẋ, ẏ, ż) = fε(x, y, z) , (6)

for some smallε ≥ 0, such that

lim
ε→0

fε(x, y, z) =
{

f+(y) if x > 0 ,
f−(z) if x < 0 .

(7)

This can be achieved by lettingfε be a linear combi-
nation off±, and considering

(ẋ, ẏ, ż) = fε = f− + (f+ − f−)φ (8)

where (7) places a requirement onφ that

φ = {1 for x > +ε & 0 for x < −ε}+O (ε) . (9)

4.1 Smoothing

A smooth system is now found by lettingφ be a
smooth functionφ = φ(x/ε) (e.g. for the simula-
tions to follow, we will mainly considerφ = 1

2
[1 +

tanh(x/ε)]). Substitutingx = εu gives

(εu̇, ẏ, ż) = f−(εu, y, z)+[f+(εu, y, z)− f−(εu, y, z)]φ(u) .

The result is a system whereu varies on a fast
timescale t/ε, while y and z vary on the slow
timescalet. For such slow-fast systems, much is
known about the correspondence between, for ex-
ample, Fenichel’s slow manifolds (1979), which oc-
cupy a region of space where theu component of
f− + (f+ − f−)φ vanishes, and the sticking regions
which form asε→ 0 (2007); these are recent but well
established developments, so we do not explore them
more deeply here.



4.2 Noise

A thorough study of how noise distributions propa-
gate in the system is beyond the scope of the present
paper. For brevity, we simulate noise in the system (8)
by adding a random perturbation of sizeε to the state
(x(t), y(t), z(t)), after each time interval∆t = 0.3.
We letφ = 1

2
[1 + tanh(x/ε)].

4.3 Hysteresis

To introduce hysteresis to (8), letφ be a variable
(which adds a dimension to the system), by adding
to (8) the equation

ε′φ̇ = ψ([x+ ε(2φ− 1)]/ε′)− φ (10)

whereψ is another function that satisfies

ψ = {1 for w > +ε′ & 0 for w < −ε′}+O (ε)′

for some smallε′. Thenφ is attracted (on the fast
timescalet/ε′) towards+1 if x+ ε(2φ− 1) > ε′ and
towards0 if x+ ε(2φ− 1) <−ε′. For the simulations
to follow we letψ = 1

2
[1 + tanh(w/ε′)] andε′ = 10ε.

One further generalization that will not be consid-
ered here (due to space restrictions, and because the
effect is in some ways similar to hysteresis), is to con-
sider a delay in the switching functionφ, for example
fε = f− + (f+ − f−)φ(x(t− δ)/ε) for someδ > 0.

5 SIMULATIONS

The purpose of the simulations below is to demon-
strate the sensitivity of the model (5). For a stan-
dardized method we solve the ordinary differential
equations using the default NDSolve function in
MathematicaTM. All simulations start from an initial
point (x, y, z) = (0.2,0,−1), with f± fixed by param-
etersv+ = −1.2, v− = −1.4, α = 10−3, β = 10−5,
and with stiffness parameterε = 10−3.

Each image in fig. 6 shows a single trajectory,
winding around and revisiting the singularity re-
peatedly over a timet = 150. Despite some over-
all similarity, the detailed shape of the orbits differs
markedly, exhibiting less organisation in the basic
smoothed model (i) than when hysteresis is applied
in (ii), and revealing changes in structure sensitive to
random noise in (iii)-(iv).

Given the complexity of the phase space trajecto-
ries, more insight is gained by taking a Poincaré sec-
tion, recording only coordinates where a trajectory
passes through the planey = 0. All of the sections be-
low are simulated over a timet= 2× 105, but plotting
only the latter half of the trajectory to omit transients.
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Figure 6: Simulation of: (i) the system in sec.4.1 forφ = 1

2
[1 +

tanh(x/ε)]; (ii) the hysteretic system (10), (iii-iv) the noisy sys-
tem described in sec.4.2, showing two separate simulationsfrom
the same initial conditions.

We first highlight the sensitivity of the system to
the method of simulation itself. One could use differ-
ent numerical iteration schemes with different levels
of precision to solve the dynamical system. We show
one simple variant in fig. 7, dividing the total trajec-
tory time into fixed intervals that force the adaptive
NDSolve function to restart periodically. With this
seemingly redundant change, the numerical simula-
tion settles to different attractors (for the same time
and initial conditions); we present examples of a pe-
riodic orbit, a period three orbit, and the seeming ap-
pearance of deterministic chaos.
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Figure 7: Poincaré sections for the system in sec.4.1 withφ =
1

2
[1 + tanh(x/ε)], for different iteration schemes: dividing the

trajectory into time intervals (i)20, (ii) 40, (iii) 100.

One assumes that a more sophisticated simulation
will reveal which result from fig. 7 is correct, but
the ambiguity is compounded by other sensitivities in
the system, such as the choice of how to smooth out
the discontinuity. In fig. 8 we repeat the simulation
in fig. 7(iii) using a perturbed smoothing functionφ,
which still tends to sign(x) asε → 0; this is no less
valid, therefore, as an approximation of the discon-
tinuous system (5). Small changes in the size of this
perturbation give different attractors, as before.
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Figure 8: Poincaré sections for the system in sec.4.1 withφ =
1

2
[1 + tanh(x/ε)] + σ

√
εe−x

2

and: (i) σ = 0.01, (ii) σ = 0.1,
(iii) σ = 0.13.

Finally, in fig. 9, more physically realistic scenarios
are simulated by repeating fig. 7(iii) with hysteresis
added in (i) or noise added in (ii-iii).
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Figure 9: Poincaré sections for the system in sec.4.1 withφ =
1

2
[1+ tanh(x/ε)]: (i) with hysteresis as described in sec.4.3; (ii)

with noise as described in sec.4.2 for two different runs.

These various simulations show for the first
time the sensitive behaviour associated with non-
deterministic chaos. We observe that many differ-
ent deterministic systems lie close to the discontinu-
ous system. The ambiguity of selecting between out-
comes can be attributed to the existence of a non-
deterministic singularity in the discontinuous limit,
which amplifies even tiny changes in parameters. For
some parameters the deterministic system exhibits
stable periodic orbits (figs. 7(i-ii) and 8(ii-iii)), while
for others the dynamics appears chaotic over some
intricate attractor (figs. 7(iii), 8(i), 9(iii)), only some
of which is washed out by noise (figs. 9(i-ii)). The
important point is that all of these systems differ by
only small changes in the defining model. Under these
small changes the system jumps between regimes of
periodicity or (deterministic) chaos.

6 CLOSING REMARKS

Renewed interest in recent years in a general theory
of switching systems relevant to engineering applica-
tions, has inspired closer inspection of certain singu-
larities where switching causes extreme sensitivity in

a model, modeled dynamically by a breakdown of de-
terminism. In this paper we described a mechanical
model that exhibits such behaviour, constructed a toy
model to study the phenomenon itself, and simulated
its dynamics under relaxations of the model that take
account of smoothing, hysteresis, and noise. This re-
vealed unpredictability, partially organised by under-
lying structure, that survives from such a singularity
when the idealization of discontinuity is relaxed.
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