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Abstract. This paper deals with discontinuous differential equations defined
on the 2–dimensional cylinder. The main goal is to exhibit conditions for the
existence of typical periodic solutions of such systems. An averaging method
for computing sliding periodic solutions is developed, subject to convenient
assumptions. We also apply the method to example problems. The main tools
used are structural stability theory for discontinuous differential systems and
Brouwer degree theory.

1. Introduction and statement of the main result

Establishing the existence of periodic solutions is an important problem for
understanding the dynamics of differential systems. Recently, degree theory has
provided a considerable advance in the use of averaging methods to detect the
existence of periodic solutions in dynamical systems (see for example [6], and for
an introduction to the subject see [14, 15]). These advances assume that the
differential systems involved are continuous.
In this paper, for a class of periodic differential equations with a discontinuity,

an averaging method is used to establish the existence of period solutions. The
theory of discontinuous systems has been developing at a fast pace in recent
years, with growing importance at the frontier between mathematics, physics,
engineering, and the life sciences. Interest stems particularly from discontinuous
dynamical models in control theory [3], nonlinear oscillations [2, 13], impact and
friction mechanics [5], economics [9, 10], biology [4], and others; a recent review
appears in [12].
We discuss a special class of piecewise continuous differential systems defined

on the cylinder. We consider only non-contractible periodic solutions, which are
those wrapping around the cyclinder such that they cannot be topologically con-
tracted to a point, illustrated by type (b) rather than (a) in Figure 1. In a
discontinuous system we can moreover distinguish between: orbits that never en-
counter the discontinuity; orbits that cross the discontinuity transversally (Figure
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Figure 1. Cylindrical phase portrait. Contractible (a) and non-
contractible (b) periodic solutions.

2); orbits that lie along the discontinuity for some time interval, termed sliding
(e.g. Figure 3); and orbits that involve both crossing and sliding (e.g. Figure 4).
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Figure 2. Non-contractible crossing periodic solution.

Crossing and sliding solutions are obtained by solving a discontinuous differ-
ential equation using the standard method of Filippov [8], summarized in the
appendix. Concisely, if a set of differential equations has a discontinuity at a
codimension one manifold Σ, the system may admit solutions either side of the
discontinuity that can be joined continuously, forming a solution that crosses Σ.
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Figure 3. Non-contractible sliding periodic solution.
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Figure 4. Non-contractible crossing-sliding periodic solution.

Alternatively, solutions might be found to impinge upon Σ, after which they join
continuously to solutions that slide inside Σ. The equations of these sliding solu-
tions are given by a linear combination of the differential equations immediately
either side of the discontinuity that lies tangent to the locus of discontinuity.
Relevant details on these standard definitions (see e.g. [7, 8]) are summarized in
the Appendix.

1.1. Statement of the main results. In [11] the methods of averaging theory
for studying non-contractible crossing periodic solutions were extended to a class
of discontinuous piecewise differential systems. The averaging methods relate
solutions of certain systems of non-autonomous differential equations to solutions
of algebraic equations. In this paper we extend the method to detect periodic
solutions that involve sliding at a discontinuity. The main tool used is Brouwer
Degree Theory, which is defined in Section 2.
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The piecewise continuous systems of interest can be written in the form of the
differential equation

(1) y′(x) = G(x, y) + εF (x, y) + ε2R(x, y, ε),

where
G(x, y) = F3(x, y)− sign(y − y0)F3(x, y),

F (x, y) = F1(x, y) + sign(y − y0)F2(x, y),

R(x, y, ε) = R1(x, y, ε) + sign(y − y0)R2(x, y, ε).

Here, F1, F2, F3 : R×D → R
2 and R1, R2 : R×D×(−εf , εf) → R

2 are continuous
functions that are T -periodic in x and locally Lipschitz continuous, and D is an
open interval of R. The sign function creates a discontinuity at a set

(2) Σ := {y = y0, x ∈ R}.
We will consider systems for which one incidence of crossing and one interval

of sliding are possible per period. We assume the geometry illustrated in Figure
5, which satisfies the following five conditions:

(A1) F1(x̌, y0) + F2(x̌, y0) = 0, F1(x̌, y0) − F2(x̌, y0) > 0 and ∂xF1(x̌, y0) +
∂xF2(x̌, y0) < 0;

(A2) F1(x̄, y0) + F2(x̄, y0) = 0, F1(x̄, y0) − F2(x̄, y0) > 0 and ∂xF1(x̄, y0) +
∂xF2(x̄, y0) > 0;

(A3) F1(x, y0) + F2(x, y0) < 0, for every x ∈ (x̌, x̄);

(A4) F1(x, y0) + F2(x, y0) > 0, for every x ∈ (x̄, x̌+ T );

(A5) F3(x, y0) ≥ 0, for x ∈ (x̌, x̄); or F3(x, y0) ≡ 0 and F1(x, y0)−F2(x, y0) ≥ 0,
for x ∈ (x̌, x̄).
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y

y0

T0

x̌ x̄

Figure 5. The geometry of the class of systems we consider, which
allows one crossing and one sliding interval per period.
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Proposition 1. The class of functions defined by Hypotheses A1-A5 is not empty.

Proof. We show this by constructing an example system satisfying A1-A5. Con-
sider F3(x, y) = 0, F1(x, y) = f1(x)g1(y)+h1(y) and F2(x, y) = f2(x)g2(y)+h2(y),
where y0 = 0, g1(0) = g2(0) = 1, h1(0) = h2(0) = 0, and

f1(x) = 2 + cos(x) , f2(x) = −1 +
1√
2
− sin

(

x− π

4

)

.

Note that for every x ∈ [0, 2π],

F1(x, 0) = f1(x) = 2 + cos(x) > −1 +
1√
2
− sin

(

x− π

4

)

= f2(x) = F2(x, 0).

Let x̌ = 3π/4 and x̄ = π. Then

F1(x̌, 0) + F2(x̌, 0) = 0 and ∂xF1(x̌, 0) + ∂xF2(x̌, 0) = − 1√
2
< 0,

which satisfies condition A1, and

F1(x̄, 0) + F2(x̄, 0) = 0 and ∂xF1(x̌, 0) + ∂xF2(x̌, 0) =
1√
2
> 0,

which satisfies condition A2. Direct calculations then show that conditions A3-A5
are also satisfied. �

Clearly (1) does not admit contractible periodic solutions. This can be seen by
expressing it as an autonomous system

(3)
ẋ(t) = 1,

ẏ(t) = G(x, y) + εF (x, y) + ε2R(x, y, ε),

where the dot denotes derivative with respect to t, then since ẋ(t) = 1, solutions
can form closed curves only if they wrap around the cylinder. The main result of
this paper concerns the existence of non-contractible sliding periodic solutions of
system (1).
To state the main result, we first define the Averaged Function f0 : (x̌+ T, x̄+

T ) → R, satisfying

(4) f0(z) =

∫ z

x̄

F1(s, y0) + F2(s, y0)ds.

We then have the following theorem.

Theorem A. Suppose that for some a ∈ (x̌ + T, x̄ + T ) with f0(a) = 0, there
exists a neighborhood V of a such that dB (f0, V, 0) 6= 0, where dB denotes the
Brouwer degree (defined in Section 2). Then, for ε > 0 sufficiently small, there
exists a non-contractible sliding T -periodic solution of system (1).
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Remark 1. When f0 is a C1 function we can replace the Brouwer degree hypoth-
esis by assuming f ′

0(a) 6= 0.

2. Application

Theorem A allows the study of autonomous planar piecewise continuous system
with two zones when the set of discontinuity is a sphere, i.e. Σ = h−1(0) where
h(u, v) = u2+v2−r2. Here we give a few examples where the vector field switches
between smooth functions X and Y either side of the discontinuity, corresponding
to y′ = ε(F1 + F2) + ε2(R1 + R2) and y′ = 2F3 + ε(F1 − F2) + ε2(R1 − R2) in
appropriate coordinates (which are found in Section 5).

2.1. Example 1. Let X(u, v) and Y (u, v) be defined as

X(u, v) = (−v − εau , u+ εb)

and Y (u, v) = (u− v , u+ v)

where a, b and ε are real parameters with ε > 0. Note that X(u, v) is a linear
center perturbed by an affine function, and Y (u, v) is a focus. For r = 1, consider
the piecewise continuous planar system

(5) (u̇(t), v̇(t)) = Z(u, v) =







X(u, v) if h(u, v) > 0,

Y (u, v) if h(u, v) < 0.

Proposition E1. Assume that a, b > 0. Then, for ε > 0 sufficiently small, the
piecewise continuous differential system (5) has a sliding periodic solution.

For the proof of this theorem see Section 5.

2.2. Example 2. Let X(u, v) and Y (u, v) be defined as

X(u, v) = (−v + ε(au+ buv) , u+ ε(av + bv2))

and Y (u, v) = (−v + εu3 , u+ εv3)

where a, b and ε are real parameters with ε > 0. Note that X(u, v) is a linear
center perturbed by a quadratic function, and Y (u, v) linear center perturbed by
a cubic function. For r = 1, consider the piecewise continuous planar system

(6) (u̇(t), v̇(t)) = Z(u, v) =







X(u, v) if h(u, v) > 0,

Y (u, v) if h(u, v) < 0.

Proposition E2. Assume −b < a < 0. Then, for ε > 0 sufficiently small, the
piecewise continuous differential system (6) has a sliding periodic solution.
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Figure 6. Numerical simulation of a solution of (5) with a = b = 1
passing through (u, v) = (0.5, 0). The dashed lines indicate the solutions
for ε = 1; 0.9; 0.8; 0.35; the non dashed bold line indicates the solution
for ε = 0.1; and the dashed bold line indicates the set of discontinuity.
For ε = 1 and ε = 0.9 the solution is a heteroclinic orbit, for the other
values of ε the solution is a sliding periodic orbit.

For the proof of this theorem see Section 5.
The remainder of this paper sets out the proofs of the preceding results. Some

necessary results on Brouwer degree are summarized in section 3, with important
details regarding structural stability left to the Appendix. Theorem A is proven
in section 4, followed by the proofs of Propositions E1 and E2 in section 5.

3. Basic results on Brouwer degree

In this section, following [3], we present some results that we shall need for
proving Theorem A. The following two theorems are proven in [3], and dB is
known as the Brouwer degree.

Theorem 2. Let P = R
n = Q for a given positive integer n. For bounded open

subsets V of P , consider continuous mappings f : V → Q, and points y0 in Q
such that y0 does not lie in f(∂V ) where ∂V denotes the boundary of V . Then
to each such triple (f, V, y0), there corresponds an integer dB(f, V, y0) having the
following three properties.
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Figure 7. Numerical simulation of a solution of (11) with a = −1
and b = 2 passing through (u, v) = (1, 0). The dashed lines indicate the
solutions for ε = 0.35; 0.3; 0.2; 0.1; the non dashed bold line indicates
the solution for ε = 0.05; and the dashed bold line indicates the set of

discontinuity.

(i) If dB(f, V, y0) 6= 0, then y0 ∈ f(V ). If f0 is the identity map of P onto
Q, then for every bounded open set V and y0 ∈ V , we have

d
(

f0
∣

∣

V
, V, y0

)

= ±1.

(ii) (Additivity) If f : V → Q is a continuous map with V a bounded open set
in P , and V1 and V2 are a pair of disjoint open subsets of V such that

y0 /∈ f(V \(V1 ∪ V2)),

then,
d (f0, V, y0) = d (f0, V1, y0) + d (f0, V1, y0) .

(iii) (Invariance under homotopy) Let V be a bounded open set in P , and
consider a continuous homotopy {ft : 0 ≤ t ≤ 1} of maps of V in to Q.
Let {yt : 0 ≤ t ≤ 1} be a continuous curve in Q such that yt /∈ ft(∂V ) for
any t ∈ [0, 1]. Then dB(ft, V, yt) is constant in t on the interval [0, 1].

Theorem 3. The degree function dB(f, V, y0) is uniquely determined by the con-
ditions of Theorem 2.
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For the proof of the following Lemma refer to Lemma 2.1 in [6].

Lemma 4. Consider the continuous functions fi : V → R
n, for i = 0, 1, · · · , k,

and f, g, r : V × [ε0, ε0] → R
n, given by

g(·, ε) = f1(·) + εf2(·) + ε2f3(·) + · · ·+ εk−1fk(·),

f(·, ε) = g(·, ε) + εkr(·, ε).
Assume that g(z, ε) 6= 0 for all z ∈ ∂V and ε ∈ [−ε0, ε0]. Then, for |ε| > 0
sufficiently small, dB (f(·, ε), V, 0) is well defined and

dB (f(·, ε), V, 0) = dB (g(·, ε), V, 0) .

4. Proof of Theorem A

We denote

X(x, y, ε) =
(

1 , ε (F1(x, y) + F2(x, y)) + ε2 (R1(x, y, ε) +R2(x, y, ε))
)

,

Y (x, y, ε) =
(

1 , 2F3(x, y) + ε (F1(x, y)− F2(x, y))

+ε2 (R1(x, y, ε)− R2(x, y, ε))
)

,

and

h(x, y) = y − y0.

Then equation (1) can be written as the autonomous system

(7) (ẋ(t), ẏ(t)) = Z(x, y) =

{

X(x, y) if h(x, y) > 0,

Y (x, y) if h(x, y) < 0,

which we denote concisely by Z = (X, Y )Σ, with Σ denoting the discontinuity
set (2). Z is defined on the cylinder R×D embedded in R

3, where D is an open
interval of R. Local solutions of (7) which pass through a point p ∈ Σ are given
by the Filippov convention (see Appendix, following the standard method of [8]).

Lemma 5. For any ε > 0 sufficiently small there exist x̌ε, x̄ε ∈ [0, T ) with x̌ε → x̌
and x̄ε → x̄ when ε → 0, such that

(a) Xh(x̌ε, y0) = 0, X2h(x̌ε, y0) < 0 and Y (x̌ε, y0) > 0;
(b) Xh(x̄ε, y0) = 0, X2h(x̄ε, y0) > 0 and Y (x̄ε, y0) > 0;
(c) Xh(x, y0, ε) < 0 for every x ∈ (x̌ε, x̄ε);
(d) Xh(x, y0, ε) > 0 for every x ∈ (x̄ε, x̌ε + T ); and
(e) Y h(x, y0, ε) ≥ 0 for every x ∈ (x̌ε, x̄ε).

Lemma 5 implies that the configuration of the cylindrical phase portrait of the
system (1) is as given in Figure 8.
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Figure 8. The geometry of the perturbed system, showing the points
x̌ε and x̄ε.

Proof of Lemma 5. For simplicity we consider F3(x, y) ≡ 0. When F3(x, y) 6≡ 0,

the proof will follow similarly. For the discontinuous vector field Ẑ = (X̂, Ŷ )Σ
corresponding to (1) we have

X̂(x, y) = (1 , F1(x, y) + F2(x, y)) ,

Ŷ (x, y) = (1 , F1(x, y)− F2(x, y)) .

Hypothesis A1 implies that X̂h(x̌, y0) = 0, X̂2h(x̌, y0) < 0, and Ŷ h(x̌, y0) > 0. So

(x̌, y0) is a points where the vector field X̂ is tangent to Σ and curving towards
it (an invisible regular-fold point, see Appendix). Analogously, hypothesis A2

implies that X̂h(x̄, y0) = 0, X̂2h(x̄, y0) > 0, and Ŷ h(x̄, y0) > 0. So (x̄, y0) is a

point where X̂ is tangent to Σ and curving away from it (a visible regular-fold
point, see Appendix). Therefore both x̌ and x̄ on Σ are generic singularities of

the discontinuous vector field Ẑ, which implies that Ẑ is locally Σ-structurally
stable at the points (x̌, y0) and (x̄, y0) (see Appendix).
Now, we take the perturbation

(8) Ẑε(x, y) =
(

X̂ε, Ŷε

)

Σ

= Ẑ(x, y) + εW (z, y, ε),

where

W (x, y) =
(

(1 , R1(x, y, ε) +R2(x, y, ε)) , (1 , R1(x, y, ε)− R2(x, y, ε))
)

Σ

.

For system (8), the existence of two regular-folds points (x̌ε, y0) and (x̄ε, y0),

respectively invisible and visible for X̂ε, is assured by the locally Σ-structurally
stability (see Appendix). Moreover, x̌ε → x̌ and x̄ε → x̄, as ε → 0. Since
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Z(x, y) = εẐε(x, y), it follows that, for ε > 0, (x̌ε, y0) and (x̄ε, y0) are regular-
folds points, respectively invisible and visible, of X in the system (7). Hence,
items (a) and (b) of lemma have been proved.
Hypothesese A1 and A2 ensure the existence of κ > 0 such that

(i) X̂(x, y0) < 0 for every x ∈ (x̌, x̌ + κ) and Ŷ (x, y0) > 0 for every x ∈
(x̄− κ, x̄);

(ii) X̂(x, y0) > 0 for every x ∈ (x̌ − κ, x̌) and Ŷ (x, y0) > 0 for every x ∈
(x̄, x̄+ κ).

To prove item (c) of the lemma we assume that there exist: a decreasing
sequence (εi)i∈N > 0 such that εi → 0; and a sequence (zi)i∈N such that zi ∈
(x̌εi, x̄εi), and X̂εih(z

i, y0, εi) ≥ 0 for i ∈ N. Observe that, since Z = εẐε, these
assumptions are the contra-position of item (c).
From (i), we can choose conveniently a decreasing sequence (κi)i∈N > 0 such

that κi → κ, zi ∈ [x̌εi + κi, x̄εi − κi], X̂εih(xεi + κi, y0, εi) < 0, and X̂εih(x̄εi +

κi, y0, εi) < 0, for i ∈ N. Since X̂εih(z
i, y0, εi) ≥ 0, it follows that there exists

a sequence (xi)i∈N such that xi ∈ [x̌εi + κi, x̄εi − κi], and X̂εih(x
i, y0, εi) = 0 for

i ∈ N. Therefore we can choose i0 ∈ N sufficiently larger such that (xi)i≥i0 ⊂
[x̌ + κ, x̄ − κ]. So there is a convergent sub-sequence (xij )j∈N ⊂ (x̌, x̄) such that
xij → x0 ∈ (x̌, x̄). Thus

0 = X̂εih(x
i, 0, εi)

=
(

F1(x
i, 0)− F2(x

i, 0)
)

+ εi
(

R1(x
i, 0, ε)−R2(x

i, 0, ε)
)

,

which implies that

F1(x
ij , 0) + F2(x

ij , 0) = −εij
(

R1(x
ij , 0, ε) +R2(x

ij , 0, ε)
)

.

Applying the limit for j → ∞ we obtain

(9) F1(x
0, 0) + F2(x

0, 0) = 0.

The expression (9) contradicts the Hypothesis A3. Therefore X̂εih(x, y0, ε) < 0

for every x ∈ (x̌ε, x̄ε). Since X(x, y, ε) = εX̂ε(x, y, ε), for ε > 0, we have that
Xh(x, y0, ε) < 0 for every x ∈ (x̌ε, x̄ε). Hence item (c) of lemma is proved. The
proofs of items (d) and (e) follow similarly. �

Lemma 6. Let f : [x̄ε,∞) → R be the function defined as

f(z) =

∫ z

x̄ε

F1(s, ϕ
2

X(s, x̄ε, x̄ε, y0, ε)) + F2(s, ϕ
2

X(s, x̄ε, x̄ε, y0, ε))ds

+ε

∫ z

x̄ε

R1(s, ϕ
2

X(s, x̄ε, x̄ε, y0, ε), ε) +R2(s, ϕ
2

X(s, x̄ε, x̄ε, y0, ε), ε)ds,

where ϕX(t, t0, x0, y0, ε) = (ϕ1
X(t, t0, x0, y0, ε), ϕ

2
X(t, t0, x0, y0, ε)) is the flow in-

duced by the vector field X, such that ϕX(t0, t0, x0, y0, ε) = (x0, y0). Then, for
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each ε > 0, the system (7) admits a sliding periodic orbit if and only if there
exists xε, with x̌ε + T < xε ≤ x̄ε + T , such that f(xε) = 0.

Proof. Let Zs(p) be the sliding vector field, defined (see Appendix) for p ∈ Σs =
{(x, y0) : x ∈ (x̌ε, x̄ε)}, as

Zs(p) =
(Y h)(p)X(p)− (Xh)(p)Y (p)

(Y h)(p)− (Xh)(p)
.

For system (7) this gives Zs ≡ (1, 0), which implies that the solution passing
through any p ∈ Σs reaches x̄ε in a finite time. If the solution passing through
x̄ε returns to Σ then it necessarily returns to Σs, providing in this way a sliding
periodic solution. Therefore, system (7) admits a sliding periodic solution if and
only if the solution passing through x̄ε (bold line in Figure 8) returns to Σ.
We note that the solution starting at the point (x̄ε, y0) follows the flow of the

vector field X . For ε > 0 sufficiently small, ϕX(t, t0, x, y, ε) is defined for every
t ∈ [0, T ]. Moreover

ϕX(t, t0, x0, y0, ε) = (x0, y0) +

∫ t

t0

X (ϕX(s, t0, x0, y0, ε), ε) ds

So ϕ1
X(t, x̄ε, x̄ε, y0, ε) = t, and for f(t) = (ϕ2

X(t, x̄ε, x̄ε, y0, ε)− y0) /ε we have

f(t) =

∫ t

x̄ε

F1(s, ϕ
2
X(s, x̄ε, x̄ε, y0, ε)) + F2(s, ϕ

2
X(s, x̄ε, x̄ε, y0, ε))ds

+ε

∫ t

x̄ε

R1(s, ϕ
2

X(s, x̄ε, x̄ε, y0, ε), ε) +R2(s, ϕ
2

X(s, x̄ε, x̄ε, y0, ε), ε)ds,

Thus system (7) admits a sliding periodic solution if and only if there exists xε,
with x̌ε+T < xε < x̄ε+T , such that ϕ2

X(xε, x̄ε, x̄ε, y0, ε) = y0, i.e. f(x̄ε) = 0. �

Proof of Theorem A. If A and B are open bounded intervals of R such that [x̄, x̄+
T ] ⊂ A and x̄ ∈ B, then it is clear that for ε0 > 0 sufficiently small [x̄ε, x̄ε +
T ] ⊂ A and x̄ε ∈ B. By continuity of the application ϕ2

X(t, t0, x0, y0, ε) and by

compactness of the set A×B
2×{y0}× [−ε0, ε0], there exits K a compact subset

of D such that ϕ2
X(t, t0, x0, y0, ε) ∈ K for all (t, t0, x0, y0, ε) ∈ A × B

2 × {y0} ×
[−ε0, ε0]. Now, by the continuity of the function R, |R(t, ϕ2

X(t, x̄ε, x̄ε, y0, ε), ε)| ≤
max{|R(t, y, ε)|, (t, y, ε) ∈ A×K × [−ε0, ε0]} = N . Then
∣

∣

∣

∣

∫ t

x̄ε

R
(

s, ϕ2

X (s, x̄ε, x̄ε, y0, ε) , ε
)

ds

∣

∣

∣

∣

≤
∫ t

x̄ε

∣

∣R
(

s, ϕ2

X (s, x̄ε, x̄ε, y0, ε) , ε
)
∣

∣ ds

≤
∫

A

Nds = µ(A)N,

which implies that
∫ t

x̄ε

R
(

s, ϕ2

X (s, x̄ε, x̄ε, y0, ε) , ε
)

ds = O(1).
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So

(10) f(t) =

∫ t

x̄ε

F1(s, ϕ
2
X(s, x̄ε, x̄ε, y0, ε)) + F2(s, ϕ

2
X(s, x̄ε, x̄ε, y0, ε))ds+O(ε).

From expression (10) and (4) we have that f(z)−f0(z) = O(ε) for z ∈ (x̌+T, x̄+
T ). Indeed

|f(z)− f0(z)| ≤
∫ z

x̄

|F1(s, ϕ
2
X(s, x̄ε, x̄ε, y0, ε))− F1(s, y0)|ds

+

∫ z

x̄

|F2(s, ϕ
2
X(s, x̄ε, x̄ε, y0, ε))− F2(s, y0)|ds

± (x̄ε − x̄) +O(ε),

and

|Fi(s, ϕ
2

X(s, x̄ε, x̄ε, y0, ε))− Fi(s, y0)| ≤ L|ϕ2

X(s, x̄ε, x̄ε, y0, ε)− y0| = O(ε),

because Fi is L-Lipschitz continuous.
Thus we have that f(z) = f0(z) + O(ε). From hypotheses and Lemma 4 we

have assured, for ε > 0 sufficiently small, the existence of xε of Lemma 6, hence
a sliding periodic orbit exists. �

5. Proofs of Propositions E1 and E2

In this section we shall prove Proposition E1 by applying Theorem A. The
proof of Proposition E2 is completely analogous.

Proof of Proposition E1. System (5) can also be written as

(11)
u̇(t) = −v +

u

2
− sign(h(u, v))

u

2
− ε

(a u

2
+ sign(h(u, v))

a u

2

)

,

v̇(t) = u+
v

2
− sign(h(u, v))

v

2
+ ε

(

b

2
+ sign(h(u, v))

b

2

)

.

Applying the change of variables (u, v) = (−y sin(x), y cos(x)), system (11)
becomes

(12)
ẋ(t) = 1− ε (1 + sign(y − 1))

(b+ a y cos(x)) sin(x)

2y
,

ẏ(t) = (1− sign(y − 1))
y

2
+ ε (1 + sign(y − 1))

b cos(x)− a y sin2(x)

2
.

Taking x as the new independent variable, the system (12) can be reduced to the
form of (1), namely

(13)

dy

dx
(x) = (1− sign(y − 1))F3(x, y)

+ε (F1(x, y) + sign(y − 1)F2(x, y)) +O(ε2),
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where

F3(x, y) =
y

2
,

F1(x, y) = F2(x, y) =
b cos(x)− a y sin2(x)

2
.

Now, taking

x̌ = arctan

(
√

2b√
4a2 + b2 − b

)

and x̄ = 2π − arctan

(
√

2b√
4a2 + b2 − b

)

,

and assuming a > 0 and b > 0 we have that F1(x̄) + F2(x̄) = 0 and F1(x̌) +
F2(x̌) = 0. It is easy to see that F1(x, 1) + F2(x, 1) < 0 for every x ∈ (x̌, x̄),
F1(x, 1) + F2(x, 1) > 0 for every x ∈ (x̄, x̌ + 2π), F1(x, 1)− F2(x, 1) = a > 0 for
every x ∈ R, since a > 0, b > 0 and c > 0. Moreover

∂xF1(x̌, 1) + ∂xF2(x̌, 1) = −(∂xF1(x̄, 1) + ∂xF2(x̄, 1)) =

−
√
2c

c+
√
4b2 + c2

(

√√
4b2 + c2 + c2 + 2b

c

√√
4b2 + c2 − c2

)

.

Hence ∂xF1(x̄, 1) + ∂xF2(x̄, 1) < 0 and ∂xF1(x̌, 1) + ∂xF2(x̌, 1) > 0.
Computing the averaging function (4) with respect to (13) we have

(14)

f0(z) =

∫ z

x̄

b cos (x)− a sin2 (x) dx

=
2b sin(z) + a cos(z) sin(z)− a z

2
− 2b sin(x̄) + a cos(x̄) sin(x̄)− a x̄

2
.

Therefore by applying Theorem A, for a zero z0 ∈ (x̌+ 2π, x̄+ 2π) of f0(z) such
that f ′(z0) 6= 0, there exists a sliding periodic solution Y (x, ε) of the differential
equation (11) such that Y (x̄, ε) → 1 when ε → 0, which implies in existence of a
periodic solution (x(t, ε), y(t, ε)) = (x(t, ε), Y (x(t, ε), ε)) of the system (12) such
that (x(0, ε), y(0, ε)) → (x̄, 1) when ε → 0. Hence,

(u(t, ε), v(t, ε)) = (−y(t, ε) cos(x(t, ε)), y(t, ε) sin(x(t, ε)))

is a sliding periodic solution of the system (5) such that (u(0, ε), v(0, ε)) →
(− sin(x̄), cos(x̄)) when ε → 0.
Observe that for the averaged function (14), f0(x̌+ 2π) > 0 and f0(x̌+ 2π) =

−aπ. Since a > 0, there exists a zero z0 ∈ (x̌ + 2π, x̄ + 2π) of the equation
f0(z) = 0. Moreover

f ′(z) = b cos(z)− a sin2(z) > 0

for a, b > 0 and z ∈ (x̌ + 2π, x̄ + 2π). Thus f(z0) = 0 and f ′(z0) 6= 0, which
concludes the proof of proposition. �
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Appendix: Definition of solutions and structural stability at the

discontinuity

Following [1], we summarize here a few of the basic concepts of discontinuous
vector fields that are used in this paper.
We assume that discontinuity only appears in a differential submanifold Σ,

which can be given as Σ = h−1(0)∩U for a certain C1 function h which has 0 as
a regular value. Then the curve Σ splits U in two open sets

Σ+ = {(x, y) ∈ U : h(x, y) > 0} and Σ−{(x, y) ∈ U : h(x, y) < 0}.
We consider the following piecewise continuous vector field

(15) Z(x, y) =







X(x, y), if (x, y) ∈ Σ+,

Y (x, y), if (x, y) ∈ Σ−,

which we denote concisely as Z = (X, Y )Σ.
The curve Σ can be decomposed as the union of the closure of the regions:

Σc = {x ∈ Σ : (Xh)(Y h)(x, y) > 0} ;
Σe = {x ∈ Σ : (Xh)(x, y) > 0 & (Y h)(x, y) < 0} ;
Σs = {x ∈ Σ : (Xh)(x, y) < 0 & (Y h)(x, y) > 0} .

Here (Xh)(x, y) = 〈∇h(x, y), X(x, y)〉 where 〈·, ·〉 denotes the usual dot product
of R2.

Σc ΣsΣe

Figure 9. Crossing region (Σc), escaping region (Σe) and sliding
region (Σs).

For p ∈ Σe ∪ Σs we define the sliding vector field as

(16) Zs(p) =
(Y h)(p)X(p)− (Xh)(p)Y (p)

(Y h)(p)− (Xh)(p)
.

Let ϕW (t, p) : Ip × U → R
2 be the flow induced by a vector field W such that

ϕ(0, p) = p. Here, Ip is the maximal interval for which ϕW is defined. The local
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trajectory of the system (15) of an orbit passing through p ∈ U is given by the
following definition.

Definition 1. The local trajectory (or orbital solution) of a Filippov vector field
of the form (15) through a point p is defined as follows:

• for p ∈ Σ+ or p ∈ Σ− such that X(p) 6= 0 or Y (p) 6= 0 respectively,
the trajectory is given by ϕZ(t, p) = ϕX(t, p) or ϕZ(t, p) = ϕY (t, p), for
t ∈ Ip ⊂ R;

• for p ∈ Σc such that (Xh)(p), (Y h)(p) > 0 and taking the origin of time at
p, the trajectory is defined as ϕZ(t, p) = ϕY (t, p) for t ∈ Ip ∩ {t < 0} and
ϕZ(t, p) = ϕX(t, p) for t ∈ Ip∩{t > 0}. For the case (Xh)(p), (Y h)(p) < 0
the definition is given by reversing time;

• for p ∈ Σe ∪ Σs such that Zs(p) 6= 0, ϕZ(t, p) = ϕZs
(t, p) for t ∈ Ip ⊂ R;

• for p ∈ ∂Σc ∪ ∂Σs ∪ ∂Σe such that the definitions of trajectories for points
in Σ in both sides of p can be extended to p and coincide, the orbit through
p is the limiting orbit.

• any other points ϕ(t, p) = p for all t ∈ R are not regular, for example
irregular tangency points.

Definition 2. The following are generic singularities of the Filippov vector field
(15):

• p ∈ Σ± such that X(p) = 0 and Y (p) = 0 respectively;
• p ∈ Σs ∪ Σe such that Zs(p) = 0, called a pseudoequilibrium;
• p ∈ ∂Σc ∪ ∂Σs ∪ ∂Σe, that is (regular and singular) tangency points.

For planar Filippov vector fields, there exist the following generic singularities
which are all distinguished singularities (see definition 2).

(1) A regular-fold point is some p ∈ Σ such that Xf(p) = 0 and X2f(p) 6= 0
and Y f(p) 6= 0 or points such that Xf(p) = 0 and Y 2f(p) 6= 0 and
Xf(p) 6= 0.

(2) A hyperbolic fixed point of the sliding vector field is some p ∈ Σs∪Σe such
that X(p)||Y (p) and hence Zs(p) = 0. Moreover, we impose the generic
condition Zs(p) 6= 0.

Definition 3. Two Filippov vector fields Z = (X, Y )Σ : U → R
2 and Ž =

(X̌, Y̌ )Σ̌ : Ǔ → R
2 are Σ-equivalent if there exists an orientation preserving

homeomorphism H : U → Ǔ which sends Σ ⊂ U to Σ̌ ⊂ Ǔ and sends orbits of Z
to orbits of Ž.

The definition of Σ-equivalence gives rise to the concepts of Σ-structural sta-
bility, see [1].
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