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The folded node is a singularity associated with loss of normal hyperbolicity in systems

where mixtures of slow and fast timescales arise due to singular perturbations. Canards are

special solutions that reveal a counteractive feature of the local dynamics, namely trajectories

that flow from attractive regions of space into repulsive regions. An alternative way to

model switches between timescales is using piecewise-smooth differential equations. There is

presently no adequate theory or method for relating slow-fast and piecewise-smooth models.

Here we derive the analogous piecewise-smooth system for the folded node by pinching phase

space to sharpen the switch between timescales. The corresponding piecewise-smooth system

contains a so-called two-fold singularity, and exhibits the same topology and number of

canards as the slow-fast system. Thus pinching provides a piecewise-smooth approximation

to a slow-fast system.

The purpose of this paper is to study the relation between discontinuities and singular per-

turbations in dynamical systems, by focusing on their singularities. We do this by forming a

piecewise-smooth model of an important singular perturbation problem using the method of pinch-

ing introduced in [9]. Pinching replaces a slow-fast timescale separation with a discontinuous switch,

replacing Fenichel’s slow manifolds [15] with Filippov’s sliding surfaces [17]. In particular, it pro-

vides a piecewise-smooth model that captures, both qualitatively and quantitatively, the intricate

dynamics of the smooth singular perturbation problem. The study of such singularities in discon-

tinuous systems predates those in singularly perturbed systems [2, 16, 24], while the latter has seen

more progress in the study of oscillatory dynamics, see e.g. [8]. Here we show that the analogy

between singularities in the two types of system is more than superficial, paving the way for a more

rigorous study of piecewise-smooth systems as a means to studying singular perturbations in the

future.
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I. INTRODUCTION

Highly nonlinear changes in the dynamics of a system can be modelled by differential equations

whose solutions vary rapidly near certain thresholds. Whether those jumps are smooth but fast

varying, or are truly discontinuous, changes the way they are treated mathematically. It is natural

to assume that a limit exists in which ‘fast-but-smooth’ becomes truly ‘discontinuous’, but how to

characterise that limit is by no means obvious.

Analytically this might not be surprising, because in many cases the limit may be singular

(for an interesting aside on singular limits see [5]), meaning that solutions of the smooth system

do not limit to the piecewise-smooth system in a regular way. Computationally the difficulty

in studying the nonsmooth limit of smooth systems lies in the fact that, by their very nature,

they become extremely stiff and numerical methods fail to converge in the limit of interest [18].

As a result, the relation between smooth and piecewise-smooth dynamical systems theory remains

poorly understood. The recent growth of piecewise-smooth dynamical systems theory has produced

numerous forms of discontinuity-induced singularities, bifurcations, and chaos. It is interesting to

ask whether these have any counterpart in smooth systems, where novel behaviours have also been

attributed to abrupt change. For this purpose a relation between smooth and piecewise-smooth is

necessary. (Examples of the discontinuity-induced phenomena of interest are sliding bifurcations

[12, 13, 20], explosions [19], grazing singularities [17, 27], and non-deterministic chaos [7]. Examples

of the smooth system phenomena of interest are canard explosions [4] and mixed-mode oscillations

[8, 22, 25]).

In [9], ideas from singular perturbations, nonsmooth dynamics, and nonstandard analysis, were

combined to develop a method called pinching, which approximates a fast-but-smooth change by

a discontinuity. Pinching characterises the dynamics in the nonsmooth limit at least qualitatively,

and, as we show here, even quantitatively, by preserving certain singularities and associated geom-

etry. The present paper investigates the method by applying it to a known system with slow-fast

dynamics, characterized by an invariant manifold of slow dynamics which loses normal hyperbol-

icity, taking the form of the so-called folded-node system in a singular limit. A relation between

so-called canard phenomena in smooth and piecewise-smooth systems is derived.

Pinching is a way of deriving piecewise-smooth models that capture key geometry of singular

perturbation problems. While the method so-far developed does not provide a rigorous approxi-

mation in the analytic sense, it faithfully captures singularities and bifurcations that arise when

a smooth system suffers rapid change, encapsulated in a piecewise-smooth differential equation,
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capable of providing accurate estimates of bifurcation parameters, as shown previously in a study

of the van der Pol system in [9].

In the remainder of this section we introduce the canonical model used to study the folded node,

a set of ordinary differential equations with a singular perturbation parameter ε. In section II we

apply pinching to obtain a piecewise-smooth system dependent on ε 6= 0, whose phase portrait

resembles the smooth system’s singular limit ε = 0. Neither the pinched system, nor the singular

limit of the smooth system, accurately represent the dynamics found when ε is small but nonzero.

In section III we motivate pinching better by first making an exponential rescaling of the phase

space, yielding a system with similar qualitative features to section II; we then give numerical

evidence, by means of boundary-value problem continuation, of the continuum of canards emerging

in the nonsmooth limit. In section IV we show how this can be improved, by shifting the focus of

the exponential rescaling, and pinching again. This second approximation possesses more intricate

dynamics, which we show is in one-to-one correspondence with solutions of the smooth system for

ε 6= 0. We make some closing remarks in section V, including a simple smoothing of the pinched

system from section II that shows how the number of canards in a flow increases, through a series

of bifurcations, as a change at some threshold tends towards discontinuity.

We begin with a slow-fast system whose key features can be considered fundamental to the

understanding of the canard phenomenon. The system is a set of ordinary differential equations

for two slow variables, x and y, and a fast variable, z. (Some features of these systems can be

generalised to arbitrarily many fast and slow variables, see [6, 29]). The timescale separation is

introduced by a parameter ε satisfying 0 < ε ≪ 1. A general such system can be written

ẋ = g1(x, y, z; ε) ,

ẏ = g2(x, y, z; ε) ,

εż = h(x, y, z; ε) ,

(1)

in terms of smooth functions h, g1, and g2, where the dot denotes differentiation with respect to

the (slow) time t. For |h| > ε, it is easy to see that ż is much larger than ẋ and ẏ, so on the fast

timescale solutions are attracted to, or repelled from, an ε-neighbourhood of the null surface of the

fast variable,

C0 := {h(x, y, z, ε) = 0} , (2)

known as the critical manifold; see figure 1. As shown by Fenichel [15], within that neighbour-

hood lie (generally non-unique) perturbations of the critical manifold, called the slow manifolds,

hypersurfaces which are (locally) invariant in the flow, and are hyperbolically attracting or repelling
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provided that ∂h/∂z 6= 0. The notion of local invariance means that solutions can leave a slow

manifold only at its boundary, if one exists [21].

x

z

fold

y

C0

Figure 1: Critical manifold C0, and dynamics away from the fold (the y-axis). Solutions evolve quasi-vertically on the

fast timescale (double arrows) to/from the ε-neighbourhood of the critical manifold, where the slow timescale dominates

(single arrows).

Normal hyperbolicity of the critical manifold is lost if ∂h/∂z vanishes. This scenario occurs

generically in three dimensions when there is a fold in C0 with respect to the flow (see figure 1). A

fold is a set of points where the conditions

h =
∂

∂z
h = 0, (3)

{

∂

∂x
h,

∂

∂y
h

}

6= 0 6= ∂2

∂z2
h, (4)

are satisfied, with the inequalities ensuring that the critical points along h = 0 are indeed folds,

and not higher order degeneracies. The flow’s projection onto the x-y plane is transverse to the

fold except at points where

h = (g1, g2) ·
(

∂

∂x
,
∂

∂y

)

h = 0 . (5)

The three conditions in equation (3) and equation (5), subject to non-degeneracy conditions (4),

define an isolated point, which we can place at the origin (x, y, z) = (0, 0, 0) for ε = 0, where the

system can be transformed into the local canonical form [3, 26]

ẋ = by + cz + h.o.t.

ẏ = 1 + h.o.t.

εż = x+ z2 + h.o.t.

(6)
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This provides a local model for the system of interest, and from now on we omit higher order terms

(h.o.t.). In doing so we must take care, for we can scale ε out of the leading order terms by sending

{x, y, z, t} 7→ {xε, y√ε, z
√
ε, t

√
ε} (following [28]), or {x, y, z, b, c} 7→

{

xε2, y, zε, bε2, cε
}

, and while

the result is a formally correct leading order system, the ε-orders of the new variables (x, y, z, t) must

be considered in any subsequent approximation. Since the order of certain quantities is essential

here, we do not make such a substitution at this stage.

A. Projection onto the critical manifold

This paper presents a method for characterising slow-fast dynamics for a system with small ε,

without taking ε to zero. The more common method of studying a system such as (6) involves first

taking the singular limit, ε = 0, and subsequently considering ε > 0 as a perturbation. Certain

features of the singular limit will appear in a different guise (for ε 6= 0 in fact) in our nonsmooth

approach later, so let us review these first.

Setting ε = 0 (and neglecting higher order terms) reduces system (6) to a differential-algebraic

equation

ẋ = by + cz ,

ẏ = 1 ,

0 = x+ z2 ,

called the reduced system, see e.g. [3, 26]. Its solutions are restricted to the critical manifold C0, on

which h = x+ z2 = 0. This flow therefore satisfies ḣ = 0 which, using system (6), gives

0 = ḣ = by + cz + 2zż ⇒ ż = −by + cz

2z
.

Combining this with the second component ẏ = 1 from system (6) yields a dynamical system on

C0, given by





ẏ

ż



 =
−1

2z





0 −2

b c









y

z



 . (7)

This system is undefined at y = z = 0 but, importantly, arbitrarily close to this point the righthand

side of equation (7) is generally nonzero. The local phase portrait is determined by the 2 × 2 in

equation (7), whose trace and determinant are respectively

λ1λ2 = 2b and λ1 + λ2 = c , (8)
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where λ1,2 are solutions of the characteristic equation 0 = λ2−cλ+2b assigned such that |λ1| ≥ |λ2|.
Let µ = λ2/λ1. The singularity is then classified (see for example [26]) as:

a folded node if µ > 0 , ( λ1λ2 > 0 ) (9)

a folded saddle if µ < 0 , ( λ1λ2 < 0 ) (10)

a folded focus if µ ∈ C . ( λ1 = λ∗
2 ) (11)

The three cases are illustrated in figure 2. Their names reflect the fact that, if we omit the prefactor

−1/2z from equation (7), the remaining linear system





ẏ

ż



 =





0 −2

b c









y

z





has an equilibrium at the origin, and this is a node if µ > 0, a saddle if µ < 0, or a focus if µ ∈ C. The

term ‘folded’ is required because this linear system is topologically, but not dynamically, equivalent

to equation (7), being obtained from it by a time scaling t 7→ −t/2z. This scaling changes sign with

z, and is singular at z = 0. As a result, the dynamics is similar in z < 0 on the attracting branch

of the critical manifold C0, and is similar up to time-reversal in z > 0 on the repelling branch of C0.

The singularity of the scaling at z = 0 means that the equilibrium of the linear system is not an

equilibrium of equation (7), instead referred to as a folded equilibrium, which, unlike an equilibrium,

solutions can cross through in finite time. Solutions of equation (7) that cross through y = z = 0

are shown in figure 2, with infinitely many in (i), only two in (ii), and none in (iii). Those that

pass from z < 0 to z > 0 through the folded node or folded saddle correspond to canards, which

are discussed in the next section.

folded
node

(i) (ii) (iii)

folded
saddle

folded
focus

Figure 2: Projected onto the critical manifold, the flow is a singular scaling of (or a folded) (i) node, (ii) saddle, or (iii)

focus.

The classification into folded node/saddle/focus, for different values of µ, is also used to classify

the system (6) for ε nonzero. The remainder of this paper will be concerned solely with the

folded node case, µ > 0. Substituting µ = λ2/λ1 and equation (8) into equation (6), then scaling
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(x, y, z, t, ε) 7→ (x/λ2
1, y/λ

2
1,−z/λ1, t/λ

2
1,−ε/λ3

1), gives to leading order

ẋ = µ
2 y − (1 + µ)z ,

ẏ = 1 ,

εż = x+ z2 .

(12)

Since much of the foregoing analysis will involve a natural length scale |h| = ε, for convenience we

define a new function

u(x, y, z; ε) = h(x, y, z; ε)/ε , (13)

then in the variables {u, y, z}, the system (12) becomes

εu̇ = µ
2y−(1 + µ)z + 2zu ,

ẏ = 1 ,

ż = u .

(14)

The remainder of the paper is a study of this system for µ > 0 and ε > 0. Before we apply pinching

to this system, we must state some preliminaries concerning the so-called canard type solutions that

make it so interesting.

B. Canards

Throughout this paper we define a canard as a solution that evolves from an attracting invariant

manifold, to a repelling invariant manifold, via some singularity that faciliataes the transition. In

the traditional setting of a smooth system with slow and fast timescales, the invariant manifolds are

surfaces of slow dynamics, as we introduce in equation (15) below. In the setting of discontinuous

systems as we introduce in section II, the invariant manifolds are regions where solutions slide

along the switching manifold (the discontintuity set). Strictly speaking, we use the term ‘canard’

exclusively for maximal canards, which are the solutions of the types above that spend the maximum

possible time on the repelling invariant manifold;in the setting described in this paper, this time

can be regarded as infinite.

For real µ and noting |µ| < 1 by definition, the ratios z/y = µ/2 and z/y = 1/2 are satisfied

by the weak and strong eigendirections associated with the folded equilibrium of equation (7). The

solutions along these directions are canards, known as the weak and strong singular canards of the

singular (ε = 0) system.
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The non-singular (i.e. ε 6= 0) system (14) also has two particular solutions satisfying z/y = µ/2

and z/y = 1/2. We label these γwk,st = {u(t), y(t), z(t)}, and solve equation (14) to find

γwk(t) =
{µ

2
, t,

µ

2
t
}

, γst(t) =

{

1

2
, t,

1

2
t

}

. (15)

These solutions are canards, since as t → ±∞ they lie in an ε-neighbourhood of the attracting

and repelling branches of the critical manifold, implying that they tend towards attracting and

repelling slow manifolds. They form simple curves that are ε-close to the weak and strong canards

of the singular system, therefore γwk is called the weak primary canard, and γst the strong primary

canard, (though where possible without ambiguity we omit the word ‘primary’).

It is clear from the local phase portrait (see figure 2(i)) that, besides the primary canards,

the singular system contains a whole family of canard solutions through the singularity, forming a

continuum between the weak and strong solutions. For the non-singular (0 < ε ≪ 1) system there

may exist a number of other canards, termed secondary canards, though unlike the singular system

they will generally be finite in number, and of a more complicated topology (see for example [11, 28]).

Secondary canards have been shown [11, 28] to rotate around the weak (primary) canard near the

origin, and to asymptotically align with the strong (primary) canard as t → ±∞, as sketched in

figure 3. They are neither easy to express in closed form, nor easy to simulate numerically. To

study secondary canards analytically, Wechselberger [28] applies a parameter blow-up, then moves

to cylindrical coordinates centred on the weak canard, and takes the variational equation along

the weak canard to obtain a Weber equation, whose solutions describe small oscillations that the

secondary canards perform around the weak canard. In this paper pinch the ε-neighbourhood of the

critical manifold onto the manifold itself, thereby deriving a piecewise-smooth system that exhibits

analogous behaviour.

For ε nonzero, a first approximation for the slow manifolds is that they lie in an ε neighbourhood

of the critical manifold (at least where it is normally hyperbolic). A better approximation, and

one we will use later, is to note that the slow dynamics lies not on, but is stationary with respect

to, the critical manifold, and hence lies close to (actually in an ε2-neighbourhood of) the nullcline

u̇ = 0. Solving u̇ = 0 in equation (14) gives the surface

Py =

{

(u, y, z) ∈ R
3 : u =

µ+ 1

2
− µy

4z

}

. (16)

These two approximations (ε-close to C0 and ε2-close to Py) must be consistent, that is, the sur-

face Py can only approximate a slow manifold where it lies in the ε-neighbourhood of the critical
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weak 
canard

γwk

γst

secondary
canard

strong
canard

h

ε

(i)

−ε

0

−2ε

z
−1 10

(ii)

γst

γwk

Figure 3: (i) Primary and secondary canards in the neighbourhood of the critical manifold. Secondary canards connect

an ε-neighbourhood of the attracting and repelling branches of the critical manifold, their tails lying parallel to the strong

(primary) canard γst. Near the singularity they rotate around the weak (primary) canard γwk. (ii) The flow circulating

around the weak canard: simulation of equation (14) in the plane y = −1.

manifold. Near z ≈= 0 this cannot hold, while for large z the surface Py is approximated by

P0 =

{

(u, y, z) ∈ R
3 : u =

µ+ 1

2

}

, (17)

and for this to lie within ε of the critical manifold, which corresponds to the region |u| < 1, we

must clearly have |(µ + 2)/2| < 1. Combining this with the folded node condition µ > 0 gives the

range of permitted values for the parameter µ as

0 < µ < 1. (18)

This motivates the choice we made earlier of defining µ as λ2/λ1 rather than its reciprocal. As

an illustration of the condition above, note that the weak and strong canards are two particular

solutions that lie on the slow manifolds. These lie on Py because their distances u from the critical

manifold are fixed at u = µ/2 and u = 1/2, and moreover |µ| < 1 guarantees that both of these lie

in the required neighbourhood, since |µ/2| < 1 and |1/2| < 1.

II. PINCHING

Pinching, at least in the form used here, was introduced in [9]. To illustrate the method, we

first demonstrate it in its crudest form. Essentially, we assume the system is dominated by fast

dynamics for |u| > 1, which we leave untouched. We assume that slow dynamics dominates in
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|u| < 1, in such a way that dynamics in the u direction can be neglected, so we collapse the entire

neighbourhood |u| < 1 onto the critical manifold u = 0.

The ‘pinch‘ is enacted by a piecewise-smooth transformation of the variables, in this case intro-

ducing a new variable

U = u− sign(u) , (19)

for |u| > 1, and omitting |u| < 1. Equations (14) then become a piecewise smooth system

εU̇ = µ
2y − (µ + 1)z + 2z sign(U) + O (zU) ,

ẏ = 1 ,

ż = U + sign(U) .

(20)

where

sign(U) ∈







U/|U | if U 6= 0,

[−1,+1] if U = 0.
(21)

The dynamical theory of such differential inclusions was described by Filippov [17]. For U 6= 0,

equation (20) specifies the fast dynamics uniquely. On U = 0, called in piecewise-smooth dynamics

the switching manifold, the righthand side is set-valued. The dynamics it gives rise to, however, is

rather simple to describe.

Consider a point p on the switching manifold, so U |p = 0. If U̇ is nonzero there and its sign does

not change with the sign of U , then p is the arrival point of a solution lying on one side of U = 0,

and the departure point of a solution lying on the other side. Concatenating the two solutions gives

a unique, continuous but non-differentiable, solution, that crosses the switching manifold at p. This

therefore takes place on U = 0 where 4z2 <
(µ
2 y − (µ+ 1)z

)2
(the ‘bow-tie’ region in figure 4).

If U̇ changes sign at p then the flow cannot cross through the switching manifold there. Two

solutions of equation (20) meet at p, each arriving from either side of U = 0 (the lower re-

gion on U = 0 in figure 4), or each departing (the upper region on U = 0 in figure 4). They

occupy the regions on U = 0 where 4z2 >
(µ
2y − (µ+ 1)z

)2
; the region where z < 0 and

4z2 −
(µ
2 y − (µ+ 1)z

)2
> 0 attracts the flow outside the switching manifold, while the region

where z > 0 and 4z2 −
(µ
2y − (µ + 1)z

)2
> 0 repels it. These are the pinched analogues of a

point p on the attracting and repelling slow manifolds, respectively, of system (14). To find the

flow on them we solve as we did for the slow flow projected onto u = 0 in section I A, fixing

0 = U̇ = µ
2y − (µ + 1)z + 2zż. Solving for ż gives dynamics on U = 0 defined by





ẏ

ż



 =
−1

2z





0 −2

µ
2 −(µ+ 1)









y

z



 . (22)
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We say that system (22) defines sliding dynamics on U = 0, and its solutions are known as sliding

orbits. This is clearly sensible as an analogue of the slow dynamics, since it is equal to equation

(7), which describes the original system projected onto the critical manifold.

Finally, notice what happens at the boundaries of the regions of sliding and crossing, where

U = 0 and µ
2y − (µ + 1)z ± 2z = 0. The field in U > 0 is tangent to the switching manifold along

µ
2y− (µ+1)z +2z = 0, and curves away from the manifold since it satisfies Ü = µ

2 − (µ+1)+ 2 =

1 − µ
2 > 0. Thus the flow in U > 0 at such points carries a solution away from the switching

manfiold. The field in U < 0 is tangent to the switching manifold along µ
2y − (µ + 1)z − 2z = 0,

and curves towards the manifold since Ü = µ
2 + (µ + 1) + 2 = 3(µ2 + 1) > 0, so solutions can only

enter the switching manifold at such points.

All this gives the simple dynamical portrait shown in figure 4. A feature of this system is that it

contains solutions corresponding to the weak and strong canards, and a continuum of other canards

between them. Evidently, recalling section I B, the sliding dynamics corresponds to represent the

continuum of canards that exist in the smooth system’s singular limit ε = 0. But the pinched

system also allows crossing of the switching manifold, which the singular (ε = 0) smooth system

does not, so it can only apply to ε 6= 0. It will emerge that the correct canard structure can be

captured by modifying the pinch slightly (looking ahead, we do this by pinching around the surface

(17) instead of the critical manifold). In section III we re-consider the choice of coordinates above,

inserting a preparatory step (a “microscope") that more fully motivates the process of pinching,

before changing the focus of the microscope and the pinch to capture more precisely the secondary

canard structure in section IV.

X

z

U yy

z

Figure 4: Pinched system, in (U, y, z) coordinates (left) and corresponding (X, y, z) coordinates (right) if X = x−sign(x).

The upper and lower regions are the repelling and attracting sliding regions, separated by a ‘bow-tie’ (shaded) made up

of crossing regions. Double arrows indicate trajectories outside the surface, single arrows indicate sliding trajectories.
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III. FIRST APPROXIMATION: A CONTINUUM OF CANARDS

The microscope, introduced in the context of nonstandard analysis [4], is an exponential scaling

of variables that attempts to resolve the interaction between slow and fast dynamics. We use it

here to motivate the pinch that will follow. Let

v = u[ε] := |u|εsign u , (23)

in terms of which equation (14) becomes

v̇ = v
{

2z +
(µ
2y − (µ + 1)z

)

v−1/[ε]
}

,

ẏ = 1 ,

ż = v1/[ε] .

(24)

This is simulated in figure 5(i). The weak and strong canards now satisfy v1/[ε] = z/y = µ/2 and

v1/[ε] = z/y = 1/2 respectively (by direct calculation). The projection onto v = 0 gives the same

y-z system (22) (or equivalently (7)) as before the microscope.

For |v| < 1 and ε ≪ 1, the flow of system (24) is dominated by the term v
1− 1

[ε] in the equation

for v̇, and so lies close to a set of fibres with constant y and z, connecting the surfaces v = ±1. To

approximate this, we pinch the two surfaces v = ±1 together using the transformation

V = v − sign v (25)

for |v| > 1, giving the system

V̇ = (V + signV )
{

2z +
(µ
2y − (µ+ 1)z

)

(V + signV )−1/[ε]
}

,

ẏ = 1 ,

ż = (V + signV )1/[ε] ,

(26)

as simulated in figure 5(ii). Note that prior to pinching, both the weak and strong canards lie inside

the region |v| < 1, therefore they are not part of the system (26) for V 6= 0. Instead, they now lie

on the switching manifold V = 0. At the switching manifold, V = 0, equation (26) reduces to

V̇ = µ
2 y − (µ+ 1)z + 2z signV ,

ẏ = 1 ,

ż = signV ,

(27)

which is equivalent to system (20) up to an ε scaling in y, z, t. The crossing and sliding dynamics

on the switching manifold are therefore exactly as described in equation (22) for system (20). The
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microscope, given by the transformation u 7→ v, provides the motivation for the pinch u 7→ V . The

result is a system of ‘fast’ dynamics for V 6= 0 given by equation (26), and slow dynamics that

either crosses the sliding manifold, or slides along it as described in equation (22) for system (20).

An immediate consequence is that, similar to the previous section (where the pinch was applied

without a microscope), pinching here gives a continuum of canards solutions. In the next section

the microscope is used more powerfully, to resolve the different canards.

v

0

z
−1

−1

1

1

0

V

pinch
0

z
−1

−0.1

1

0.1

0

(i) (ii)

γst

γst

γwk

γwk

Figure 5: The microscope and pinch. (i) Flow in the microscope system (24) simulated in the plane y = −1 with ε = 0.05

and µ = 1/8.5. (ii) Flow in the system (26) obtained by pinching together the surfaces v = ±1 in (i), with the vertical

axis rescaled for clarity. The primary canards γst,wk are indicated.

z

0

y
−3

−1

1

−6 630

γst

γwk

Figure 6: Sliding flow after the pinch, given by equation (22) in the regions 4z2 >
(

µ

2
y − (µ+ 1)z

)2
on V = 0. Showing

the strong (bold) and weak (dashed) primary canards. Orbits to the right of the strong canard in the upper half space

(the repelling sliding region), and to the left of the strong canard in the lower half space (the attracting sliding region),

form a continuum of canards.
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A. Computations in the nonsmooth limit

Before resolving the secondary canards by adjusting the pinch, one may immediately ask whether

the original canard structure is restored when we smooth out the piecewise-smooth model (20). The

obvious way to achieve this is to replace the sign function with a sigmoid function. Neglecting the

O (zU ) term in equation (20), we directly replace sign with

sign(U) 7→ tanh(kU) ,

for large positive constant k, and analyse the resulting system numerically using a technique based

on the numerical continuation of parametrised families of two-point boundary-value problems as

presented in [11]. The piecewise-smooth system (20) is obtained in the limit k → ∞, and the

original smooth system (14) is regained as k → 0.

The computations below are all made for µ = 1/8.5. Figure 7 shows attracting and repelling slow

manifolds for different values of k, found by computing solutions that pass between lines chosen on

the attracting and repelling branches of the critical manifold. Canards occur where the attracting

and repelling branches intersect transversally. The magnified images show an increasing number of

rotations around the weak canard, and an increasing number of intersections (i.e. canards), with

increasing k, that is, as the smoothing function tanh(kU) approaches sign(U).

Figure 8 shows ten branches of canards (γ1 to γ9 and γst) continued as the stiffness parameter

k varies (see [11] for details on such continuation for canards). Each point along the ten curves

corresponds to a canard, formed by transversal intersection of the the repelling and attracting

branches of slow manifolds from figure 7. The curves give the maximum value of x reached along

each canard solution (compare for example to theoretical results in [28]). The strong canard is

labeled γst, and nearby, we see the development of secondary canards, labelled γ1 to γ9, as k

increases from zero.

The number of canards grows very quickly with k at smaller values (k . 1000). Each new branch

of secondary canards emerges from one particular curve, labeled as the branch of weak canards,

γwk. This branch could not be computed for all values of k, and is partly derived from the envelope

of endpoints of the secondary canards, however its identification as the weak canard is supported

for several reasons. Primarily, only the weak canard should coexist with γst for all parameters,

and furthermore the bifurcation of secondary canard branches fits with previous results for canards

in the case of a folded node; we refer the reader to [28] for theoretical results and a sketch of the

expected bifurcation diagram, and to [10] for a computed bifurcation diagram.
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Figure 7: Slow manifolds in a regularization of the piecewise-smooth system (20), plotted in the section {y = 0} for

different values of the stiffness parameter k. (i) Computations of the slow manifolds, and (ii) magnifications showing the

increasing numbers of intersections with increasing k. Each intersection of the slow manifolds corresponds to a canard.

(Colour online indicates the repelling (thicker/blue) and attracting (thinner/red) slow manifolds).
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Figure 8: Branches of canards in a regularization of the piecewise-smooth system (20). For valid canard solutions, the

maximum value of x reached along the canard is plotted against the stiffness parameter k. The strong canard (γst), weak

canard (γwk), and several secondary canards (γ1-γ9) are identified.

Although only the first nine secondary canards are identified here, these computations suggest a

trend towards infinitely many canards in the nonsmooth (k → ∞) limit. This scenario fits with the
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model (26) obtained by pinching, suggesting that the piecewise-smooth system (26) approaches the

smooth system (14), in the limit where small ε leads to an increasingly sharp jump in dynamics near

the critical manifold. Even allowing for canards beyond those counted here, figure 8 is expected to be

incomplete, since for large k (k & 1000) additional canard branches were detected in computations,

born through folds instead of from the branch of weak canards, whose identity it currently unclear.

One can ask how these various features depend on the form of the sigmoid function that replaces

sign(U), and whether they are represented in any way in the piecewise-smooth system. These

are interesting problems for further study, with particular relevence to the study of uniqueness in

regularization of piecewise-smooth systems. For the present paper, we now return to developing

the pinch approximation.

IV. SECOND APPROXIMATION: ROTATING CANARDS

The exponential scaling in the previous section attempts to resolve the slow dynamics in the

neighbourhood of the critical manifold u = 0. However, after the microscope on u = 0, the flow

is still seen to evolve fast towards another surface, the nullcline u̇ = 0. An improvement on this

method is therefore to take a new microscope and pinch, centred on this new surface.

The nullcline where u̇ = 0 is given by Py in equation (16). Since this is not well defined at z = 0,

we approximate it by P0 given by equation (17), and take a microscope on P0, by introducing a

new variable

w =

(

u

ε
− 1 + µ

2ε

)[ε]

, (28)

in terms of which the dynamical system (14) becomes

ẇ = w
{

2z + µy
2εw

−1/[ε]
}

,

ẏ = 1 ,

ż = εw1/[ε] + 1+µ
2 .

(29)

This is simulated in figure 9(i). The weak and strong canards now satisfy {w, z} = {−1/(2ε)ε, µy/2}
and {w, z} = {−(µ/2ε)ε, y/2}, respectively.

The nullcline ẇ = 0 is the curve

Qy =

{

(w, z) ∈ R
2 : w = −

( µy

4zε

)[ε]
}

. (30)

The flow projection onto w = 0 has yet again the same y-z system as before, namely equation (22).

However, the fact that the flow organises around the nullcline Qy as apposed to Py gives different

dynamics, as will be revealed by the pinch.
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Slow dynamics in figure 9(i) is seen numerically to dominate in an ε2 neighbourhood of the

nullcline ḣ = 0, which corresponds to |u − µ+1
2 | < ε or |w| < 1. In the first approximation of

section III, slow dynamics is observed to dominate in an ε-neighbourhood of the critical manifold,

|h| < ε, which corresponds to |u| < 1 or |v| < 1. An analytic explanation of why the slow

neighbourhood is of order ε around the critical manifold, and ε2 around its associated nullcline, is

outside the scope of the current paper, but deserves attention in future work.

The pinch is now enacted similarly to the previous section, by introducing a new variable W =

w − sign w, which gives

Ẇ = (W + signW )
{

2z + µy
2ε (W + signW )−1/[ε]

}

,

ẏ = 1 ,

ż = ε(W + signW )1/[ε] + 1+µ
2 ,

(31)

as shown in figure 9(ii).
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0.1

0.3

0
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pinch
γst

γwk

γst γwk

Figure 9: The second microscope and pinch. (i) Flow in the microscope system (29) simulated in the plane y = −1 with

ε = 0.05 and µ = 1/8.5. (ii) Flow in the system (31) obtained by pinching together the surfaces w = ±1 in (i), with the

vertical axis rescaled for clarity. The primary canards γst,wk are indicated.

The sliding flow is superficially given by the usual equation (22), as is found by solving for

Ẇ = 0 on W = 0. Crucially, however, we must consider the arrangement of the tangencies Ẇ = 0

on W = 0, which give the boundaries of the sliding regions. The W > 0 and W < 0 subsystems in

equation (31) are tangent to the switching manifold where Ẇ reaches zero as W approaches zero

from above or below. These tangencies lie along z
y = − µ

4ε signW , hence the sliding regions are found

to be given by

|z/y| > µ/4ε on W = 0 , (32)
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illustrated in figure 10 for different values of µ.
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Figure 10: Sliding flow after the second pinch, given by equation (22) in the regions |z/y| > µ/4ε on W = 0, for

ε = 0.05. In (i) there are no canards for µ = 1/4, and in (ii) the strong canard can be seen in the sliding flow for

µ = 1/16. Inset: the strong canard in the microscope system falls inside the pinch region in (ii) but not in (i).

The curvature of the flow is specified by the second derivative, Ẅ = (1± 2ε)(µ ± 2ε)/2ε. Since

we have 0 < µ < 1 and 0 < ε ≪ 1, the flow in W > 0 satisfies Ẅ = (1 + 2ε)(µ + 2ε)/2ε > 0 on its

tangency line z/y = µ/4ε, and hence curves away from the switching manifold. The flow in W < 0

satisfies Ẅ = (1 − 2ε)(µ − 2ε)/2ε on its tangency line z/y = −µ/4ε, and hence curves away from

the switching manifold if µ < 2ε, and towards it if µ > 2ε. Although we are interested in arbitrarily

small ε, either of these can be satisfied for small enough µ.

This happens because the weak eigendirection of equation (22) lies outside the sliding region.

The strong eigendirection lies inside the sliding regions if µ > 2ε, or outside the sliding regions if

µ < 2ε, meaning that in the former case the sliding dynamics captures no canards, and in the latter

captures a single canard. (This is immediately in contrast to the continuum of sliding canards in

system (27)). The two different cases are shown in figure 10.

The weak and strong canards in the unpinched system lay at {w, z} = {−1/(2ε)ε, µy/2} and

{w, z} = {−(µ/2ε)ε, y/2} respectively. The weak canard clearly avoids the pinch region |w| < 1 for

ε < 1/2, and then lies at {W, z} = {1− 1/(2ε)ε, µy/2}. The strong canard also avoids the pinch

region if µ > 2ε, and is given by {W, z} = {1− 1/(2ε)ε, y/2}. If µ < 2ε the strong canard falls

inside the pinch region and is not part of system (31) for W 6= 0; if it exists it is part of the sliding

dynamics on W = 0. Indeed we see that is exactly the case in figure 10.
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A. Linearizing about the weak canard

We complete this study by showing that the pinched approximation of the folded node possess

〈1−µ
2µ 〉 secondary canards, where 〈n〉 denotes the largest integer less than n. These canards rotate

around the weak canard near y = 0, with rotation numbers taking all integers from 1 to 〈1−µ
2µ 〉,

then connect to sliding solutions in the attracting and repelling sliding regions that take them to

y → ±∞, as sketched in figure 11. Note that the rotation takes place in W < 0, therefore secondary

canards satisfy W ≤ 0.

γ
wk

γ
st

W

y

z

Figure 11: Primary canards (dashed) and a secondary canard (bold) with rotation number 3 in the pinched (W, y, z)

system.

To solve system (31) we treat the W > 0 and W < 0 systems separately, making different

approximations in the two regions about the dominant singularities. In the region W < 0, we

linearize about the weak canard at {W, z} = {1− (2ε)−ε, µy/2}. In the region W > 0, we expand

about the tangency to the switching manifold at (W, z) = (0,−µy/4ε). To leading order these give

in W > 0 :



















Ẇ = µy+4zε
2ε + O (W ) ,

ẏ = 1,

ż = ε+ 1+µ
2 + O (W ) ,

(33)

in W < 0 :



















Ẇ = µy−2z
(2ε)ε + µy

ε (W − 1 + 1
(2ε)ε ) + O

(

δW 2, εδzδW
)

,

ẏ = 1,

ż = µ
2 + (2ε)ε−1(W − 1 + 1

(2ε)ε ) + O
(

δW 2
)

,

(34)

where δW = W − 1 + (1/2ε)ε and δz = z − µy/2. In the remainder of this section we omit the
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error terms, and find solutions to the truncated local equations. Note that 1/(2ε)ε ≈ 1−ε log(2ε)+

O
(

(ε log 2ε)2
)

deviates quickly from unity as ε increases from zero, so we cannot approximate it

by unity. Approximating around the weak canard in W < 0 leads to a slight shift in the sliding

region (32). The boundary where the W > 0 system is tangent to W = 0 is given, as before, by

z/y = −µ/4ε. The boundary where the W < 0 system is tangent to W = 0 is now given by

z/y = µ(ε− 1 + (2ε)ε)/2ε . (35)
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Figure 12: The pinched system (i) and the expansion (33)-(34). Flow simulated in the plane y = −1 for ε = 0.05,

µ = 1/8.5. The dotted curves show the nullcline Ẇ = 0.

Let us now find the canards in this approximation. We will consider only those that satisfy the

following properties:

C1. y(0) = z(0) = 0. Because canards must satisfy W → 0 as t → ∞±, and the system (34)-(33)

is symmetric under the substitution {y, z, t} 7→ {−y,−z,−t}, canards are expected to inherit

this symmetry, implying that y = z = 0 at t = 0.

C2. Ẅ (tc) < Ẇ (tc) = W (tc) = 0 at some t = tc 6= 0. This is because the conditions W = Ẇ = 0

define the boundary of the sliding region (equation (35)), at which solutions can pass between

W < 0 and the invariant sliding region on W = 0. They can only do so if the solution is

curving into (Ẅ < 0) the region W < 0.

We must then find solutions of the W < 0 system that satisfy these two conditions. Considering

system (34) we have, noting ż = dz/dy = dz/dt,

z̈ =
1

(2ε)1−ε
Ẇ =

µy − 2z

2ε
+

µy

ε
(ż − µ

2
) .
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Letting z = ζ + µy/2 and y = τ
√

ε/µ, this rearranges to the Hermite equation

ζ ′′ − τζ ′ +
1

µ
ζ = 0 , (36)

whose general solution can be written

ζ(τ) = τζ ′(0) 1F1

(

µ− 1

2µ
,
3

2
,
τ2

2

)

+ ζ(0) 1F1

(

− 1

2µ
,
1

2
,
τ2

2

)

,

with derivative

ζ ′(τ) = ζ ′(0) 1F1

(

µ− 1

2µ
,
1

2
,
τ2

2

)

− τζ(0)

µ
1F1

(

1− 1

2µ
,
3

2
,
τ2

2

)

,

in terms of the confluent hypergeometric function 1F1 (also known as Kummer’s function M where

1F1(α, β; γ) = M(α, β, γ), see [1]).

Applying condition C1 above, at a point where y(0) = z(0) = 0 we have Ẇ (0) = 0, hence

z̈(0) = 0. In the transformed coordinates this gives initial conditions

ζ(0) = 0, ζ ′′(0) = 0 ,

the former of which simplifies the solution above to

ζ(τ)

ζ ′(0)
= τ 1F1

(

µ− 1

2µ
,
3

2
,
τ2

2

)

,
ζ ′(τ)

ζ ′(0)
= 1F1

(

µ− 1

2µ
,
1

2
,
τ2

2

)

, (37)

or in terms of the Gamma function Γ and Hermite polynomials Hn [1],

ζ(τ) =
iζ′(0)eτ

2/4Γ(µ+1

2µ )
√

π

(

i
Γ( µ+1

2µ )
Γ(− 1

2µ )
+

Γ( 2µ+1

2µ )
Γ( µ−1

2µ )

)

{

Γ( 2µ+1

2µ )
Γ(µ−1

2µ )
D+ (1, µ, iτ)−D+ (0, µ, τ)

}

,

where

D± [m,µ, τ ] = 2±(µ+2)/2µe−τ2/4Hm∓1/µ

(

τ√
2

)

.

Substituting back in τ = t
√

µ/ε, we find that in W < 0 there exist solutions given by

W (t) = 1− (2ε)−ε(1 + εµ− 2εż(0)1F1

(

µ−1
2µ , 12 ,

µt2

2ε

)

) ,

y(t) = t ,

z(t) = µt
2 + tż(0) 1F1

[

µ−1
2µ , 32 ,

µt2

2ε

]

,

(38)

and these form the portions of any secondary canards that lie in W < 0, outside the switching

manifold. To this we must apply the second condition, C2, to pick out solutions in system (38) that

tangentially touch (or graze) the boundaries of the sliding regions on W = 0, where they connect to
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sliding solutions that form the tails of the canards. Substituting the conditions W (tc) = Ẇ (tc) = 0

at some t = tc 6= 0 into equation (34), we find that z(tc) and ż(tc) are given by

z(tc)/µtc = ż(tc) + ε(1− µ)/2ε = (1 + ε− (2ε)ε)/2ε . (39)

Figure 13 shows a simulation of solutions given by system (38) subject to the boundary conditions

(39).

The number and geometry of the secondary canards, specifically the number of rotations they

make around the weak canard, are easily found as follows. The confluent hypergeometric function

1F1(−a, b, c) has 2〈a + 1〉 real zeros [1] (with 〈n〉 denoting the largest integer smaller than n),

between which the function oscillates through 2〈a+1〉− 1 maxima/minima, and between these the

functions makes 〈a〉 complete oscillations. These oscillations form the rotations of the secondary

canards.

Using the boundary conditions W (tc) = Ẇ (tc) = 0, a given value of tc > 0 picks out one

of the solutions (38), with 〈1−µ
2µ 〉 rotations. The boundary conditions may be satisfied at any

one of the maxima, so any of the rotation numbers from 1 up to 〈1−µ
2µ 〉 are obtained, by different

solutions with unique values of tc. Hence there exist 〈1−µ
2µ 〉 secondary canards with rotation numbers

1, 2, 3, ..., 〈1−µ
2µ 〉.
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1 20W
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Figure 13: Secondary canards for ε = 0.05 and µ = 1/8.5, from the Hermite solution (38). Inset: the Hermite solution

(full curves) is compared to the approximation using (40) (dotted curves). Long dashes indicate segments of sliding. The

weak and strong canards γwk,st are shown.

As a final remark, the complicated expressions above can be simplified with the large parameter
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asymptotic approximation

1F1 (a,b,x) =
Γ(b)
√

π

(

x
2 (b− 2a)

)(1−2b)/4
ex/2 cos

(

√

2x(b − 2a) + π
4 (1− 2b)

)

(40)

(see e.g. Eq.13.5.14 of [1]) This is sufficient to approximate solutions for small x = τ2/2, but this

exponential approximation (compared to the exact solution in figure 13(ii)) is not accurate enough

to correctly give the correct number of, or number of rotations of, secondary canards.

V. CLOSING REMARKS

Pinching captures the key geometry – singularities and bifurcations – necessary to provide a

discontinuous model of a singularly perturbed dynamical system. As a method of approximation it

is purely qualitative, yet it appears to accurately describe singular features such as both primary

and secondary canards in the folded node studied here. In a previous study of the van der Pol

oscillator [9], pinching was also shown to capture the maximal canard, and to distinguish between

a canard explosion and a Hopf bifurcation.

Our main aim with this work is to help illuminate the bridge between smooth and piecewise-

smooth models of dynamical systems, by showing how closely the phenomena of singular perturba-

tion and discontinuity are related. Canards in slow-fast systems have now been known for more than

three decades, having first been studied using non-standard analysis [4], and later with standard

tools such as matched asymptotic expansions and geometric singular perturbation theory [14, 21].

Canards in discontinuous system lay unannounced in the work of Filippov [16, 17] for considerably

longer. Only recently has the link between folds in critical manifolds of slow-fast systems, and the

two-fold singularity in discontinuous systems, become clear, through the methods of regularization

[23] and of pinching [9], the former applying a topological equivalence in the singular limit ε = 0,

the latter approximating the geometry for ε 6= 0.
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