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Abstract. A vector field is piecewise smooth if its value jumps across a hypersurface, and a two-fold singularity
is a point where the flow is tangent to the hypersurface from both sides. Two-folds are generic in piecewise smooth
systems of three or more dimensions. We derive the local dynamics of all possible two-folds in three dimensions,
including nonlinear effects around certain bifurcations,finding that they admit a flow exhibiting chaotic but non-
deterministic dynamics. In cases where the flow passes through the two-fold, upon reaching the singularity it is
unique neither in forward nor backward time, meaning the causal link between inward and outward dynamics is sev-
ered. In one scenario this occurs recurrently. The resulting flow makes repeated, but non-periodic, excursions from
the singularity, whose path and amplitude is not determinedby previous excursions. We show that this behaviour is
robust and has many of the properties associated with chaos.Local geometry reveals that the chaotic behaviour can
be eliminated by varying a single parameter: the angular jump of the vector field across the two-fold.
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1. Introduction. Piecewise smooth vector fields have appeared throughout thehistory
of dynamical systems as models of mechanical and electronicdevices (e.g, [1]) and, more
recently, have seen growing use in fields such as ecology, economics, and neuroscience.
Their spreading usage has naturally been accompanied by interest in their generic mathe-
matical and dynamical properties, which have been the subject of a number of recent books
([10, 18, 22, 32], to name a few). Their dynamics were formalised by Filippov [14], using
differential inclusions (set-valued differential equations, see [3]) to overcome the problem of
indefiniteness of the vector field on the surfaces of discontinuity.

Although two-dimensional piecewise smooth systems are nowrather well understood
(see for example [14, 21]), a general understanding of dynamics in three or more dimensions
is crucially obstructed by the appearance of the so-calledtwo-foldsingularity [30]. The two-
fold is a simple topological singularity that is generic in piecewise smooth systems with three
or more dimensions. This implies that it may well be commonplace in systems of a piece-
wise smooth nature. Contrarily, two-folds are neither wellknown nor well understood, with
regard to either the theory of their dynamics, or the frequency of their appearance in physical
systems. The purpose of this paper is to present, in an organic and consistend framework,
all existing results regarding the local dynamics near the two-fold. This also includes some
novel results about particular forms of the two-fold that reveal its role in the sudden onset of
periodic orbits and recurrent non-deterministic dynamics.

The two-fold was already well defined in [14]. In a piecewise smooth vector field, discon-
tinuities are assumed to occur across a hypersurface calledtheswitching manifold. Being a
hypersurface, we can speak of the manifold as locally havingtwo sides, and generically, there
may exist points where the vector field is quadratically tangent to one side of the manifold or
the other. We call such a tangency afold, because in the projection along the flow the switch-
ing manifold has a simple fold. This assumes the system to be at least two-dimensional. In
higher dimensions there may generically exist points wheretwo folds intersect transversely,
so that the vector field is tangent to both sides of the manifold, and this simple object is a
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two-fold. A two-fold is an important organising centre because it brings together all of the
basic forms of dynamics possible in a piecewise smooth system. Filippov [14] described
three basic forms of dynamics that would occur at a switchingmanifold: crossing, sliding,
and escaping, depending on the orientation of the vector field either side of the switching
manifold, as illustrated in Fig. 1. Crossing, shown in Fig. 1(i), occurs where the component

FIG. 1. Dynamics at a switching manifold in a 3 dimensional piecewise smooth system. The vector field
switches betweenf+ andf−. An orbit meeting the manifold may either: (i) cross throughit, (ii) reach it in finite
time and then follow the sliding vector fieldfs, (iii) escape it in finite time, though it may slide along the manifold
for some time before escaping.

of the vector field normal to the switching manifold has the same direction on both sides. In
the two other cases the normal component of the vector field switches direction, so that the
vector field is either directed towards the switching manifold, giving sliding as in (ii), or is
directed away from the manifold, giving escaping as in (iii).

At a fold, see Fig. 2, the vector field on one side of the switching manifold changes
its normal direction, forming a boundary between crossing regions and sliding or escaping
regions. At a two-fold, the vector fields either side of the manifold both change their normal
direction, meaning that regions of all three dynamical behaviours – crossing, sliding, and
escaping – meet, and their boundaries intersect to form the singularity.

FIG. 2. Tangencies in a piecewise smooth system, showing: (i) a visible fold, (ii) an invisible fold; these form
the boundaries between sliding (shaded) and crossing (unshaded) (reverse arrows to replace sliding with escaping).
(iii) Folds associated with the upper and lower fields cross to form a two-fold, where both vector fields are tangent
to the switching manifold (in the case illustrated both folds are invisible).

Escaping dynamics, see Fig. 1(iii), is typically neglectedon the basis that it simply con-
stitutes a time-reversal of sliding, and that escaping regions cannot be reached by a system
in forward time, making consequences of forward time non-uniqueness in these regions ir-
relevant [10, 11, 27]. This assumption is incorrect at a two-fold, which can channel slid-
ing dynamics into the escaping region. This gives whole families of orbits robust access
to regions of phase space that are infinitely repelling. Thiscounterintuitive dynamical be-
haviour, noticed in Filippov’s seminal work [14], seems to have been overlooked ever since,
though a similar effect was discovered in the framework of nonstandard analysis [4] as the
so-called “canard” phenomenon. Canards are now a popular topic in singular perturbation
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theory [13, 28], with numerous applications, of which a few examples are in neuron mod-
elling [24], chemical dynamics [6, 26], gas pressure dynamics [5], and ecology [9]. Despite
qualitative similarities in these approaches, their connection to the two-fold is as poorly un-
derstood as the two-fold itself. These connections are not the subject of this paper, and we
restrict our interest to understanding the two-fold in the context of generic piecewise smooth
dynamical systems.

The study of dynamics around a two-fold has been mainly limited to a lowest order
approximation in three dimensions [14, 16, 29, 30]. Such local analysis reveals how an
initially smooth flow far from a discontinuity can evolve towards a state where its forward
evolution is set-valued. In this paper we review these results, and extend them by carrying
out a comprehensive analysis of the nonlinear behaviour of two-folds in three dimensions. In
so doing, we determine the invariant sets that are present near the two-fold, and decode their
complex dynamics.

In Sec. 2 we define the two-fold singularity and its three types. We discuss the first
of these, the invisible two-fold, orTeixeira singularity, in detail in Sec. 3. We analyse its
sliding and crossing dynamics separately in Sec. 3.1 and 3.2, using them to reconstruct the
full system in Sec. 3.3 in Sec. 3.4. We briefly discuss the other forms, the visible (short for
visible-visible) two-fold in Sec. 4, and the visible-invisible two-fold in Sec. 5, with a remark
on their bifurcations in Sec. 6. In Sec. 7 we numerically simulate some particularly interesting
dynamics predicted in Sec. 3, with some closing remarks in Sec. 8.

2. The three flavours of two-fold. Consider a three-dimensional piecewise smooth sys-
tem of ordinary differential equations

ẋ = f+(x) when h(x) > 0, ẋ = f−(x) when h(x) < 0,(2.1)

where the dot denotes differentiation with respect to timet ∈ R, and whereh(x) is a regular
scalar function of the state vectorx = (x0, x1, x2) ∈ R

3. For simplicity we seth(x) = x0,
since any piecewise smooth system, in a region whereh(x) = 0 defines a manifold, can
be put into this form through the appropriate change of variables [14, 30]. Then,x0 = 0
is the switching manifold. Following Filippov’s definition[14], the solution of (2.1) at the
switching manifold includes all solutions of the differential inclusion

ẋ ∈ f := f− + λ(f+ − f−),(2.2)

whereλ = 0 whenh(x) < 0, λ = 1 whenh(x) > 0, andλ ∈ [0, 1] whenh(x) = 0, so
thatf is a set-valued convex combination off+ andf− whereh(x) = 0. In practice, when
the components off+ andf− normal to the switching manifold have opposite direction,f
admits a solution that lies on the switching manifold, and satisfies the system given by

ẋ = fs(x) when x0 = 0,(2.3)

where thesliding vector field, fs, is defined as

fs = f− +
Lf−h

Lf−h− Lf+h
(f+ − f−).(2.4)

The symbolLf denotes the Lie derivative along the flow of a fieldf , given byLf = f · ∇ =

ẋ ·
d

dx
. Let L2

f denote the second Lie derivativeL2
f = (Lf )2. The dynamics in a general

piecewise smooth system is then a composite of the dynamics of f+, f−, andfs. We make
the following distinctions:
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Definition of orbits and flow. An orbit segmentis any smooth pathx = x(t) satisfying
(2.2), entirely contained in one of the regions{x : h(x) > 0}, {x : h(x) < 0}, or {x :
h(x) = 0}. An orbit is any continuous pathx(t) that satisfies (2.2), formed by concatenating
orbit segments. Theflow of (2.2)through a point̂x at timet is given by all pointsx(t + τ)
with x(τ) = x̂ for someτ ∈ R, x(t) satisfying (2.2). In the following, by the flow we mean
the flow of (2.2) unless otherwise stated.

An important consequence of this definition is that the flow through a point̂x in a sliding
region is not unique, becausex̂ always belongs to a one-parameter family of orbits (unless it
is an equilibrium). For example, the six orbits shown in Fig.1(ii) each overlap in the sliding
region, so through any point̂x on the overlap the flow is non-unique; the same applies to the
six orbits shown in Fig. 1(iii).

Now let us assume that bothf+ andf− have quadratic contact with the switching man-
ifold at the origin, that is,

Lf+h(0) = 0, and L2

f+h(0) 6= 0,(2.5a)

Lf−h(0) = 0, and L2

f−
h(0) 6= 0.(2.5b)

Let us also require that neitherf+ norf− have equilibria near the origin,

f+ 6= 0, and f− 6= 0,(2.6)

and that the pair of curves given byLf+h = 0 andLf−h = 0 onh = 0 intersect transversely
at the origin,

det
(

∇h(0), ∇Lf+h(0), ∇Lf−h(0)
)

6= 0.(2.7)

A point satisfying either (2.5a) or (2.5b) onx0 = 0 is a fold. A point satisfying both condi-
tions (2.5), and also satisfying the nondegeneracy conditions (2.6)-(2.7), is atwo-fold.

The sign of the second Lie derivative determines whether a fold is visible, meaning the
vector field curves away from the switching manifold becauseL2

f+h(0) > 0 or L2

f−
h(0) <

0, or invisible, meaning the vector field curves towards the switching manifold because
L2

f+h(0) < 0 or L2
f−
h(0) > 0. These are illustrated in Fig. 2(i,ii). If at least one fold is

visible the dynamics is relatively easy to analyse, and these cases, which we call the visible
and visible-invisible two-folds, are discussed in Secs. 4-5. If both folds are invisible then the
flows of f+ andf− both map orbits repeatedly back to the switching manifold, and the dy-
namics is rather more rich, earning this invisible two-foldthe distinguished name of a Teixeira
singularity (after the author of [30] who brought this singularity to prominence). Therefore
the Teixeira singularity is our main subject of interest.

3. The Teixeira singularity. In this section we begin by summarizing a linear approxi-
mation of the Teixeira singularity previously studied in [14, 16, 30]. In particular, equations
(3.1)-(3.6) and (3.8)-(3.11) summarize results obtained in [16]. In the remainder of Sec. 3
we introduce higher order terms to the approximation, whichunfold the bifurcation found in
[16].

Following on from Sec. 2, local to a two-fold whereL2
f+h(0) < 0 andL2

f−
h(0) > 0,

the system (2.1) can be simplified by two changes of variablesand a time rescaling (for a
lengthier description than we give below, see [16]). First,given (2.7), we can make a smooth
coordinate transformation that places the folds associated with f− andf+ along thex1 and
x2 axes respectively. Then, by rescalingx1 andx2, and rescaling time separately above and
below the switching manifold – this changes the speed of the trajectories off+ andf−, but
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preserves both of their phase portraits as well as that offs – we arrive at the local form near
the origin

f+ =





−x1 + O(x0, ‖x1, x2‖2)
1 + O(‖x‖)
V + + O(‖x‖)



 ,(3.1a)

f− =





x2 + O(x0, ‖x1, x2‖2)
V − + O(‖x‖)

1 + O(‖x‖)



 ,(3.1b)

whereV ± are real constants. Geometrically,V + [respectively,V −] measures the cotangent
of the angleθ+ [θ−] between the vector fieldf+ [f−] and its fold lineLf+h|x0=0 = 0
[Lf−h|x0=0 = 0]. These can be retrieved for a general vector field at a Teixeira singularity
from the formulae

V + = cot θ+ =
Lf+Lf−h

√

−(L2
f+h)(L2

f−
h)
,(3.2a)

V − = cot θ− =
−Lf−Lf+h

√

−(L2

f+h)(L2

f−
h)
,(3.2b)

evaluated at the two-fold.
The dynamics of (3.1) is illustrated in Fig. 3(i), and is at first sight very simple. The flow

of f+ maps initial points from the region{x0 = 0, x1 < 0} to the region{x0 = 0, x1 > 0},
affecting a reflectionφ+ in the planex1 = 0 along the direction(0, 1, V +) + O(‖x‖).
Likewise, the flow off− maps initial points from the region{x0 = 0, x2 < 0} to the re-
gion {x0 = 0, x2 > 0}, affecting a reflectionφ− in the planex2 = 0 along the direction
(0, V −, 1) + O(‖x‖).

The switching manifold is divided into quadrants as illustrated in Fig. 3: thesliding re-
gion{x0 = 0, x1 > 0, x2 > 0} (SL in Fig. 3), theescaping region{x0 = 0, x1 < 0, x2 < 0}
(ES in Fig. 3) and thecrossing regions{x0 = 0, x1x2 < 0} (CR1 and CR2 in Fig. 3), sepa-
rated by the folds. In each crossing region, CR1 and CR2, the dynamics can be analysed by a
second return map, the concatenation of the mapsφ+ andφ−. A sequence of crossings will
terminate in forward time if it maps into the sliding region SL, where bothf+ andf− point
towards the switching manifold. Conversely it has initial points in the escaping region ES,
where both vector fields point away from the manifold.

Through CR1 and CR2 the flow is continuous and invertible, but orbits have vertices
where they traverse the switching manifold. The flow throughany point in SL is defined
uniquely in forward time and contains a segment of sliding, but in reverse time it consists of
an infinite number of orbits arriving fromx0 > 0 andx0 < 0, hence the flow is set-valued
in reverse time. In ES the flow is defined uniquely in reverse time, but in forward time it is
set-valued, generating an infinity of orbits that escape into x0 > 0 andx0 < 0.

Thus we can study the flow around the singularity in terms of two dynamical systems on
the switching manifold: (i) continuous-time dynamics of sliding orbit segments, which are
solutions offs in SL and ES, and live in the two-dimensional switching manifold, and (ii)
discrete-time dynamics of crossing orbit segments, that wind around the singularity inducing
a return map on the switching manifold. In the next two sections we analyse these sepa-
rately, and can restrict our analysis to thex1-x2 plane. We reassemble the three dimensional
dynamics in Sec. 3.3.
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FIG. 3. Dynamics near a Teixeira singulairity: (i) orbits outside the switching manifold curve around the folds
and cross the manifold in CR1 and CR2, (ii) phase portraits of the sliding dynamics. At the originthe sliding vector
field fs is set-valued, with elements pointing into the escaping region ES whenV +V − > 1 andV +, V − < 0. In
this case a one-parameter family of orbits intersects the origin along a unique direction (an eigenvector off̃s from
(3.4)). In all other cases the set-valuedfs has elements which point into the sliding region SL, and onlya single
orbit that intersects the singularity.

3.1. Dynamics in the sliding and escaping regions.Evaluating (3.1) atx0 = 0, and
substituting into (2.4), we obtain the explicit expressionfor the sliding vector field

fs =













0
V −x1 + x2 + O(‖x1, x2‖

2)

d(x)
x1 + V +x2 + O(‖x1, x2‖

2)

d(x)













,(3.3)

whered(x) = x1 + x2 + O(‖x1, x2‖2). This vector field is undefined at the origin since,
f+ andf− being both tangent to the switching manifold at0, all vectors in their convex
combination are tangent to the switching manifold. To overcome this, following [14, 30] we
define a planar regularised vector field,f̃s, by multiplyingfs by d(x) and omitting the trivial
x0 component,

f̃s(x1, x2) =

(

V − 1
1 V +

) (

x1

x2

)

+ O(‖x1, x2‖
2).(3.4)

Becaused(x) > 0 in SL andd(x) < 0 in ES,f̃s andfs have the same phase portrait in the
SL, but the same phase portrait with time reversed in ES. Additionally, becaused(0) = 0, f̃s

has an equilibrium at the origin, where (3.3) is not well defined. These facts are vital to take
into account when translating the dynamics off̃s into those of the original vector fieldfs.
The equilibrium off̃s at the origin has eigenvalues

µ± =
1

2

(

V + + V − ±

√

(V + − V −)2 + 4

)

,(3.5)

and the associated eigenvectors are
(

µ± − V +

1

)

.(3.6)
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If the eigenvalueµi has negative [resp. positive] real part we say it, and its associated eigen-
vector, are stable [unstable]. Some simple calculations show that one eigenvector lies always
in SL and ES, and the other lies in CR1 and CR2; they can never be tangent to either of the
folds since this would correspond to a cubic tangency off+ or f− at the origin (called acusp
point), excluded by (2.5). In particular

(i) if V +, V − < 0 andV +V − > 1, both eigenvectors are stable,
(ii) if V +V − < 1, the eigenvector in SL/ES is unstable and the other is stable,
(iii) if V +, V − > 0 andV +V − > 1, both eigenvectors are unstable.

Moreover, when the eigenvector in SL/ES is stable, it is associated with the weak stable
eigenvalue, so that sliding orbit segments are asymptotically attracted to it as they approach
the singularity.

The different cases are illustrated in Fig. 3(ii). Referring to thedefinition of orbits and
flow in Sec. 2, the phase portraits in Fig. 3(ii) imply that: in case (i) orbits cross the singularity
from SL to ES, while in cases (ii)-(iii) orbits cross from ES to SL. In each case orbits cross
the two-fold singularity in finite time. In case (i) in particular, orbits with an initial interval of
smooth evolution away from the discontinuity can enter SL and evolve towards the singularity
(Fig. 4), whereupon their forward evolution is multivalued. Importantly, such orbits reach the
singularity in finite time, and as they cross it all information about their initial conditions
is lost. By this mechanism, forward time uniqueness is lost for orbits that converge on the
singularity. One purpose of the present paper is to reveal the dynamical implications of this
often overlooked loss of uniqueness.

FIG. 4. An illustration of non-determinism at the Teixeira singularity. Orbits which are initially smooth, evolve
towards a switching manifold, eventually enter the slidingregion SL and evolve towards the singularity. Open sets
of initial conditions thus evolve through the singularity in finite time, and are ejected as a one-parameter family of
orbits in the escaping region ES.

We can determine whetherfs is structurally stable by considering̃fs. The Jacobian
of (3.4) at0 is singular whenV +V − = 1, and a quick inspection of (3.1) shows that this
corresponds tof+ andf− being antiparallel (ifV +, V − < 0) or parallel (ifV +, V − > 0)
at the origin. The eigenvector(−V +, 1), associated withµ− = 0, always points into SL if
V +, V − < 0, and into one of the crossing regions CR1 or CR2 if V +, V − > 0. Only the
case whenV +, V − < 0 results in a structurally unstable phase portrait of the sliding vector
field, whenV +V − = 1. In this case, the behaviour of the orbits off̃s around the origin is
captured by the dynamics in the one-dimensional centre manifold with Taylor expansion

u̇ = (V +V − − 1)u+ a2u
2 + O(u3),(3.7)
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which exhibits a transcritical bifurcation atV +V − = 1 (details about this normal form are
given in Appendix A). Notice that, forfs, this means that there exists a single equilibrium
that crosses the singularity whenV +V − = 1, changing stability in the process. Since equi-
libria of the sliding vector fieldfs are not zeros off+ or of f−, they are commonly called
pseudoequilibria[15]. Assuming that the positiveu semi-axis lies in SL, the pseudoequilib-
rium of fs is

(s1) if a2 > 0 in (3.7), a saddle in ES forV +V − > 1 andV +, V − < 0, becoming a
stable node in SL whenV +V − < 1 or V +, V − > 0,

(s2) if a2 < 0 in (3.7), a saddle in SL forV +V − > 1 andV +, V − < 0 becoming an
unstable node in ES whenV +V − < 1 or V +, V − > 0.

These are illustrated in Fig. 5.

3.2. Dynamics in the crossing regions.In the crossing regions CR1 and CR2, orbit
segments off+ andf− induce mapsφ+ andφ− from the switching manifold to itself, across
the folds. The vector fields (3.1) truncated to lowest order are easily integrated to obtain the
maps

φ̃+ : R
− × R 7→ R

+ × R =

(

−1 0
−2V + 1

) (

x1

x2

)

+ O(‖x1, x2‖
2),(3.8a)

and

φ̃− : R × R
− 7→ R × R

+ =

(

1 −2V −

0 −1

) (

x1

x2

)

+ O(‖x1, x2‖
2).(3.8b)

The full mapsφ+ andφ−, whose Taylor expansions to the third order are reported in Ap-
pendix B, are then retrieved as generic perturbations of these, by imposing that: they preserve
the corresponding fold lines, and are involutions (since a map in the neighbourhood of a fold
is an involution, see e.g. [2]).

To understand the dynamics of orbits that wind around the singularity, crossing through
CR1 and CR2, we can study their Poincaré map from a crossing region (either CR1 or CR2)
back to itself; this map is obtained as a composition ofφ+ andφ−. Let us consider the map
φ = φ+ ◦ φ− (similar arguments follow if we choose instead the mapφ− ◦ φ+). The domain
of φ is the setD ⊆ CR1 such thatφ−(D) ⊆ CR2. Orbits with initial conditions inD
cross through CR2 and return to CR1 or SL. The complement ofD in CR1 consists of initial
conditions that are mapped into SL byφ−. This implies thatD lies between the negativex2

axis and the preimage of the positivex2 axis under the mapφ−; sinceφ− is an involution,
the preimage is a curve given byφ−(x1 = 0, x2 > 0). The Poincaré map thus obtained is

φ :

(

x1

x2

)

7→

(

−1 2V −

−2V + 4V +V − − 1

) (

x1

x2

)

+ O(‖x1, x2‖
2).(3.9)

This map has a fixed point at the origin, with eigenvalues

λ± = 2V +V − − 1 ± 2
√

V +V −(V +V − − 1).(3.10)

WhenV +V − > 1 or V +V − < 0 the fixed point is of saddle type. When0 < V +V − < 1
it is a centre, with complex conjugate eigenvalues on the unit circle. The corresponding
eigenvectors are

(

2V −

1 + λ±

)

.(3.11)
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As long asV +V − < 1 or V +, V − > 0, it was proved in [16] that all orbits sufficiently close
to the singularity reach SL after a finite number of crossings. A bifurcation of the crossing
dynamics occurs whenV +V − = 1 andV +, V − < 0. At the bifurcation, the Jacobian of the
Poincaré map at the origin is non-semisimple (non-diagonalisable), and has two eigenvalues
equal to one. As a consequence ofφ+ andφ− being involutions, this corresponds to a degen-
erate 1:1 resonance bifurcation of the map. Near the bifurcation, the map can be reduced to
the normal form

u1 7→ u1 + u2 + O(‖u‖4),
u2 7→ 4pu1 + (1 + 4p)u2 +B11u1u2 +B30u

3
1 +B21u

2
1u2 +B03u

3
2

+O(‖u‖4),
(3.12)

with

p = V +V − − 1,(3.13)

through a series of changes of variables and parameters which are reported in Appendix C.
At the bifurcation and at the origin, theu1 axis lies along the vector direction(V −, 1), the
singular eigenvector of the Jacobian ofφ, and the positive direction ofu1 points into CR2,
while theu2 axis is tangent to thex1 axis in the original coordinates. The normal form has a
fixed point at the origin for all values ofp, while two more fixed points, located at

u1 = ±2

√

−
p

B30

, u2 = 0(3.14)

emerge when−p/B30 becomes positive. The positivity of the eigenvalues (3.10)implies
that the negativeu1 axis intersects CR1, and lies inside the domain of the Poincaré mapφ,
implying that the fixed point atu1 = −2

√

−p/B30 corresponds to a crossing periodic orbit
near the singularity. The eigenvalues of this fixed point are

1 −B11

√

−
p

B30

±

√

−
p

B30

(8B30 +B2
11) + O(p).(3.15)

Depending on the values ofB11 andB30 the following are possible:
(c1) if B30 > 0, the two eigenvalues are real, one positive and one negative;
(c2) if B30 < 0 and |8B30| < B2

11, both eigenvalues are real, inside the unit circle if
B11 > 0, outside the unit circle otherwise;

(c3) if B30 < 0 and |8B30| > B2
11, the eigenvalues are complex conjugate, inside the

unit circle ifB11 > 0 and outside otherwise.
The orbits of map (3.12) are approximated, forp = 0, by the unit-time shift of a flow

which is equivalent to

ν̇1 = ν1 + O(‖ν‖4),

ν̇2 = B11ν1ν2 +B30ν
3
1 +

(

B2
11

2
+B21 − 3B30

)

ν2
1ν2 + O(‖ν‖4),

(3.16)

as explained in Appendix D. This degenerate (codimension-three) Bogdanov-Takens normal
form is discussed in [19], and it is unfolded in three parameters in [12]. In our case, changing
p around0 we explore a one-dimensional curve of parameters through the three-dimensional
unfolding. In [12] the cases (c1), (c2), (c3) are called respectively saddle, elliptic and focus
case, after the topological type of the origin whenp = 0. Overall, cases (c1), (c2), (c3) give
rise to the following bifurcation scenarios of the crossingdynamics in a neighbourhood of the
origin:
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(c1) Forp > 0 the singularity is a saddle of the mapφ. Forp < 0 a saddle cycle emerges
from the singularity, and the singularity is a centre of the mapφ.

(c2) Forp < 0 the singularity is a centre of the mapφ. Forp > 0 a node cycle emerges
from the singularity, and the singularity is a saddle of the mapφ. At p = 0 the
crossing map at the singularity can exhibit an elliptic sector (a region within which
every orbit converges on the singularity both forward and backward in time).

(c3) Forp < 0 the singularity is a centre of the mapφ. Forp > 0 a focus cycle emerges
from the singularity, and the singularity is a saddle of the mapφ.

Caution must be taken in studying the dynamics of the system (2.1), since the map (3.12)
applies only on the domainD ⊂ CR1 (described above (3.9)), from which orbits return to
CR1. Finally, some issues remain undealt with regarding the invariant sets and the structural
stability of crossing dynamics. The bifurcations occurring between scenarios (C1)-(C3), for
p near0 suggest the existence of other structures, e.g. quasiperiodic orbits, that may emerge
asp crosses0. Also, as we have seen, whenp < 0 the map (3.9) is a (nonlinear) rotation from
ES to SL. A structurally unstable scenario occurs when the image of the border of ES under
φ (or multiple iterations ofφ) is tangent to the border of SL. This is associated with a change
in the number of iterations it takes to map points from the border of ES into SL. This issue is
the subject of ongoing study.

3.3. Reassembling the Teixeira singularity.Once the dynamics of both the sliding,
the escaping, and the crossing regions have been decoded, they can be stitched together to
obtain the overall portrait of orbits around the singularity. The dynamics in SL is completely
described in Sec. 3.1, and can be of only two types, (s1) and (s2) in Fig. 5, depending on the
sign of parametera2 in (3.7). The dynamics in CR1 and CR2 is derived directly from the map
(3.12). The changes of variables that place the generic Poincaré map (3.9) in the form (3.12)
ensure that, forp sufficiently close to0, the positiveu1 axis lies strictly inside the domainD
of the mapφ. Hence both the origin and the negative solution of (3.14) are fixed points of
the Poincaré map. In particular, in terms of the dynamics ofsystem (2.1), the origin is a limit
point (back or forward in time) of crossing orbits, while thesolution (3.14) corresponds to a
crossing cycle, whose type (focus/node/saddle, stable/unstable) depends, as we have seen in
Sec. 3.2, on the coefficientsB30 andB11 of the normal form.

Combining all of these considerations, we can sketch the crossing orbits of system (2.1)
(or rather of their intersections with the switching manifold) as in Fig. 5, cases (c1)-(c3).
The depicted phase portraits are obtained by taking the dynamics of map (3.12), restricted
to CR1, and reflected in the linex1 = x2. In Figs. 5 (c2) and (c3) the map contains a node
or focus, which can be either stable ((c2s) and (c3s)) or unstable ((c2u) and (c3u)). The
complete dynamics around the Teixeira singularity is obtained by stitching together any one
of the portraits (s1), (s2) for the sliding dynamics, with any one of the portraits (c1)-(c3) for
the crossing dynamics, for a grand total of ten qualitatively different phase portraits.

It should be remarked that, although we derived the crossingdynamics from generic
forms for the mapsφ± in Sec. 3.2, the crossing dynamics can be derived directly byintegrat-
ing a local series expansion of the vector fieldsf±, allowing them to be compared directly
to the sliding vector fieldfs. From the (lengthy) expressions obtained forφ±, no conditions
have been found that prohibit any of the ten possible combinations of sliding portraits (s1),
(s2), with crossing portraits (c1)-(c3). Indeed, in Tab. 7.1 of Sec. 7 we give examples that
exhibit each one of the ten possible portraits.

A number of interesting qualitative features of the dynamics can now be directly inferred
from Fig. 5. Forp < 0, the crossing dynamics near the singularity is similar in each case
(c1)-(c3), in that a finite number of crossings takes orbits from ES to SL. Once they reach
SL, the vector fields in (s1)-(s2) come into effect, and forp < 0 these show that all orbits
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FIG. 5. The complete catalogue of local dynamics around a Teixeira singularity whenp = V +V −
−1 ≃ 0 is

obtained by composing the possible phase portraits of sliding (s1), (s2), and crossing (c1), (c2s,u), (c3s,u). (s1), (s2)
show the two possible phase portraits in the sliding and escaping regions SL and ES, as the bifurcation parameter
p changes sign. (c1), (c2s,u), (c3s,u) depict the intersections of orbits with the crossing regions CR1 and CR2
as p changes sign (these are derived from the unfoldings in [12]). The crossing maps in (c2s) and (c3s) have a
stable fixed point of node and focus type respectively, whilethe dual cases in (c2u) and (c3u) have unstable fixed
points. Altogether, composing cases (s1), (s2) with cases (c1), (c2s,u), (c3s,u), ten qualitatively different portraits
are obtained.

evolve away from the singularity, either converging towards a pseudonode in (s1), or leaving
the local neighbourhood in (s2).

Forp > 0, however, (c1) is fundamentally different from (c2) and (c3). In (c1), crossing
orbits leave the neighbourhood of the singularity in eitherforward or backward time, and
importantly, no crossing orbits exist locally that pass from ES to SL. In (c2) and (c3) there
always exist crossing orbits that can locally pass from ES toSL. The crossing map contains a
fixed point of node or focus type. If the fixed point is stable ((c2s) or (c3s)), then all crossing
orbits that emerge from ES sufficiently close to the singularity converge towards the fixed
point. If the fixed point is unstable ((c2u) or (c3u)), then all crossing orbits sufficiently close
to the singularity will reach SL in finite time.

Clearlyp > 0 produces richer crossing dynamics thanp < 0, but when the associated
sliding dynamics is taken into account, the full implications of the Teixeira singularity be-
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come apparent. In (s1) and (s2), forp > 0, all sliding orbits sufficiently near the singularity
pass from SL to ES. In (s2), sliding orbits asymptotic to the unstable manifold of a pseu-
dosaddle either approach the singularity in finite time, or leave the local neighbourhood. In
(s1), however, all local sliding orbits converge on the singularity in finite time. The path fol-
lowed by an orbit that enters ES through the singularity is then not uniquely determined, as
explained in Sec. 3.1.

3.4. Non-deterministic Chaos.A particularly interesting case is revealed if we take the
crossing portraits (c2u) or (c3u) and combine them with the sliding portrait (s1), as exempli-
fied in Fig. 6:

PROPOSITION3.1. If a system exhibits a Teixeira singularity with the crossing portraits
(c2u) or (c3u) with p > 0, and the sliding portrait (s1), then locally

- all crossing orbits reach SL, with the exception of the unstable limit cycle,
- all sliding orbits reach ES via the singularity, and therefore
- all orbits visit the singularity recurrently.

FIG. 6. Composite of the sliding portrait (s1) and the crossing portrait (c3u) in Fig. 5. For p < 0 all orbits
reach the sliding region, and a crossing orbit is illustrated. For p > 0 this system has an invariant set near the
singularity, generated by the forward evolution of the hatched region in ES. The limit cycle (fixed point of the map
φ) is shown.

The forward time evolution from the singularity is set-valued, however, and therefore
non-deterministic. We can characterise this behaviour by saying that the system exhibits
a non-deterministic form of chaos. The term “non-deterministic chaos“ has previously ap-
peared in [8] in a somewhat different setting, though referring to a similar loss of uniqueness
in which an infinity of orbits recurrently pass through a single point in finite time. To prop-
erly define this unfamiliar notion, we can begin from the definition of deterministic chaos
available in many standard texts. The definition provided in[23] is that:

DEFINITION 3.2. A flowψ is chaotic on a compact invariant setX if ψ is transitive and
exhibits sensitive dependence onX .
Indeed, the system described in Proposition 3.1 has an invariant setX near the singularity,
generated by the forward evolution of the region in ES enclosed by the folds and the unstable
manifold of the pseudosaddle (including the pseudosaddle,see hatched region in Fig. 6). To
define transitivity and sensitivity to initial conditions,we adapt the definition given in [23] to
apply to a set-valued flow. First, as in [23], we say that:

DEFINITION 3.3. A flowψ is topologically transitive on an invariant setX if for every
pair of nonempty, open setsU andV in X , there is at > 0 such thatψt(U) ∩ V 6= ∅.
This is satisfied by the system described in Proposition 3.1 since any pointx ∈ U reaches the
singularity in finite time, when its forward evolution generates the whole setX . Then, the
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definition of sensitivity in [23] is adapted to apply to a set-valued flow as follows:
DEFINITION 3.4. Let Bǫ(x) be a ball of radiusǫ centred onx. A set-valued flow

ψ exhibits sensitive dependence on an invariant setX if there is a fixedr such that for each
x ∈ X and anyǫ > 0 there is a nearbyy ∈ Bǫ(x)∩X such that the diameter ofψt(x)∪ψt(y)
is greater thanr for somet ≥ 0.
The only difference between this definition and that in [23],is that it uses the diameter of
ψt(x) ∪ ψt(y) instead of the distance‖ψt(x) − ψt(y)‖. The two definitions coincide for
single-valued flows, making this a natural extension for a set-valued flow. For our set-valued
flow, the forward evolution of any point inX generates the whole invariant set after crossing
the singularity, the flow in Proposition 3.1 exhibits sensitive dependence on initial conditions,
andX is a non-deterministic chaotic set.

In Sec. 7 we simulate a system exhibiting non-deterministicchaos, and provide example
of systems exhibiting of all other types of Teixeira singularity. Now, for completeness, we
turn to the description of the other possible types of two-fold.

4. The visible two-fold. A vector field with transversely intersecting visible foldsgener-
ically satisfies (2.5)-(2.7), withL2

f−
h < 0 < L2

f+h at their intersection, which is then a
visible two-fold. This is illustrated in Fig. 7(i), and has the local form

f+ =





−x1 + O(x0, ‖x1, x2‖2)
−1 + O(‖x‖)

−V + + O(‖x‖)



 ,(4.1a)

f− =





x2 + O(x0, ‖x1, x2‖2)
−V − + O(‖x‖)
−1 + O(‖x‖)



 .(4.1b)

FIG. 7. Dynamics near a visible two-fold: (i) orbits outside the switching manifold curve away from the folds,
(ii) phase portraits of the sliding dynamics. At the origin the sliding vector fieldfs is set-valued, with elements
pointing into the sliding region SL whenV +V − > 1 andV +, V − < 0. In this case a one-parameter family of
orbits intersects the origin along a unique direction (an eigenvector of the regularisatioñfs of fs). In all other
cases the set-valuedfs has elements which point into SL, and only a single orbit thatintersects the singularity.

The parametersV + andV − can be retrieved for a general vector field at a visible two-
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fold as

V + =
−Lf+Lf−h

√

−(L2

f+h)(L2

f−
h)
,(4.2a)

V − =
Lf−Lf+h

√

−(L2
f+h)(L2

f−
h)
.(4.2b)

Crossing dynamics in this case are trivial, since all crossing orbits leave the neighbourhood
of the singularity (see Fig. 7(i)). Sliding dynamics can by understood by the same means as
in Sec. 3.2. In this case, the equilibrium at the origin in theregularised vector field̃fs has
eigenvalues

µ± = −
1

2

(

V + + V − ±

√

(V + − V −)2 + 4

)

,(4.3)

(the negative of (3.5)) while the associated eigenvectors are
(

µ± + V +

−1

)

(4.4)

(the same as (3.6)). Thus, sliding dynamics is the same as at the Teixeira singularity (invisible
two-fold), but with time reversed (Fig. 7(ii)). This time reversal has an important implication
for the complexity of the local dynamics. Similarly to the Teixeira singularity, a pseudoequi-
librium crosses between SL and ES whenV +V − = 1 with V +, V − < 0. However, whereas
at a Teixeira singularity a one-parameter family of orbits in SL can intersect the singularity,
at a visible two-fold only a single orbit in SL can intersect the singularity. In any event, all
trajectories evolve away from the singularity into the upper or lower vector fields, leaving the
switching manifold either from a visible fold or from ES. As shown in [14], the portraits in
Fig. 7(ii) are all the structurally stable cases near the singularity.

5. The visible-invisible two-fold. A vector field with transversely intersecting visible
and invisible folds generically satisfies (2.5)-(2.7), with (L2

f−
h)(L2

f+h) > 0 at the singular-
ity, which is then a visible-invisible two-fold. This is illustrated in Fig. 8(i), and has the local
form

f+ =





−x1 + O(x0, ‖x1, x2‖2)
1 + O(‖x‖)
V + + O(‖x‖)



 ,(5.1a)

f− =





x2 + O(x0, ‖x1, x2‖2)
−V − + O(‖x‖)
−1 + O(‖x‖)



 .(5.1b)

The parametersV + and V − can be retrieved for a general vector field at a visible-
invisible two-fold as

V + =
Lf+Lf−h

√

(L2

f+h)(L2

f−
h)
,(5.2a)

V − =
Lf−Lf+h

√

(L2
f+h)(L2

f−
h)
,(5.2b)



15

FIG. 8. Dynamics near a visible-invisible two-fold: (i) orbits outside the switching manifold curve away from
the manifold at one fold, and towards it at the other; (ii) phase portraits of the sliding dynamics. The singularity in
each of SL and ES is intersected by: two orbits ifV +V − > 1 andV +, V − > 0, a one-parameter family of orbits
if V +V − < 1 andV + + V − > 2, no orbits otherwise. As in previous cases, the orbits intersect the singularity
along the eigenvectors of̃fs (the regularisation offs), and the sliding vector fieldfs is set-valued (not shown) at
the singularity.

(note there for this case there is no ‘−’ sign inside the square root). The presence of a visible
fold prevents the onset of recurring crossing dynamics around the singularity. Concerning
sliding dynamics (Fig. 8(ii)), the equilibrium at the origin of the regularised vector field̃fs

has eigenvalues

µ± =
1

2

(

V + − V − ±

√

(V + + V −)
2 − 4

)

,(5.3)

while the associated eigenvectors are
(

µ± − V +

−1

)

.(5.4)

The eigenvalues are imaginary when|V + +V −| < 2 and real otherwise. WhenV + +V − <
2, regardless of whetherV +V − > 1 or V +V − < 1 (in the former casẽfs has a saddle, in
the latterf̃s has a focus), orbits flow around the singularity, entering SLand ES from one
fold and exiting from the other. Less trivial dynamics appears whenV + + V − > 2. The
eigenvalues are real, and both eigenvectors point towards SL or ES. WhenV +V − = 1, an
eigenvalue goes to0. In this casef̃s has a one-dimensional centre manifold (see Appendix
E) with dynamics

u̇ = (V +V − − 1)u+ a2u
2 + O(u3).(5.5)

As V +V − passes through unity withV +, V − > 0, a pseudoequilibrium crosses the singu-
larity along the singular eigenvector. The structural stability of the orbits in Fig. 3 depends
on the composition of the sliding/escaping portraits with the mapφ+. As shown in [14], this
subdivides Fig. 3(ii) into 11 regions of structurally different dynamics, depending on the se-
quences of escaping-crossing-sliding that families of orbits can undergo. As a final remark,
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inspection of the wedgeV +V − < 1, V + + V − > 2, V − > V +, in Fig. 3(ii), may sug-
gest the possibility of non-deterministic chaos ifφ+ maps escaping orbits emerging from the
singularity to sliding orbits entering the singularity. A short calculation from (5.1) however
shows that, locally, the direction ofφ+ does not allow this.

6. A remark on sliding bifurcations and invariant manifolds . Although the local be-
haviour of the visible and visible-invisible two-folds is less complex than that of the Teixeira
singularity, they can have striking implications for global dynamics. Firstly, we see in Figs. 7
and 8 that orbits do exist crossing the two-fold from the sliding to escaping regions. This
is locally less interesting because all orbits eventually depart the neighbourhood of the two-
fold, leaving the switching manifold via a visible fold. This same reasoning, however, means
that the local sliding dynamics will interact with the global dynamics. It is then known that
one-parameter families of orbits can undergo so-called catastrophic sliding bifurcations, in-
troduced in [17]. In these bifurcations, for example, periodic orbits can be suddenly destroyed
through encounter with a visible or visible-invisible two-fold. This occurs when they cross
the two-fold from SL to ES, so the local geometry is provided by the vector fields in Secs. 4-5.
In some cases, for example in Fig. 8 withV +V − < 1, V + + V − > 2, V + < V −, these
bifurcation are likely to be associated with non-deterministic chaotic dynamics on a global
scale. Also, codimension one invariant manifolds inn-dimensional systems can generically
contain visible or visible-invisible two-folds where theyintersect a switching manifold, and
the three dimensional case was discussed in [7]. Again, their local behaviour is provided by
the analysis above.

7. Numerical simulations. The lowest order approximation to the Teixeira singularity
analysed in [16] revealed an interesting bifurcation, in the form of an invariant nonsmooth di-
abolo (an invariant double cone with a crease at the switching manifold), that self-annihilates
through a loss of hyperbolicity. The higher order analysis in this paper fully unveils its in-
triguing nonlinear behaviour, depicted in Fig. 5. A compellingly peculiar case, as we have
seen in Sec. 3.3, is obtained by combining the sliding portrait from Fig. 5(s1) with the cross-
ing portrait from Fig. 5(c3u), obtained by taking (2.4) and (3.9) with coefficientsB11 > 0,
B30 < 0, |8B30| > B2

11, anda2 > 0, asp = V +V − − 1 changes sign. Whenp > 0, this
scenario exhibits a non-deterministic chaotic set: the sliding dynamics channels orbits from
SL to ES, with all information on initial data lost at the singularity, while the crossing dynam-
ics provides a mechanism for re-injection to SL. Thus the local neighbourhood is recurrently
visited by orbits ejected from the singularity, and their history is lost with each visit. Orbits
are unique neither in forward nor backward time, but by varying a parameter through the non-
smooth diabolo bifurcation, the system can be controlled towards the benign case (p < 0). A
numerical example of this case is provided by the following system:

f+ =





−3 −1 0
−1 −3 0
0 1 −2









x0

x1

x2



 +





0
1
V +



 ,(7.1a)

f− =





3 0 1
0 −2 0
1 0 3









x0

x1

x2



 +





0
V −

1



 ,(7.1b)

with a switching manifoldx0 = 0. The sliding and crossing normal forms (3.7) and (3.12)
at the nonsmooth diabolo bifurcation for this system have coefficientsB11 = −16, B30 =
−1662.93, a2 = 61.4, whenV + = −5 andV − = −1/5, thus falling into case (s1)-(c3u) of
the Teixeira singularity. In Fig. 9, we have simulated the system using the software Matlab,
with a piecewise smooth numerical integrator [27] forV + = −5.01 andV − = −1/5, thus
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FIG. 9. Simulation of system (7.1) withV + = −5.01 andV − = −1/5, exhibiting a pseudoequilibrium in ES
and an unstable focus cycle. (i) A single orbit originating near ES, with initial conditions(10−20,−10−6,−10−6),
winds around the singularity and reaches SL, then it is attracted toward the singularity and back into ES (ii) Inter-
sections of the orbit with the switching manifold. The pseudoequilibrium in ES and the crossing points of the focus
cycle are highlighted in bold.

p = V +V − − 1 = 0.002. Because we are close to the bifurcation (|V +V − − 1| ≪ 1
with V +, V − < 0), the vector fields above and below the switching manifold are almost
antiparallel at the origin. This causes strong squashing oforbits towards a plane transverse
to the switching manifold, observable in Fig. 9(i), and alsoseen from the crossing points in
Fig. 9(ii). Here the dynamics in the direction transverse tothis plane cannot be resolved, and
in particular, the orbit’s evolution in SL cannot be seen. Weresolve these in the following
two figures.

FIG. 10. Magnification of Fig. 9(ii) near the origin. As the orbit departs from its initial condition near the
singularity, its crossing points lie (approximately) along a line through the origin, and the orbit’s last crossing point
lies in the lower right corner of CR1. The orbit’s entry point into SL is seen, followed by its sliding trajectory towards
the singularity. A pseudoequilibrium is shown in ES (red dot).

Fig. 10 presents a simple magnification of the Poincaré map from Fig. 9(ii) around the
singularity. The line of points emanating from the origin are the crossing points of the orbit
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as it leaves the neighbourhood of the singularity. After thelast crossing (lower right corner
of CR1), the orbit is seen to impact SL towards the top of the figure, evolve via an almost
straight path towards the point(x1, x2) ≃ (0.00025, 0.00005), then to the singularity. From
the simulation we confirm that the orbit reaches the singularity in time t ≃ 0.48 after reaching
SL. At this time the integrator fails to work, since the orbitis entering ES where its evolution
becomes non-unique.

FIG. 11.A magnification of Fig. 12, making a linear coordinate changein thex1, x2 plane, and stretching the
positivex0 axis by a factor20. In (i) the orbit can now be seen, crossing repeatedly through the switching manifold,
and surrounding the focus cycle (depicted in red). In (ii), the orbit’s crossing points are seen to form a butterfly
shape around the two (red) crossing points of the focus cycle.

Fig. 11 presents the orbits in Fig. 9 under a linear coordinate change in thex1, x2, plane.
We have also stretched the coordinatex0 by a factor 20 above the switching manifold only.
A single orbit is shown whose initial point is at(10−20,−10−6,−10−6), which lies a small
distance from the singularity and above ES. The orbit winds around the singularity a large
number of times, and eventually maps into the interior of SL,from where it is inevitably
pulled into the singularity as shown in Fig. 10. This is consistent with the phase portraits
predicted in case (s1)-(c3) and illustrated in Fig. 6. Upon reaching the singularity, the system
can follow any one of an infinite number of trajectories, independent of the orbit’s history.
This therefore demonstrates that the predicted conditionsfor non-deterministic chaos exist.
We now show that this behaviour can be tamed by varying the parameterp. We changeV + to
the value−4.99, for whichp = V +V −−1 = −0.002. This system is simulated in Fig. 12(i),
with a rescaling in (ii) (the same scaling as in Fig. 11(ii)) to resolve the fine structure of the
orbits. A single orbit is shown, and has the same initial condition as in Fig. 9. The orbit winds
around the singularity a large number of times, and reaches SL. In this case the sliding orbit
is repelled from the singularity along a visibly straight path, as can be seen in Fig. 12(i). The
orbit terminates at a pseudoequilibrium, which can be seen at the edge of SL.

It is easy to confirm (as reported in [16, 17]) that trajectories of the truncated leading
order system in (3.1) are curves(x0(t), x1(t), x2(t)) whose coordinates satisfy

(V +V − − 1)|x0| =















(

1

2V −
x2

1 +
1

2V +
x2

2 − x1x2 + c

)

V −, if x0 > 0,
(

1

2V −
x2

1 +
1

2V +
x2

2 − x1x2 + c

)

V +, if x0 < 0,
(7.2)

where the constantc fixes the height that the orbit attains along thex0-axis. WhenV +V −(1−
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FIG. 12.Simulation of system (7.1) withV + = −4.99 andV − = −1/5, with a pseudoequilibrium in SL. (i)
A single orbit originating near ES, with initial conditions(10−20,−10−6,−10−6), winds around the singularity
and reaches SL, then it is repelled from the singularity toward a pseudoequilibrium (red dot at edge of SL). (ii) A
linear coordinate change in thex1, x2 plane, and a stretching of the positivex0 axis by a factor20, resolves the
crossing dynamics of the orbit.

V +V −) > 0 these equations define a pair of paraboloids, one above and one below the
switching manifold, joined nondifferentiably, forming a ball with a creased equator. When
V +V −(1−V +V −) < 0, they similarly define a pair of surfaces above and below the switch-
ing manifold, each of which is part of a saddle, again joined nondifferentiably. In Fig. 12(ii),
the two adjoined paraboloids are clearly seen. In Fig. 11(i)higher order terms govern the
behaviour of the trajectories away from the singularity, but near the singularity they can be
seen to lie on portions of saddles. Ifc = 0 the surfaces form a nonsmooth double cone –a
diabolo– through the singularity, which undergoes the nonsmooth diabolo bifurcation when
p = 0 [16].

Finally, for the reader’s interest, we provide examples of systems exhibiting each of the
ten different portraits in Fig. 5. We consider system (7.1),changing the Jacobian off+ to





a11 −1 0
−1 −3 0
0 a32 −2



 .(7.3)

By assigning the values in Tab. 7.1 to the parametersa11, a32, V +, andV −, we obtain an
example of each predicted scenario. It is a simple exercise to recast (7.3) in the form of a relay
system, see e.g. [31], implying that it might easily arise inelectrical or control applications.
It is conceivable that the singularity occurs in various piecewise smooth dynamical systems
where the generic conditions (2.5)-(2.7) are satisfied.

8. Conclusions.We have reviewed the local description of the singularity formed when
a three-dimensional piecewise smooth vector field is tangent to both sides of a switching
manifold – a two-fold singularity. We analysed the dynamicsof orbits in regions of sliding,
identifying conditions that cause a pseudoequilibrium to pass through the singularity. This
represents a novel bifurcation through which a pseudoequilibrium can collide with a bound-
ary of a sliding or escaping region, fundamentally different from the well known boundary
equilibrium bifurcations in Filippov systems [10]. We conclude that in some cases, families
of sliding orbits are attracted to the singularity, making the intersection of an orbit with a
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Portrait a11 a32 V + V −

s1-c1 -3 1 -1/20 -20
s1-c2s -3 1 -1/5 -5
s1-c2u 100 0 -20 -1/20
s1-c3s -3 1 -1 -1
s1-c3u -3 1 -5 -1/5
s2-c1 -3 10 -1/2 -2
s2-c2s -3 10 -2/3 -3/2
s2-c2u 100 100 -5 -1/5
s2-c3s -3 10 -1 -1
s2-c3u -3 100 -5 -1/5

TABLE 7.1
List of parameter valuesa11, a32, V + andV −, to obtain examples of all portraits depicted in Fig. 5, using

the system (7.1) with the Jacobian off+ modified as in (7.3).

two-fold a generic event. This allows solutions starting away from the escaping region to
reach it. These facts are often overlooked in the literature(see. e.g. [10, 11, 27]). We also
analysed the dynamics of crossing orbits, concluding that if one of the folds is visible (local
trajectories curve away from the switching manifold along it), then all orbits eventually leave
the neighbourhood of the singularity. These cases, (Secs. 4-5), are of interest when they in-
teract with other attractors or invariant sets outside the neighbourhood of the two-fold. The
case that is most dynamically interesting in its own right isthe Teixeira singularity.

The Teixeira singularity consists of two invisible folds, which cause all local trajecto-
ries to curve towards the manifold. This case exhibits a number of local bifurcations, which
we unfolded by analysing separately the bifurcation of the smooth systems that describe the
local crossing and sliding dynamics. The crossing dynamicsis described by a return map
that undergoes a degenerate 1:1 resonance bifurcation. This coincides with the passage of a
pseudoequilibrium through the singularity, from SL to ES orvice versa. One parameter, the
quantityV +V −, characterises the leading order problem, and measures theangular disparity
between the vector fields above and below the switching manifold, evaluated at the origin. A
normal form reduction of the neighbouring dynamics revealsthat the qualitative behaviour of
a local unfolding depends on three coefficients, two characterising the stability and topologi-
cal type of the fixed points of the crossing map, and one the position of the pseudoequilibrium.
The unfolding reveals the bifurcation of the Teixeira singularity as a new route to the sudden
appearance of periodic orbits and more complex invariant sets in piecewise smooth systems.

Among the local dynamics possible near a Teixeira singularity, we have identified one
that is particularly intriguing. It occurs when, for a wholefamily of parameters where
V +V − > 1 with V +, V − < 0, the crossing map contains an unstable focus (an unstable
limit cycle of the full system), and the pseudoequilibrium is a saddle. Here we find condi-
tions for non-deterministic chaos over a compact neighbourhood of the singularity. All local
orbits begin and end at the singularity, with a definite direction through it, but on each visit
their history is lost and their forward evolution is non-unique. We have simulated an example
of this scenario in Sec. 7, depicting one such orbit in Figs. 9, 10, and 11. We verified in
numerical simulations that the conditions for this recurrent non-deterministic dynamics exist,
but the phenomenon can be tamed by changing the parametersV + andV −, through a nons-
mooth diabolo bifurcation [16]. After the bifurcation, orbits wrap around a nonsmooth ball,
going from ES to SL. Once in SL they evolve away from the singularity, so that in this case a
typical orbit never encounters the singularity.
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By stripping the two-fold down to the leading order behaviour of its sliding and crossing
dynamics, we have unfolded its bifurcations and unveiled its determinacy destroying heart.
But we cannot yet claim that this troublesome singularity isfully understood. The bifurcation
diagram of the crossing return map in Fig. 5 is incomplete: global bifurcations, yet unknown,
occur between the identified scenarios, or each time the invariant manifolds of the crossing
map, or the images of the boundaries of ES, become tangent to the folds. Much grander
challenges than this remain, however. In systems of dimensionn ≥ 4 the two-fold generically
has dimensionn− 3. How much of the local dynamics revealed in this paper will survive in
higher dimensions remains to be studied. Moreover, even in3 dimensions any of the three
flavours of two-folds can interact with non-local attractors, causing global bifurcations that
have not been considered to date.
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Appendix A. Normal form reduction of the sliding vector field of a Teixeira singu-
larity. The normal form (3.7) is obtained by multiplying (3.4) by thequantity(V + +1/V +),
and then taking the dynamics along the direction(−V +, 1) of the singular eigenvector, by
definingx = pu andu̇ = qf̃s(pu), with p andq respectively right and left singular eigen-
vector of the Jacobian of̃fs at the origin, whenV +V − = 1 andV +, V − < 0. Callingc+ij and
c−ij , for i, j ∈ {1..3}, the coefficients of the Jacobians off+ andf−, from this transformation
we obtainu̇ = (V +V − − 1)u+ a2u

2 + O(u3), with

a2 = c+22V
+ − c+23 − c+32 +

c+33
V +

− c−22(V
+)2 + c−23V

+ + c−32V
+ − c−33.(A.1)

Appendix B. Generic perturbation of the map. Assuming analyticity of the return
maps,φ+ can be expanded around the singularity obtaining

x1 7→ −x1 + α20x
2
1 + α11x1x2 + α02x

2
2 + α30x

3
1 + α21x

2
1x2 + α12x1x

2
2 + α03x

3
2

+O(‖(x1, x2)‖
4),

x2 7→ x2 − 2V +x1 + β20x
2
1 + β11x1x2 + β02x

2
2 + β30x

3
1 + β21x

2
1x2 + β12x1x

2
2 + β03x

3
2

+O(‖(x1, x2)‖
4),

while φ− is equal to

x1 7→ x1 − 2V −x2 + γ20x
2
1 + γ11x1x2 + γ02x

2
2 + γ30x

3
1 + γ21x

2
1x2 + γ12x1x

2
2 + γ03x

3
2

+O(‖(x1, x2)‖
4),

x2 7→ −x2 + δ20x
2
1 + δ11x1x2 + δ02x

2
2 + δ30x

3
1 + δ21x

2
1x2 + δ12x1x

2
2 + δ03x

3
2

+O(‖(x1, x2)‖
4).

However, the possible values of the maps’ coefficients are constrained, since the two maps are
involutions and the inducing flow is quadratically tangent to thex2 andx1 axis respectively.
Imposing thatφ+ ◦ φ+ andφ− ◦ φ−, truncated to third order, be the identity (involution
condition), and thatφ+ andφ− preserve thex2 andx1 axis respectively, reduces the number
of independent coefficients of each map from 15 to 6, obtaining

x1 7→ −x1 + α20x
2
1 + α21x

2
1x2 − (α2

20 + α21V
+)x3

1 + O(‖(x1, x2)‖
4),

x2 7→ x2 − 2V +x1 + β11x1x2 + (α20 − β11)V
+x2

1 + β12x1x
2
2

+

(

1

2

(

−α20β11 + β2
11

)

+ (α21 − 2β12)V
+

)

x2
1x2 + β30x

3
1 + O(‖(x1, x2)‖

4)
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for φ+ and

x1 7→ x1 − 2V −x2 + γ11x1x2 + (δ02 − γ11)V
−x2

2 + γ21x
2
1x2

+

(

1

2

(

−δ02γ11 + γ2
11

)

+ (δ12 − 2γ21)V
−

)

x1x
2
2 + γ03x

3
2 + O(‖(x1, x2)‖

4),

x2 7→ −x2 + δ02x
2
2 + δ12x1x

2
2 − (δ202 + δ12V

−)x3
2 + O(‖(x1, x2)‖

4)

for φ−. Finally, composingφ− ◦ φ+, we obtain the general third order expansion of the
Poincaré mapφ:

x1 7→ −x1 + 2V −x2 + a20x
2
1 + a11x1x2 + a02x

2
2 + a30x

3
1 + a21x

2
1x2 + a12x1x

2
2 + a03x

3
2

+O(‖(x1, x2)‖
4),

x2 7→ −2V +x1 + (−1 + 4V +V −)x2 + b20x
2
1 + b11x1x2 + b02x

2
2 + b30x

3
1 + b21x

2
1x2

+b12x1x
2
2 + b03x

3
2 + O(‖(x1, x2)‖

4),

with

a20 = α20,

a11 = −γ11 − 4α20V
−,

a02 = V −(−δ02 + γ11 + 4α20V
−),

a30 = −α2
20 − α21V

+,

a21 = 2α20γ11 − γ21 + 6α2
20V

− + α21(−1 + 6V −V +),

a12 =
−γ2

11

2
− 6α20γ11V

− +
δ02
2

(γ11 + 4α20V
−)

−V −(−4α21 + δ12 − 2γ21 + 12α2
20V

− + 12α21V
−V +),

a03 = −γ03 + 4(V −)2(α20(−δ02 + γ11 + 2α20V
−) + α21(−1 + 2V −V +))

b20 = (−β11 + α20)V
+,

b11 = −2(γ11 + 2α20V
−)V + + β11(−1 + 4V +V −),

b02 = δ02 − 2δ02V
+V − + 2V −(β11 − 2β11V

+V − + (γ11 + 2α20V
−)V +),

b30 = β30,

b21 =
−β2

11

2
− 6β30V

− − α21V
+ + 2β12V

+ − 2β11γ11V
+ − 2γ21V

+

+
α20

2
(β11 + 4γ11V

+),

b12 = β12 + δ12 + 2β2
11V

− + 12β30(V
−)2 + δ02γ11V

+ − γ2
11V

+ + 4α21V
−V +

−8β12V
−V + + 2α20δ02V

−V + − 2δ12V
−V + − 6α20γ11V

−V + + 4γ21V
−V +

+β11(δ02 − γ11 − 2α20V
− − 2δ02V

−V + + 6γ11V
−V +),

b03 = −δ202 − 2β12V
− − 3β11δ02V

− − δ12V
− + β11γ11V

− + 2α20β11(V
−)2

−2β2
11(V

−)2 − 8β30(V
−)3 − 2γ03V

+ − 4α21(V
−)2V + + 8β12(V

−)2V +

−4α20δ02(V
−)2V + + 4β11δ02(V

−)2V + + 4α20γ11(V
−)2V + − 4β11γ11(V

−)2V +.

Appendix C. Normal form reduction of the Poincaré map.When

p := V +V − − 1 = 0,

the Poincaré map has a fixed point, at the singularity, with anonsemisimple double one lin-
earisation. This can be put into a 1:1 resonance normal form which is symmetric, due to the
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constraints imposed by the involution assumption (see Appendix B). The normal form reduc-
tion of map (3.9) is carried out, following a standard path, as a linear transformation followed
by a sequence of near-identity transformations (see [21, 25]), eliminating non-resonant terms
of different degree iteratively. First, the linear part of the map (3.9) is simplified through the
parameter-dependent change of variable

(

x1

x2

)

=

(

2 − 4V +V − 1
−2V + 0

) (

ξ1
ξ2

)

becoming

ξ1 7→ ξ1 + ξ2,
ξ2 7→ 4pξ1 + (1 + 4p)ξ2,

This corresponds to the Jordan form of the linearised systemwhenp = 0. In the (x1, x2)
coordinates and at the bifurcation, the coordinate axisξ1 points in the direction of the singular
eigenvector(−1,−V +) of φ|p=0, while the axisξ2 points in thex1 direction, hence the
change of variable has turned the plane to align the singulareigenvector with theξ1 direction,
and in the new variables theξ1 axis is strictly inside CR1 and CR2. This is an important
remark, since the crossing map is defined only for orbits in ES, CR1 and CR2.

Next, the second order, near-identity change of variable

ξ1 = c20µ
2
1,

ξ2 = d20µ
2
1 + d11µ1µ2s+ d02µ

2
2,

with

c20 = −
b20 + 2b02(V

+)2 + b11V
+ − a20V

+

V +(12p+ 16p2 + 2)
,

d20 =
16b20p+ 4b20 + 16b20p

2 + 4b02(V
+)2 + 4b11V

+ + 2V +4b11p

2V +
,

d11 = −
6b20 + 4b02(V

+)2 + 4b11V
+ − 2a20V

+ + 32b20p+ 80b20p
2

V +(12p+ 16p2 + 2)

+
64b20p

3 + 3V +4b11p+ V +16b11p
2

V +(12p+ 16p2 + 2)

d02 =
−4b02(V

+)2 − 2b11V
+ + 2a20V

+ + 12b20p+ 16b20p
2

2V +(12p+ 16p2 + 2)

simplifies the quadratic terms, giving

µ1 7→ µ1 + µ2

µ2 7→ 4pµ1 + (1 + 4p)µ2 + B20µ
2
1 +B11µ1µ2

with

B20|p=0 = 4(a20 − b11 − b20V
− + a11V

+ − b02V
+ + a02(V

+)2),
B11|p=0 = −4b02V

+ − 2b11 − 2a11V
+ − 4a20

Due to the involution condition, the termB2,0 is identically null nearp = 0, and this second
order expansion in structurally unstable. In order to obtain the topological normal form of
the Poincaré map, the third order expansion must be considered. Once again, through the
near-identity transformation

µ1 = u1 + e30u
3
1 + e21u

2
1u2,

µ2 = u2 + f30u
3
1 + f21u

2
1u2 + f03u

3
2,
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we simplify the terms of degree 3 in the expansion of the map, obtaining the normal form

u1 7→ u1 + u2 + O(‖u‖4),
u2 7→ 4pu1 + (1 + 4p)u2 +B11u1u2 +B30u

3
1 +B21u

2
1u2 +B03u

3
2 + O(‖u‖4).

Appendix D. Approximation by a flow. A flow whose unit-time shift approximates
map (3.12) is easily found by means of successive Picard iterations, as explained e.g. in [20].
Forp = 0, this is

u̇1 = u2 −
B11

2
u1u2 +

B11

3
u2

2 + C30u
3
1 + C21u

2
1u2 + C12u1u

2
2 + C03u

3
2,

u̇2 = B11u1u2 −
B11

2
u2

2 +D30u
3
1 +D21u

2
1u2 +D12u1u

2
2 +D03u

3
2

with

C30 = −
B30

2
, C21 =

B2
11

3
−
B21

2
+B30, C12 = −

2B2
11

3
+

2B21

3
−
B30

2
,

C03 = −
B03

2
+

3B2
11

10
−
B21

6
+
B30

30
, D30 = B30, D21 = −

B2
11

2
+B21 −

3B30

2
,

D12 =
5B2

11

6
−B21 +

B30

2
, D03 = B30 −

B2
11

3
+
B21

6
.

The quadratic terms can be simplified following the generic Bogdanov-Takens normal form
reduction (e.g.[20, 25]), by setting

u1 = ξ1,

u2 = ξ2 +
B11

2
ξ1ξ2 −

B11

3
ξ22 ,

multiplying the resulting flow by the scalar function1 +B11ξ1, and then setting

ξ1 = µ1,

ξ2 = µ2 −B11ξ1ξ2.

Then, the non-resonant cubic terms are eliminated by setting

µ1 = ν1 +
1

36
(2B2

11 − 12B21 + 15B30)ν
3
1 +

1

12
(6B03 − 5B2

11 + 5B21 − 3B30)ν
2
1ν2,

µ2 = ν2 +
B30

2
+

1

12
(13B2

11 − 6B21 + 3B30)ν
2
1ν2 +

1

6
(6B03 − 4B2

11 +B21)ν1ν
2
2

+
1

90
(45B03 − 7B2

11 + 15B21 − 3B30)ν
3
2 .

The resulting flow has equations

ν̇1 = ν1 + O(‖ν‖4),

ν̇2 = B11ν1ν2 +B30ν
3
1 +

(

B2
11

2
+B21 − 3B30

)

ν2
1ν2 + O(‖ν‖4).

Appendix E. Normal form reduction of the sliding vector field of a visible-invisible
two-fold. The normal form (5.5) is obtained by the same means as in Appendix A, by mul-
tiplying f̃s by the quantity(V + − 1/V +), and then taking the dynamics along the direction
(V +, 1) of the singular eigenvector. The coefficient of the second order term in (5.5) is

a2 = −c+22V
+ − c+23 + c+32 +

c+33
V +

− c−22(V
+)2 − c−23V

+ + c−32V
+ + c−33.(E.1)
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