NON-DETERMINISTIC CHAOS, AND THE TWO-FOLD SINGULARITY IN
PIECEWISE SMOOTH FLOWS
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Abstract. A vector field is piecewise smooth if its value jumps acrosgensurface, and a two-fold singularity
is a point where the flow is tangent to the hypersurface froth bimles. Two-folds are generic in piecewise smooth
systems of three or more dimensions. We derive the localrdigsaof all possible two-folds in three dimensions,
including nonlinear effects around certain bifurcatiofisding that they admit a flow exhibiting chaotic but non-
deterministic dynamics. In cases where the flow passesghrthe two-fold, upon reaching the singularity it is
unique neither in forward nor backward time, meaning thesahlink between inward and outward dynamics is sev-
ered. In one scenario this occurs recurrently. The reguftow makes repeated, but non-periodic, excursions from
the singularity, whose path and amplitude is not determbedrevious excursions. We show that this behaviour is
robust and has many of the properties associated with chaoal geometry reveals that the chaotic behaviour can
be eliminated by varying a single parameter: the angulapjafrthe vector field across the two-fold.
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1. Introduction. Piecewise smooth vector fields have appeared throughobigtery
of dynamical systems as models of mechanical and electdmviices (e.g, [1]) and, more
recently, have seen growing use in fields such as ecologyoetics, and neuroscience.
Their spreading usage has naturally been accompanied énegttin their generic mathe-
matical and dynamical properties, which have been the stibfea number of recent books
([10, 18, 22, 32], to name a few). Their dynamics were foresiby Filippov [14], using
differential inclusions (set-valued differential equets, see [3]) to overcome the problem of
indefiniteness of the vector field on the surfaces of disooiityj.

Although two-dimensional piecewise smooth systems are rather well understood
(see for example [14, 21]), a general understanding of dyecsim three or more dimensions
is crucially obstructed by the appearance of the so-caiedfold singularity [30]. The two-
fold is a simple topological singularity that is generic irgewise smooth systems with three
or more dimensions. This implies that it may well be commanplin systems of a piece-
wise smooth nature. Contrarily, two-folds are neither Walbwn nor well understood, with
regard to either the theory of their dynamics, or the freqyeri their appearance in physical
systems. The purpose of this paper is to present, in an argauci consistend framework,
all existing results regarding the local dynamics near weefold. This also includes some
novel results about particular forms of the two-fold thate@ its role in the sudden onset of
periodic orbits and recurrent non-deterministic dynamics

The two-fold was already well defined in [14]. In a piecewis®sth vector field, discon-
tinuities are assumed to occur across a hypersurface ¢hbesvitching manifold Being a
hypersurface, we can speak of the manifold as locally hawwegsides, and generically, there
may exist points where the vector field is quadratically tarmdo one side of the manifold or
the other. We call such a tangencfoid, because in the projection along the flow the switch-
ing manifold has a simple fold. This assumes the system td least two-dimensional. In
higher dimensions there may generically exist points wh&cefolds intersect transversely,
so that the vector field is tangent to both sides of the matifahd this simple object is a
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two-fold A two-fold is an important organising centre because inditogether all of the
basic forms of dynamics possible in a piecewise smooth systeilippov [14] described
three basic forms of dynamics that would occur at a switclnagpifold: crossing, sliding,
and escaping, depending on the orientation of the vectar &ther side of the switching
manifold, as illustrated in Fig. 1. Crossing, shown in Fifj),Joccurs where the component

f+

f+
crossing sliding (111) escaping

FiG. 1. Dynamics at a switching manifold in a 3 dimensional piecewamooth system. The vector field
switches betweeyit and f—. An orbit meeting the manifold may either: (i) cross througlkii) reach it in finite
time and then follow the sliding vector fieftt, (iii) escape it in finite time, though it may slide along thanifiold
for some time before escaping.

of the vector field normal to the switching manifold has theealirection on both sides. In
the two other cases the normal component of the vector fielitis@s direction, so that the
vector field is either directed towards the switching mddifgiving sliding as in (ii), or is
directed away from the manifold, giving escaping as in.(iii)

At a fold, see Fig. 2, the vector field on one side of the switghinanifold changes
its normal direction, forming a boundary between crossegjans and sliding or escaping
regions. At a two-fold, the vector fields either side of thenif@ld both change their normal
direction, meaning that regions of all three dynamical b&has — crossing, sliding, and
escaping — meet, and their boundaries intersect to formitigelsirity.

visible f+ invisible f+ two-
fold fold

ff ff*

FI1G. 2. Tangencies in a piecewise smooth system, showing: (i) lalevifild, (i) an invisible fold; these form
the boundaries between sliding (shaded) and crossing adest) (reverse arrows to replace sliding with escaping).
(iii) Folds associated with the upper and lower fields cras$orm a two-fold, where both vector fields are tangent
to the switching manifold (in the case illustrated both folde invisible).

Escaping dynamics, see Fig. 1(iii), is typically negleaedhe basis that it simply con-
stitutes a time-reversal of sliding, and that escapingoregicannot be reached by a system
in forward time, making consequences of forward time noiueness in these regions ir-
relevant [10, 11, 27]. This assumption is incorrect at a fald; which can channel slid-
ing dynamics into the escaping region. This gives whole li@asiof orbits robust access
to regions of phase space that are infinitely repelling. Thignterintuitive dynamical be-
haviour, noticed in Filippov's seminal work [14], seems && been overlooked ever since,
though a similar effect was discovered in the framework afstandard analysis [4] as the
so-called “canard” phenomenon. Canards are now a popylar ito singular perturbation
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theory [13, 28], with numerous applications, of which a fevamples are in neuron mod-
elling [24], chemical dynamics [6, 26], gas pressure dymratfh], and ecology [9]. Despite

qualitative similarities in these approaches, their catina to the two-fold is as poorly un-

derstood as the two-fold itself. These connections arelostbject of this paper, and we
restrict our interest to understanding the two-fold in tbatext of generic piecewise smooth
dynamical systems.

The study of dynamics around a two-fold has been mainly dichito a lowest order
approximation in three dimensions [14, 16, 29, 30]. Suclall@nalysis reveals how an
initially smooth flow far from a discontinuity can evolve tavds a state where its forward
evolution is set-valued. In this paper we review these tesahd extend them by carrying
out a comprehensive analysis of the nonlinear behaviowr@ftlds in three dimensions. In
so doing, we determine the invariant sets that are presantine two-fold, and decode their
complex dynamics.

In Sec. 2 we define the two-fold singularity and its three syp&Ve discuss the first
of these, the invisible two-fold, ofeixeira singularity in detail in Sec. 3. We analyse its
sliding and crossing dynamics separately in Sec. 3.1 andu8i@g them to reconstruct the
full system in Sec. 3.3 in Sec. 3.4. We briefly discuss therdibrens, the visible (short for
visible-visible) two-fold in Sec. 4, and the visible-inibe two-fold in Sec. 5, with a remark
on their bifurcationsin Sec. 6. In Sec. 7 we numerically dateisome particularly interesting
dynamics predicted in Sec. 3, with some closing remarks i &e

2. The three flavours of two-fold. Consider a three-dimensional piecewise smooth sys-
tem of ordinary differential equations

(2.1) x = f*(x) when h(x) > 0, % = f7(x) when h(x) < 0,

where the dot denotes differentiation with respect to tirgeR, and wheréi(x) is a regular
scalar function of the state vecter= (zo, 21, 72) € R®. For simplicity we set(x) = o,
since any piecewise smooth system, in a region wh¢rg = 0 defines a manifold, can
be put into this form through the appropriate change of Wwem[14, 30]. Thengy = 0
is the switching manifold. Following Filippov’s definitiofi4], the solution of (2.1) at the
switching manifold includes all solutions of the differethinclusion

(2.2) xef="+ANfT=f7),

wherel = 0 whenh(z) < 0, A = 1 whenh(z) > 0, andX € [0,1] whenh(z) = 0, so
that f is a set-valued convex combination pf and f~ whereh(z) = 0. In practice, when
the components of ¥ and f~ normal to the switching manifold have opposite directign,
admits a solution that lies on the switching manifold, artiséas the system given by

(2.3) % = f*(x) when z¢ = 0,
where thesliding vector field f*, is defined as

Li-h

(2.4) fs=f_+m(f+—f_)-

The symboll s denotes the Lie derivative along the flow of a figlogiven byL; = f -V =

d . - L
X - e Let £3 denote the second Lie derivati& = (L;)>. The dynamics in a general
X

piecewise smooth system is then a composite of the dynarhits,of —, and f¢. We make
the following distinctions:
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Definition of orbits and flow. An orbit segments any smooth patlk = x(t) satisfying
(2.2), entirely contained in one of the regiofs : h(x) > 0}, {x : h(x) < 0}, or {x :
h(x) = 0}. Anorbitis any continuous patk(t) that satisfies (2.2), formed by concatenating
orbit segments. Thlow of (2.2)through a poink at timet is given by all points(t + 7)
with x(7) = % for somer € R, x(t) satisfying (2.2). In the following, by the flow we mean
the flow of (2.2) unless otherwise stated.

An important consequence of this definition is that the flomtiyh a poinik in a sliding
region is not unique, becaugealways belongs to a one-parameter family of orbits (unless i
is an equilibrium). For example, the six orbits shown in Hifji) each overlap in the sliding
region, so through any poigton the overlap the flow is non-unique; the same applies to the
six orbits shown in Fig. 1(iii).

Now let us assume that bogh™ and f ~ have quadratic contact with the switching man-
ifold at the origin, that is,

(2.5a) Ly+h(0)=0, and L3, h(0)# 0,
(2.5b) Ly~h(0)=0, and L3 h(0)#0.

Let us also require that neithér- nor f~ have equilibria near the origin,

(2.6) fr#£0, and f7 #0,

and that the pair of curves given I+ h = 0 andL ;- h = 0 onh = 0 intersect transversely
at the origin,

2.7) det (Vh(0), VLs+h(0), VL h(0)) # 0.

A point satisfying either (2.5a) or (2.5b) arp = 0 is afold. A point satisfying both condi-
tions (2.5), and also satisfying the nondegeneracy camditf2.6)-(2.7), is &wo-fold

The sign of the second Lie derivative determines whethefdaiovisible, meaning the
vector field curves away from the switching manifold becaﬂ%eh(()) > 0orL2_h(0) <
0, or invisible, meaning the vector field curves towards thédhing manifo{d because
ﬁ%h(o) < 0Oor E?, h(0) > 0. These are illustrated in Fig. 2(i,ii). If at least one fofd i
visible the dynamics is relatively easy to analyse, andetlases, which we call the visible
and visible-invisible two-folds, are discussed in Secs. #-both folds are invisible then the
flows of f* and f~ both map orbits repeatedly back to the switching manifahdi the dy-
namics is rather more rich, earning this invisible two-ftild distinguished name of a Teixeira
singularity (after the author of [30] who brought this sitagity to prominence). Therefore
the Teixeira singularity is our main subject of interest.

3. The Teixeira singularity. In this section we begin by summarizing a linear approxi-
mation of the Teixeira singularity previously studied i[16, 30]. In particular, equations
(3.1)-(3.6) and (3.8)-(3.11) summarize results obtaimefl 6]. In the remainder of Sec. 3
we introduce higher order terms to the approximation, whicfold the bifurcation found in
[16].

Following on from Sec. 2, local to a two-fold whef&. 7:(0) < 0 and£3_h(0) > 0,
the system (2.1) can be simplified by two changes of variadiesa time rescaling (for a
lengthier description than we give below, see [16]). Fgsten (2.7), we can make a smooth
coordinate transformation that places the folds assatiaith f~ and f+ along ther; and
o axes respectively. Then, by rescalingandz,, and rescaling time separately above and
below the switching manifold — this changes the speed ofrijedtories off ™ and f —, but



5

preserves both of their phase portraits as well as thit efwe arrive at the local form near
the origin

—z1 + O(20, ||21, 22[|*)
(3.1a) fr= 1 +0(]x]) :
VE+O(|x)
2 + O(xo, [l21, 221?)
(3.1b) fm= V= +0(]x]) :
1 +O(]x])

whereV* are real constants. Geometrically; [respectivelyV ~] measures the cotangent
of the angled™ [6~] between the vector field* [f~] and its fold lineL s+ hlgy—0 = 0
[£¢-h|zy—0 = 0]. These can be retrieved for a general vector field at a Tieangularity
from the formulae

LiiLrh
(3.2a) vVt =cotft = il ,
(L3 h)(L5h)
—L; Lrih
(3.2b) V™ =cotf = it 1

(L2 ) (L3 )
evaluated at the two-fold.

The dynamics of (3.1) is illustrated in Fig. 3(i), and is astfisight very simple. The flow
of f* maps initial points from the regiofig = 0,z; < 0} to the region{zy = 0,21 > 0},
affecting a reflectionp™ in the planez; = 0 along the direction0,1,V*) + O(||x]|).
Likewise, the flow of f~ maps initial points from the regiofizo = 0,22 < 0} to the re-
gion {zg = 0,25 > 0}, affecting a reflections~ in the planez, = 0 along the direction
0,V=,1) + O([x]])-

The switching manifold is divided into quadrants as illagtd in Fig. 3: thesliding re-
gion{xy = 0,1 > 0,22 > 0} (SL in Fig. 3), theescaping regiofzg = 0,21 < 0,22 < 0}
(ES in Fig. 3) and therossing regiongzy = 0, 2122 < 0} (CR; and CR in Fig. 3), sepa-
rated by the folds. In each crossing region,;GRd CR, the dynamics can be analysed by a
second return map, the concatenation of the mapand¢—. A sequence of crossings will
terminate in forward time if it maps into the sliding regiob,Svhere bothf ™ and f~ point
towards the switching manifold. Conversely it has initialrgs in the escaping region ES,
where both vector fields point away from the manifold.

Through CR and CR the flow is continuous and invertible, but orbits have vesic
where they traverse the switching manifold. The flow throagl point in SL is defined
uniquely in forward time and contains a segment of sliding,ib reverse time it consists of
an infinite number of orbits arriving fromy > 0 andxy < 0, hence the flow is set-valued
in reverse time. In ES the flow is defined uniquely in revensetibut in forward time it is
set-valued, generating an infinity of orbits that escape:ipt> 0 andxy < 0.

Thus we can study the flow around the singularity in terms ofdynamical systems on
the switching manifold: (i) continuous-time dynamics afisig orbit segments, which are
solutions off* in SL and ES, and live in the two-dimensional switching malaif and (ii)
discrete-time dynamics of crossing orbit segments, thatharound the singularity inducing
a return map on the switching manifold. In the next two sediave analyse these sepa-
rately, and can restrict our analysis to thexz, plane. We reassemble the three dimensional
dynamicsin Sec. 3.3.
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F1G. 3. Dynamics near a Teixeira singulairity: (i) orbits outsidgetswitching manifold curve around the folds
and cross the manifold in GRand CR, (ii) phase portraits of the sliding dynamics. At the oridiire sliding vector
field f* is set-valued, with elements pointing into the escapin@regS wher/tvV— > 1andV+t,V— <0.In
this case a one-parameter family of orbits intersects thgimmlong a unique direction (an eigenvector 6t from
(3.4)). In all other cases the set-valugd has elements which point into the sliding region SL, and angjngle
orbit that intersects the singularity.

3.1. Dynamics in the sliding and escaping regionskEvaluating (3.1) at, = 0, and
substituting into (2.4), we obtain the explicit expresdionthe sliding vector field

0
V= xy + 29 + O(||21, 22]?)
(3.3) fr= d(x) :
x1 + VTay + O(||21, 22]?)
d(x)

whered(x) = z1 + z2 + O(||z1, 22||?). This vector field is undefined at the origin since,
fT and £~ being both tangent to the switching manifold(atall vectors in their convex
combination are tangent to the switching manifold. To oweate this, following [14, 30] we
define a planar regularised vector fiefd, by multiplying £ by d(x) and omitting the trivial
xp component,

@) Plave = (Y7 b ) (5) +0llnl®),

T2

Becausel(x) > 0in SL andd(x) < 0in ES, f* and f* have the same phase portrait in the
SL, but the same phase portrait with time reversed in ES.thadilly, becausé(0) = 0, fe
has an equilibrium at the origin, where (3.3) is not well definThese facts are vital to take
into account when translating the dynamicsféfinto those of the original vector field®.
The equilibrium off* at the origin has eigenvalues

(3.5) T % (V+ + VT (VE =V + 4) ,

and the associated eigenvectors are

(3.6) < e vr > .
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If the eigenvalug; has negative [resp. positive] real part we say it, and ite@ated eigen-
vector, are stable [unstable]. Some simple calculationg/ghat one eigenvector lies always
in SL and ES, and the other lies in €R&nd CR; they can never be tangent to either of the
folds since this would correspond to a cubic tangencfobr f— at the origin (called ausp
point), excluded by (2.5). In particular

() if VT,V <0andV*V~ > 1, both eigenvectors are stable,

(i) if VTV~ < 1, the eigenvector in SL/ES is unstable and the other is stable

(i) if VT, V= > 0andV*TV~ > 1, both eigenvectors are unstable.

Moreover, when the eigenvector in SL/ES is stable, it is eissed with the weak stable
eigenvalue, so that sliding orbit segments are asymptiytigtiracted to it as they approach
the singularity.

The different cases are illustrated in Fig. 3(ii). Refegrin thedefinition of orbits and
flowin Sec. 2, the phase portraits in Fig. 3(ii) imply that: in€&$ orbits cross the singularity
from SL to ES, while in cases (ii)-(iii) orbits cross from E&3$L. In each case orbits cross
the two-fold singularity in finite time. In case (i) in pantilar, orbits with an initial interval of
smooth evolution away from the discontinuity can enter S ewolve towards the singularity
(Fig. 4), whereupon their forward evolution is multivaluéshportantly, such orbits reach the
singularity in finite time, and as they cross it all infornmatiabout their initial conditions
is lost. By this mechanism, forward time uniqueness is losfbits that converge on the
singularity. One purpose of the present paper is to reveadlyimamical implications of this
often overlooked loss of uniqueness.

(!

FIG. 4. Anillustration of non-determinism at the Teixeira singitla Orbits which are initially smooth, evolve
towards a switching manifold, eventually enter the slidiegion SL and evolve towards the singularity. Open sets
of initial conditions thus evolve through the singularityfinite time, and are ejected as a one-parameter family of
orbits in the escaping region ES.

We can determine whethg¥ is structurally stable by consideringf. The Jacobian
of (3.4) at0 is singular wher/ TV~ = 1, and a quick inspection of (3.1) shows that this
corresponds tg+ and f~ being antiparallel (i +, V= < 0) or parallel (if V*, V= > 0)
at the origin. The eigenvectdrV *, 1), associated withi_ = 0, always points into SL if
VT, V= < 0, and into one of the crossing regions C& CR, if V™, V'~ > 0. Only the
case wher/ ™, V'~ < 0 results in a structurally unstable phase portrait of thdirsij vector
field, whenVtV~ = 1. In this case, the behaviour of the orbits Sfaround the origin is
captured by the dynamics in the one-dimensional centrefoldniith Taylor expansion

(3.7) = (VYV" = Du+ axu® + O(u?),
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which exhibits a transcritical bifurcation &V~ = 1 (details about this normal form are
given in Appendix A). Notice that, fof*®, this means that there exists a single equilibrium
that crosses the singularity whén™V— = 1, changing stability in the process. Since equi-
libria of the sliding vector fieldf* are not zeros of ™ or of f—, they are commonly called
pseudoequilibrigl5]. Assuming that the positive semi-axis lies in SL, the pseudoequilib-
rium of f¢ is
(s1) ifaz > 0in (3.7), asaddle in ES for *V~ > 1 andV*,V~ < 0, becoming a
stable node in SLwheW ™V~ < 1lorV*™, V= >0,
(s2) ifaz < 0in (3.7), asaddle in SL fo "V~ > 1 andV*+,V~ < 0 becoming an
unstable node in ESwhantV—- <l1orV+*, V= > 0.
These are illustrated in Fig. 5.

3.2. Dynamics in the crossing regionsin the crossing regions GRand CR, orbit
segments of ™ andf~ induce map®™ and¢— from the switching manifold to itself, across
the folds. The vector fields (3.1) truncated to lowest ordereasily integrated to obtain the
maps

o 1 0
@oa) ¢ xmeom xk=( b 0) (7)) + ol

and

ot 5 mxr o mxri= () (1) 4 Ol

The full maps¢™ and¢—, whose Taylor expansions to the third order are reportedpn A
pendix B, are then retrieved as generic perturbations sEtHey imposing that: they preserve
the corresponding fold lines, and are involutions (sinceap m the neighbourhood of a fold
is an involution, see e.g. [2]).

To understand the dynamics of orbits that wind around thgusarity, crossing through
CR; and CR, we can study their Poincaré map from a crossing regiohdeiR or CRy)
back to itself; this map is obtained as a compositiopdfand¢~. Let us consider the map
¢ = ¢T o ¢~ (similar arguments follow if we choose instead the mgapo ¢*). The domain
of ¢ is the setD C CR; such thatp~ (D) C CRsy. Orbits with initial conditions inD
cross through CRand return to CRor SL. The complement ab in CR; consists of initial
conditions that are mapped into SL by . This implies thatD lies between the negative
axis and the preimage of the positive axis under the map—; since¢— is an involution,
the preimage is a curve given by (z; = 0,22 > 0). The Poincaré map thus obtained is

O G40 o (R N | ) PRC (P}

This map has a fixed point at the origin, with eigenvalues

(3.10) Ay =2VTV ™ —142/VIV-(VHV- —1).

WhenV*V~ > 10or VTV~ < 0 the fixed point is of saddle type. Whén< VTV~ < 1
it is a centre, with complex conjugate eigenvalues on thé cinéle. The corresponding
eigenvectors are

(3.11) ( ff;t ) .
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AslongasV/ TV~ < lorV* V= > 0, it was proved in [16] that all orbits sufficiently close
to the singularity reach SL after a finite number of crossifysifurcation of the crossing
dynamics occurs wheWi * V'~ =1 andV*+,V~ < 0. At the bifurcation, the Jacobian of the
Poincaré map at the origin is non-semisimple (non-dialigaizle), and has two eigenvalues
equal to one. As a consequence)dfand¢— being involutions, this corresponds to a degen-
erate 1:1 resonance bifurcation of the map. Near the bifiortahe map can be reduced to
the normal form

ur = ur+uz+O([uf?),
(312) Uz = 4p’lL1 + (1 + 4p)U2 + B11U1U2 + Bgou:f + Bglu%UQ + Bogu%
+O([[u]l*),

with
(3.13) p=VTV— -1,

through a series of changes of variables and parameter$ahécreported in Appendix C.
At the bifurcation and at the origin, the axis lies along the vector directiqi —, 1), the
singular eigenvector of the Jacobiandgfand the positive direction af; points into CR,
while theus axis is tangent to the; axis in the original coordinates. The normal form has a
fixed point at the origin for all values @f, while two more fixed points, located at

(3.14) up =42, /-2 =0
Bs

emerge when-p/Bs, becomes positive. The positivity of the eigenvalues (3ifplies
that the negativer; axis intersects CR and lies inside the domain of the Poincaré map
implying that the fixed point at; = —2+/—p/Bso corresponds to a crossing periodic orbit
near the singularity. The eigenvalues of this fixed point are

(3.15) 1—311\/—ii\/—i(8330+3121)+0(p).
Bsp Bso
Depending on the values &f;; and Bs, the following are possible:
(c1) if Bsy > 0, the two eigenvalues are real, one positive and one negative
(c2) if B3y < 0 and|8B3g| < B%, both eigenvalues are real, inside the unit circle if
B1; > 0, outside the unit circle otherwise;
(c3) if Bsp < 0 and|8Bsg| > B?, the eigenvalues are complex conjugate, inside the
unit circle if By; > 0 and outside otherwise.
The orbits of map (3.12) are approximated, fore= 0, by the unit-time shift of a flow
which is equivalent to

vo= n+O(v|Y),

2
(316) D2 — BHV1V2 “+ B30V13 + (% —+ B21 — 3330) I/12V2 —+ (9(||V||4)7
as explained in Appendix D. This degenerate (codimensioee) Bogdanov-Takens normal
formis discussed in [19], and it is unfolded in three pararsein [12]. In our case, changing
p around) we explore a one-dimensional curve of parameters throwgthtiee-dimensional
unfolding. In [12] the cases (c1), (c2), (c3) are called eetpely saddle, elliptic and focus
case, after the topological type of the origin whes- 0. Overall, cases (c1), (c2), (c3) give
rise to the following bifurcation scenarios of the crosgitygamics in a neighbourhood of the
origin:
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(cl) Forp > 0the singularity is a saddle of the mapForp < 0 a saddle cycle emerges
from the singularity, and the singularity is a centre of thegr.

(c2) Forp < 0the singularity is a centre of the map Forp > 0 a node cycle emerges
from the singularity, and the singularity is a saddle of thepm. At p = 0 the
crossing map at the singularity can exhibit an elliptic sea region within which
every orbit converges on the singularity both forward anckiaard in time).

(c3) Forp < 0 the singularity is a centre of the majp Forp > 0 a focus cycle emerges
from the singularity, and the singularity is a saddle of thepm.

Caution must be taken in studying the dynamics of the sysgf),(since the map (3.12)
applies only on the domai? C CR; (described above (3.9)), from which orbits return to
CR;. Finally, some issues remain undealt with regarding thariawmt sets and the structural
stability of crossing dynamics. The bifurcations occugrbetween scenarios (C1)-(C3), for
p near( suggest the existence of other structures, e.g. quasifiendits, that may emerge
asp crosse$). Also, as we have seen, whegn< 0 the map (3.9) is a (nonlinear) rotation from
ES to SL. A structurally unstable scenario occurs when tregirof the border of ES under
¢ (or multiple iterations o) is tangent to the border of SL. This is associated with a ghan
in the number of iterations it takes to map points from thedkoof ES into SL. This issue is
the subject of ongoing study.

3.3. Reassembling the Teixeira singularity.Once the dynamics of both the sliding,
the escaping, and the crossing regions have been decoégd;ah be stitched together to
obtain the overall portrait of orbits around the singularithe dynamics in SL is completely
described in Sec. 3.1, and can be of only two types, (s1) &)dn($ig. 5, depending on the
sign of parametetrs in (3.7). The dynamics in CRand CR is derived directly from the map
(3.12). The changes of variables that place the genericBd@map (3.9) in the form (3.12)
ensure that, fop sufficiently close td), the positiveu; axis lies strictly inside the domaib
of the map¢. Hence both the origin and the negative solution of (3.14)fexed points of
the Poincaré map. In particular, in terms of the dynamics/sfem (2.1), the origin is a limit
point (back or forward in time) of crossing orbits, while thaution (3.14) corresponds to a
crossing cycle, whose type (focus/node/saddle, staldthle) depends, as we have seen in
Sec. 3.2, on the coefficienissy andB;y; of the normal form.

Combining all of these considerations, we can sketch thesang orbits of system (2.1)
(or rather of their intersections with the switching mafdjoas in Fig. 5, cases (c1)-(c3).
The depicted phase portraits are obtained by taking thendipsaof map (3.12), restricted
to CRy, and reflected in the ling; = x». In Figs. 5 (c2) and (c3) the map contains a node
or focus, which can be either stable ((fand (c3)) or unstable ((c2) and (c3)). The
complete dynamics around the Teixeira singularity is otgdiby stitching together any one
of the portraits (s1), (s2) for the sliding dynamics, wittyame of the portraits (c1)-(c3) for
the crossing dynamics, for a grand total of ten qualitayidifferent phase portraits.

It should be remarked that, although we derived the crossdimgamics from generic
forms for the map®* in Sec. 3.2, the crossing dynamics can be derived directigtegrat-
ing a local series expansion of the vector fiefds allowing them to be compared directly
to the sliding vector fielg'*. From the (lengthy) expressions obtained 6, no conditions
have been found that prohibit any of the ten possible contibins of sliding portraits (s1),
(s2), with crossing portraits (c1)-(c3). Indeed, in Tald @f Sec. 7 we give examples that
exhibit each one of the ten possible portraits.

A number of interesting qualitative features of the dynaneian now be directly inferred
from Fig. 5. Forp < 0, the crossing dynamics near the singularity is similar ioheease
(c1)-(c3), in that a finite number of crossings takes orbitenf ES to SL. Once they reach
SL, the vector fields in (s1)-(s2) come into effect, andgot. 0 these show that all orbits
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CR,

p<0 p>0 p<0 p>0

FiG. 5. The complete catalogue of local dynamics around a Teixémgutarity whenp = VTV~ —1 ~ Qs
obtained by composing the possible phase portraits ofgi@1), (s2), and crossing (c1), (€2), (€3s,.)- (s1), (s2)
show the two possible phase portraits in the sliding and giscaregions SL and ES, as the bifurcation parameter
p changes sign. (c1), (¢2.), (c3s,.) depict the intersections of orbits with the crossing regicCR and CR
as p changes sign (these are derived from the unfoldings in [12})e crossing maps in (¢2and (c3) have a
stable fixed point of node and focus type respectively, videdual cases in (¢2 and (c3,) have unstable fixed
points. Altogether, composing cases (s1), (s2) with casBs (€2,), (c3s,+), ten qualitatively different portraits
are obtained.

evolve away from the singularity, either converging tovgadoseudonode in (s1), or leaving
the local neighbourhood in (s2).

Forp > 0, however, (cl) is fundamentally different from (c2) and)(d& (c1), crossing
orbits leave the neighbourhood of the singularity in eitfeward or backward time, and
importantly, no crossing orbits exist locally that pasarrgS to SL. In (c2) and (c3) there
always exist crossing orbits that can locally pass from ESLtoThe crossing map contains a
fixed point of node or focus type. If the fixed point is stable2(] or (c3;)), then all crossing
orbits that emerge from ES sufficiently close to the singiylaronverge towards the fixed
point. If the fixed point is unstable ((¢2or (c3,)), then all crossing orbits sufficiently close
to the singularity will reach SL in finite time.

Clearlyp > 0 produces richer crossing dynamics thar: 0, but when the associated
sliding dynamics is taken into account, the full implicaitsoof the Teixeira singularity be-
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come apparent. In (s1) and (s2), for> 0, all sliding orbits sufficiently near the singularity
pass from SL to ES. In (s2), sliding orbits asymptotic to tinstable manifold of a pseu-
dosaddle either approach the singularity in finite time eawk the local neighbourhood. In
(s1), however, all local sliding orbits converge on the siagty in finite time. The path fol-
lowed by an orbit that enters ES through the singularity énthot uniquely determined, as
explained in Sec. 3.1.

3.4. Non-deterministic Chaos.A particularly interesting case is revealed if we take the
crossing portraits (G2 or (c3,) and combine them with the sliding portrait (s1), as exempli
fied in Fig. 6:

PropPoOsSITION3.1. If a system exhibits a Teixeira singularity with the croggiortraits
(c2,) or (c3,) with p > 0, and the sliding portrait (s1), then locally

- all crossing orbits reach SL, with the exception of the ahkt limit cycle,
- all sliding orbits reach ES via the singularity, and theref
- all orbits visit the singularity recurrently.

p>0

F1G. 6. Composite of the sliding portrait (s1) and the crossing ptt(c3,,) in Fig. 5. Forp < 0 all orbits
reach the sliding region, and a crossing orbit is illustrdteFor p > 0 this system has an invariant set near the
singularity, generated by the forward evolution of the hett region in ES. The limit cycle (fixed point of the map
¢) is shown.

The forward time evolution from the singularity is set-vediy however, and therefore
non-deterministic. We can characterise this behaviourayng that the system exhibits
a non-deterministic form of chaos. The term “non-deterstiaichaos" has previously ap-
peared in [8] in a somewhat different setting, though réfigrto a similar loss of uniqueness
in which an infinity of orbits recurrently pass through a $&ngoint in finite time. To prop-
erly define this unfamiliar notion, we can begin from the débn of deterministic chaos
available in many standard texts. The definition providej@8j is that:

DEFINITION 3.2. A flow) is chaotic on a compact invariant sét if « is transitive and
exhibits sensitive dependence®n
Indeed, the system described in Proposition 3.1 has aniamiagetX near the singularity,
generated by the forward evolution of the region in ES eraddsy the folds and the unstable
manifold of the pseudosaddle (including the pseudosadd&hatched region in Fig. 6). To
define transitivity and sensitivity to initial conditionse adapt the definition given in [23] to
apply to a set-valued flow. First, as in [23], we say that:

DerINITION 3.3. A flow is topologically transitive on an invariant séf if for every
pair of nonempty, open setsandV in X, there is a > 0 such that),(U) NV # 0.

This is satisfied by the system described in Propositioni@8ckesny poink € U reaches the
singularity in finite time, when its forward evolution geatrs the whole seX. Then, the
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definition of sensitivity in [23] is adapted to apply to a setued flow as follows:
DEFINITION 3.4. Let B.(x) be a ball of radiuse centred onx. A set-valued flow
1) exhibits sensitive dependence on an invariant’sef there is a fixed- such that for each
x € X and anye > Othereis anearby € B.(x)NX such that the diameter of; (x) U (y)
is greater than- for somet > 0.
The only difference between this definition and that in [28]that it uses the diameter of
¥1(x) U ¢4 (y) instead of the distancly):(x) — ¢¥:(y)||. The two definitions coincide for
single-valued flows, making this a natural extension fortavatued flow. For our set-valued
flow, the forward evolution of any point iX generates the whole invariant set after crossing
the singularity, the flow in Proposition 3.1 exhibits seimsilependence on initial conditions,
and X is a non-deterministic chaotic set.
In Sec. 7 we simulate a system exhibiting non-determini$taos, and provide example
of systems exhibiting of all other types of Teixeira singitia Now, for completeness, we
turn to the description of the other possible types of twiokfo

4. The visible two-fold. A vector field with transversely intersecting visible folgksner-
ically satisfies (2.5)-(2.7), witiC2_h < 0 < L2_h at their intersection, which is then a
visible two-fold. This is illustrated in Fig. 7(i), and hdsetlocal form

—z1 + O(wo, ||z1, 2?)

(4.1a) ft= =1 +O(|]x[) ,
=Vt +O(x|)
z2 + O(zo, |21, 22||*)
(4.1b) = V= +0(|x])
-1 +O(|[x[)

(i)

F1G. 7. Dynamics near a visible two-fold: (i) orbits outside the ®lving manifold curve away from the folds,
(ii) phase portraits of the sliding dynamics. At the orighetsliding vector fieldf* is set-valued, with elements
pointing into the sliding region SL whevitV— > 1 andV*,V~ < 0. In this case a one-parameter family of
orbits intersects the origin along a unique direction (ageivector of the regularisatiofi® of f%). In all other
cases the set-valueff has elements which point into SL, and only a single orbit thi@rsects the singularity.

The parameter¥ ™ andV ~ can be retrieved for a general vector field at a visible two-
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fold as

(4.2a) T S :
/(L2 ) (L2 h)

(4.2b) T g il

NS

Crossing dynamics in this case are trivial, since all cragsirbits leave the neighbourhood
of the singularity (see Fig. 7(i)). Sliding dynamics can mdarstood by the same means as
in Sec. 3.2. In this case, the equilibrium at the origin in tegularised vector fielg™® has
eigenvalues

1
4.3) pe =g (V*+Vi (V+—V)2+4),

(the negative of (3.5)) while the associated eigenvectars a
pr +V7F
(4.4) ( - )

(the same as (3.6)). Thus, sliding dynamics is the same ke &ttxeira singularity (invisible
two-fold), but with time reversed (Fig. 7(ii)). This timeuersal has an important implication
for the complexity of the local dynamics. Similarly to theiXi@ra singularity, a pseudoequi-
librium crosses between SL and ES wHénV — = 1 with V', V'~ < 0. However, whereas
at a Teixeira singularity a one-parameter family of orhit$SL can intersect the singularity,
at a visible two-fold only a single orbit in SL can interseug tsingularity. In any event, all
trajectories evolve away from the singularity into the uppdower vector fields, leaving the
switching manifold either from a visible fold or from ES. Akawn in [14], the portraits in
Fig. 7(ii) are all the structurally stable cases near thgudarity.

5. The visible-invisible two-fold. A vector field with transversely intersecting visible
and invisible folds generically satisfies (2.5)—(2.7),h/\4£§, h)(ﬁfc+ h) > 0 at the singular-
ity, which is then a visible-invisible two-fold. This isilstrated in Fig. 8(i), and has the local
form

—a1 + O(xg, |21, 22?)
(5.1a) fr= 1+ O(||x]]) :
VE+O(|x)
2 + O(o, |21, 22]|)
(5.1b) = V= +O(x|) :
=1+ O(|Ix[)

The parameter¥ ™ and V'~ can be retrieved for a general vector field at a visible-
invisible two-fold as

(5.2a) yt o Likih :
(L2, h)(L2_h)
(5.2b) y- = LiLih

(£3.)(£5-1)
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CR,

(i) (ii)

F1G. 8. Dynamics near a visible-invisible two-fold: (i) orbits side the switching manifold curve away from
the manifold at one fold, and towards it at the other; (ii) gegportraits of the sliding dynamics. The singularity in
each of SL and ES is intersected by: two orbitg'if V= > 1 andV+,V~ > 0, a one-parameter family of orbits
if Vtv- <landV+t + V'~ > 2, no orbits otherwise. As in previous cases, the orbits sger the singularity
along the eigenvectors gf (the regularisation off ¢), and the sliding vector fielgd® is set-valued (not shown) at
the singularity.

(note there for this case there is ne'‘sign inside the square root). The presence of a visible
fold prevents the onset of recurring crossing dynamicsradtdhe singularity. Concerning
sliding dynamics (Fig. 8(ii)), the equilibrium at the onigof the regularised vector fielf*

has eigenvalues

(5.3) ui:%(V+—Vi\/(V++V—)2—4>,

while the associated eigenvectors are
_y+
(5.4) < “i_lv >

The eigenvalues are imaginary whéfi* + V~| < 2 and real otherwise. Whern™ + V'~ <

2, regardless of whethd 'V~ > 1 or VtV~ < 1 (in the former cas¢*® has a saddle, in
the latterf* has a focus), orbits flow around the singularity, enteringa®t ES from one
fold and exiting from the other. Less trivial dynamics apseahenV* + V'~ > 2. The
eigenvalues are real, and both eigenvectors point towdrds §S. WhenV TV~ = 1, an
eigenvalue goes t0. In this casef* has a one-dimensional centre manifold (see Appendix
E) with dynamics

(5.5) 0= (VTV™ = Du+ agu® + O(u?).

As VTV~ passes through unity with ™, V= > 0, a pseudoequilibrium crosses the singu-
larity along the singular eigenvector. The structural ditsdof the orbits in Fig. 3 depends
on the composition of the sliding/escaping portraits with napp™. As shown in [14], this
subdivides Fig. 3(ii) into 11 regions of structurally difémt dynamics, depending on the se-
guences of escaping-crossing-sliding that families oftertan undergo. As a final remark,
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inspection of the wedg&’ "V~ < 1, Vt +V~ > 2, V= > V™, in Fig. 3(ii), may sug-
gest the possibility of non-deterministic chaogif maps escaping orbits emerging from the
singularity to sliding orbits entering the singularity. At calculation from (5.1) however
shows that, locally, the direction gf" does not allow this.

6. Aremark on sliding bifurcations and invariant manifolds. Although the local be-
haviour of the visible and visible-invisible two-folds isds complex than that of the Teixeira
singularity, they can have striking implications for glbbdgnamics. Firstly, we see in Figs. 7
and 8 that orbits do exist crossing the two-fold from theistidto escaping regions. This
is locally less interesting because all orbits eventuadipait the neighbourhood of the two-
fold, leaving the switching manifold via a visible fold. Bhdame reasoning, however, means
that the local sliding dynamics will interact with the gldlognamics. It is then known that
one-parameter families of orbits can undergo so-callealstiatphic sliding bifurcations, in-
troduced in [17]. In these bifurcations, for example, peicmrbits can be suddenly destroyed
through encounter with a visible or visible-invisible tfald. This occurs when they cross
the two-fold from SL to ES, so the local geometry is providgdhe vector fields in Secs. 4-5.
In some cases, for example in Fig. 8with" vV~ < 1, VT +V~ > 2, VT < V—, these
bifurcation are likely to be associated with non-deterstinichaotic dynamics on a global
scale. Also, codimension one invariant manifolds:kdimensional systems can generically
contain visible or visible-invisible two-folds where theytersect a switching manifold, and
the three dimensional case was discussed in [7]. Agaim, libeal behaviour is provided by
the analysis above.

7. Numerical simulations. The lowest order approximation to the Teixeira singularity
analysed in [16] revealed an interesting bifurcation, mfibrm of an invariant nonsmooth di-
abolo (an invariant double cone with a crease at the swigctmanifold), that self-annihilates
through a loss of hyperbolicity. The higher order analysishis paper fully unveils its in-
triguing nonlinear behaviour, depicted in Fig. 5. A compelly peculiar case, as we have
seen in Sec. 3.3, is obtained by combining the sliding pibfiem Fig. 5(s1) with the cross-
ing portrait from Fig. 5(c3), obtained by taking (2.4) and (3.9) with coefficied@s, > 0,
Bso < 0, |8Bsg| > B%,, andas > 0, asp = VTV~ — 1 changes sign. Whem > 0, this
scenario exhibits a non-deterministic chaotic set: thdirgli dynamics channels orbits from
SL to ES, with all information on initial data lost at the sirgrity, while the crossing dynam-
ics provides a mechanism for re-injection to SL. Thus thelloeighbourhood is recurrently
visited by orbits ejected from the singularity, and thestbry is lost with each visit. Orbits
are unique neither in forward nor backward time, but by vagyd parameter through the non-
smooth diabolo bifurcation, the system can be controlladitds the benign casg & 0). A
numerical example of this case is provided by the followipgtem:

-3 -1 0 T 0
(7.1a) ft=| -1 =3 0 x|+ 1],
0 1 -2 T2 v
3 0 1 o 0
(7.1b) =0 =2 0 o |+ Vv,
1 0 3 xTo 1

with a switching manifoldcy = 0. The sliding and crossing normal forms (3.7) and (3.12)
at the nonsmooth diabolo bifurcation for this system hawffamentsB;; = —16, B3y =
—1662.93, as = 61.4, whenV ™ = —5 andV~ = —1/5, thus falling into case (s1)-(¢3 of

the Teixeira singularity. In Fig. 9, we have simulated thstegn using the software Matlab,
with a piecewise smooth numerical integrator [27] Y6t = —5.01 andV~ = —1/5, thus
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-0.04 0 0.04
Ty
) (i)
FiG. 9. Simulation of system (7.1) with ™ = —5.01 andV — = —1/5, exhibiting a pseudoequilibrium in ES

and an unstable focus cycle. (i) A single orbit originatirganES, with initial conditiong10=20, —10~6, —1076),
winds around the singularity and reaches SL, then it is ated toward the singularity and back into ES (ii) Inter-
sections of the orbit with the switching manifold. The psegglilibrium in ES and the crossing points of the focus
cycle are highlighted in bold.

p = VTV~ —1 = 0.002. Because we are close to the bifurcatigi (V- — 1| < 1
with VT, V=~ < 0), the vector fields above and below the switching manifokel @most
antiparallel at the origin. This causes strong squashirylufs towards a plane transverse
to the switching manifold, observable in Fig. 9(i), and adsen from the crossing points in
Fig. 9(ii). Here the dynamics in the direction transversthie plane cannot be resolved, and
in particular, the orbit’s evolution in SL cannot be seen. igolve these in the following
two figures.

0.0006 .
CR 92 . landing SL
N point
X
2 pseudo- °
equilibrium
last
. .crossing
ES ' CR;
-0.0006 .
-0.0006 0.0006
Ty

FiG. 10. Magnification of Fig. 9(ii) near the origin. As the orbit deps from its initial condition near the
singularity, its crossing points lie (approximately) atpa line through the origin, and the orbit's last crossing pbi
lies in the lower right corner of CR The orbit’s entry point into SL is seen, followed by itsisliptrajectory towards
the singularity. A pseudoequilibrium is shown in ES (red.dot

Fig. 10 presents a simple magnification of the Poincaré map fig. 9(ii) around the
singularity. The line of points emanating from the origie éine crossing points of the orbit
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as it leaves the neighbourhood of the singularity. Afterldst crossing (lower right corner
of CRy), the orbit is seen to impact SL towards the top of the figuve)we via an almost
straight path towards the poifit;, 22) ~ (0.00025, 0.00005), then to the singularity. From
the simulation we confirm that the orbit reaches the singylartime ¢ ~ 0.48 after reaching
SL. At this time the integrator fails to work, since the oribientering ES where its evolution
becomes non-unique.

CR,

(i) (if)

F1G. 11. A magnification of Fig. 12, making a linear coordinate changéhe z1, 2 plane, and stretching the
positivez axis by a factor0. In (i) the orbit can now be seen, crossing repeatedly thioilng switching manifold,
and surrounding the focus cycle (depicted in red). In (ii)e Drbit's crossing points are seen to form a butterfly
shape around the two (red) crossing points of the focus cycle

Fig. 11 presents the orbits in Fig. 9 under a linear coordinhinge in the , z2, plane.
We have also stretched the coordinageby a factor 20 above the switching manifold only.
A single orbit is shown whose initial point is &1072°, —10=5, —10~), which lies a small
distance from the singularity and above ES. The orbit wingsiad the singularity a large
number of times, and eventually maps into the interior of 8am where it is inevitably
pulled into the singularity as shown in Fig. 10. This is cetemt with the phase portraits
predicted in case (s1)-(c3) and illustrated in Fig. 6. Upearching the singularity, the system
can follow any one of an infinite number of trajectories, ipeledent of the orbit’s history.
This therefore demonstrates that the predicted condifimnson-deterministic chaos exist.
We now show that this behaviour can be tamed by varying thenpeterp. We changd/ ™ to
the value—4.99, for whichp = V*V~—1 = —0.002. This system is simulated in Fig. 12(i),
with a rescaling in (ii) (the same scaling as in Fig. 11(i9yésolve the fine structure of the
orbits. A single orbitis shown, and has the same initial étolas in Fig. 9. The orbit winds
around the singularity a large number of times, and reachemShis case the sliding orbit
is repelled from the singularity along a visibly straighttpaas can be seen in Fig. 12(i). The
orbit terminates at a pseudoequilibrium, which can be setreadge of SL.

It is easy to confirm (as reported in [16, 17]) that traje@srdf the truncated leading
order system in (3.1) are curvésy(t), z1(t), x2(t)) whose coordinates satisfy

1 2 2 — 1
=] + 25 —zr2 +c | V7 if 29 >0,
i I To| =
7.2) (V*V 1 2‘{ 2
2—_x§—|—2—+x§—x1:172+c VT,if 29 <0,

where the constantfixes the height that the orbit attains along #yeaxis. WhenV/ +V —(1—
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T2

(i) (i)

FiG. 12. Simulation of system (7.1) with ™ = —4.99 andV — = —1/5, with a pseudoequilibrium in SL. (i)
A single orbit originating near ES, with initial condition@0—2°, —10—%, —10~), winds around the singularity
and reaches SL, then it is repelled from the singularity tala pseudoequilibrium (red dot at edge of SL). (ii) A
linear coordinate change in the;, z2 plane, and a stretching of the positivg axis by a factor20, resolves the
crossing dynamics of the orbit.

V*V~) > 0 these equations define a pair of paraboloids, one above aadhalow the
switching manifold, joined nondifferentiably, forming albwith a creased equator. When
VTV—(1-V+V ™) <0, they similarly define a pair of surfaces above and belowtlitek-
ing manifold, each of which is part of a saddle, again joineddifferentiably. In Fig. 12(ii),
the two adjoined paraboloids are clearly seen. In Fig. Higher order terms govern the
behaviour of the trajectories away from the singularity, heiar the singularity they can be
seen to lie on portions of saddles. clf= 0 the surfaces form a nonsmooth double cone —a
diabolo- through the singularity, which undergoes the nmtth diabolo bifurcation when
p = 0][16].

Finally, for the reader’s interest, we provide examplesystams exhibiting each of the
ten different portraits in Fig. 5. We consider system (7chgnging the Jacobian ¢f" to

ail -1 0
(7.3) -1 =3 0
0 asz2 —2

By assigning the values in Tab. 7.1 to the parametgrsasz, V', andV —, we obtain an
example of each predicted scenario. Itis a simple exergiserast (7.3) in the form of a relay
system, see e.g. [31], implying that it might easily ariselectrical or control applications.
It is conceivable that the singularity occurs in variouscpigise smooth dynamical systems
where the generic conditions (2.5)-(2.7) are satisfied.

8. Conclusions. We have reviewed the local description of the singularityrfed when
a three-dimensional piecewise smooth vector field is tangeboth sides of a switching
manifold — a two-fold singularity. We analysed the dynamatsrbits in regions of sliding,
identifying conditions that cause a pseudoequilibriumasspthrough the singularity. This
represents a novel bifurcation through which a pseudoiégiuin can collide with a bound-
ary of a sliding or escaping region, fundamentally différsam the well known boundary
equilibrium bifurcations in Filippov systems [10]. We cdude that in some cases, families
of sliding orbits are attracted to the singularity, makihg intersection of an orbit with a
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Portrait all asg v+ V-
sl-cl -3 1 |-1/20| -20
sl-c2 -3 1 -1/5 -5
sl-c2, | 100| O -20 | -1/20
sl-c3 -3 1 -1 -1

s1-c3, -3 1 -5 -1/5

s2-cl -3 10 -1/2 -2

s2-c2, -3 10 -2/3 -3/2

s2-c2, 100 | 100 -5 -1/5

s2-c3 -3 10 -1 -1

s2-c3, -3 | 100 -5 -1/5
TABLE 7.1

List of parameter valuesi1, as2, VT andV —, to obtain examples of all portraits depicted in Fig. 5, ugin
the system (7.1) with the Jacobianfof modified as in (7.3).

two-fold a generic event. This allows solutions startingagvfrom the escaping region to
reach it. These facts are often overlooked in the literafsee. e.g. [10, 11, 27]). We also
analysed the dynamics of crossing orbits, concluding fraté of the folds is visible (local
trajectories curve away from the switching manifold alot)gthen all orbits eventually leave
the neighbourhood of the singularity. These cases, (Segk.afe of interest when they in-
teract with other attractors or invariant sets outside #ighbourhood of the two-fold. The
case that is most dynamically interesting in its own righhis Teixeira singularity.

The Teixeira singularity consists of two invisible foldshieh cause all local trajecto-
ries to curve towards the manifold. This case exhibits a remoblocal bifurcations, which
we unfolded by analysing separately the bifurcation of theasth systems that describe the
local crossing and sliding dynamics. The crossing dynatisickescribed by a return map
that undergoes a degenerate 1:1 resonance bifurcatios.coimcides with the passage of a
pseudoequilibrium through the singularity, from SL to ES/me versa. One parameter, the
guantityV *V ~, characterises the leading order problem, and measurastjudar disparity
between the vector fields above and below the switching rolshigévaluated at the origin. A
normal form reduction of the neighbouring dynamics revé#s the qualitative behaviour of
a local unfolding depends on three coefficients, two charaing the stability and topologi-
cal type of the fixed points of the crossing map, and one thiéipoef the pseudoequilibrium.
The unfolding reveals the bifurcation of the Teixeira silagity as a new route to the sudden
appearance of periodic orbits and more complex invarigstisgiecewise smooth systems.

Among the local dynamics possible near a Teixeira singylasie have identified one
that is particularly intriguing. It occurs when, for a whdiemily of parameters where
V*TV~= > 1 with VT, V= < 0, the crossing map contains an unstable focus (an unstable
limit cycle of the full system), and the pseudoequilibriusrai saddle. Here we find condi-
tions for non-deterministic chaos over a compact neightbmen of the singularity. All local
orbits begin and end at the singularity, with a definite dicecthrough it, but on each visit
their history is lost and their forward evolution is non-gné. We have simulated an example
of this scenario in Sec. 7, depicting one such orbit in Figsl® and 11. We verified in
numerical simulations that the conditions for this recatren-deterministic dynamics exist,
but the phenomenon can be tamed by changing the paranieteasdV —, through a nons-
mooth diabolo bifurcation [16]. After the bifurcation, étbwrap around a nonsmooth ball,
going from ES to SL. Once in SL they evolve away from the siagty, so that in this case a
typical orbit never encounters the singularity.
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By stripping the two-fold down to the leading order behaviotiits sliding and crossing
dynamics, we have unfolded its bifurcations and unveilediéterminacy destroying heart.
But we cannot yet claim that this troublesome singularifyily understood. The bifurcation
diagram of the crossing return map in Fig. 5 is incompletebgl bifurcations, yet unknown,
occur between the identified scenarios, or each time theiantamanifolds of the crossing
map, or the images of the boundaries of ES, become tangehetfokds. Much grander
challenges than this remain, however. In systems of dimensP 4 the two-fold generically
has dimensiom — 3. How much of the local dynamics revealed in this paper witl&e in
higher dimensions remains to be studied. Moreover, evendimensions any of the three
flavours of two-folds can interact with non-local attrastotausing global bifurcations that
have not been considered to date.
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Appendix A. Normal form reduction of the sliding vector field of a Teixeira singu-
larity. The normal form (3.7) is obtained by multiplying (3.4) by theantity(V*+ +1/V ),
and then taking the dynamics along the directieri’*, 1) of the singular eigenvector, by
definingx = pu andu = qf*(pu), with p andq respectively right and left singular eigen-
vector of the Jacobian g¥ at the origin, wheV+V~ = 1andV+,V~ < 0. Callingc;;. and
c;;» fori, j € {1..3}, the coefficients of the Jacobiansfof andf~, from this transformation
we obtaini = (VFV~ — 1)u + asu? + O(u?), with

Jr
c _ _ _ _
(A1) az = c;2V+ — 6;3 - c;[Q + % - 022(V+)2 + 623V+ + 632V+ — C33.

Appendix B. Generic perturbation of the map. Assuming analyticity of the return
maps,¢* can be expanded around the singularity obtaining

Ty =1 4 Q0] + Q11712 + 02Ty + 30T + 21T + 122175 + o3
+O([(z1, z2)[|),

Ty > 19 — 2V T @y 4 oo} + Prizima + Boaxs + B0xt + Barxias + Praxixl + foswh
+O([(z1, z2)[|),

while ¢~ is equal to

z1 =1 — 2V 20 + 72096% + v112172 + 70220% + 73020:1)’ + 72158%202 + 71258120% + 70320%
+O(||(,T1,.”L'2)||4),

T — —T + 520$% + oz + 502173 + 53(@? + 521$§I2 + 51211173 + 503$g
+O(||(w1, z2)[|*).

However, the possible values of the maps’ coefficients amstcained, since the two maps are
involutions and the inducing flow is quadratically tangenthite x5 andx; axis respectively.
Imposing thatp™ o ¢™ and ¢~ o ¢, truncated to third order, be the identity (involution
condition), and thap™ and¢— preserve the, andz; axis respectively, reduces the number
of independent coefficients of each map from 15 to 6, obtginin

21 =11+ agorf + anrizy — (a3 + an VI )at + O(|(x1, z2) %),
To — 3 — 2V w1 + Brimiwe + (oo — S11)V T2l + Browi o)

+ (5 (amin + 1) + (am = 2520V ) b+ Banad + O( o,
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for 1 and
Ty xy — 2V 20 + 120 + (So2 — y11)V 25 + o175 70

1 _
+ (5 (=0o2711 +711) + (612 — 2921)V ) r175 + Y0375 + O(|| (21, 22)||*),

Ty > — Ty + 00223 + 0102125 — (029 + 612V 7)ah 4+ O(|| (1, 22)||*)
for ¢—. Finally, composingy~ o ¢+, we obtain the general third order expansion of the
Poincaré map:
Ty +— —x1 + 2V 29 + agol'% + a1 + aogxg + a30$? + agll'%xg + algzle% + a03x§
+O(||(‘T17$2)||4)7
To — —2V+$1 + (—1 + 4V+V7)I2 + bgozf + b11I1.TE2 + bOQ.I% + bgo.I? + b21$§$2
+b12$1$% + bog,@% + O(H(l‘l, LL‘Q)H4),

with
a0 = (20,
a1 = —v11 — 4oV,
age = V7 (=002 + 711 + dagV ™),
azo = —a3y — g V7,
a1 = 2020711 — Y21 + 603,V + ag (=1 +6V V),
2
_ S -
ayz = ;11 — 6oV~ + %(711 +daeV7)

~V 7 (—4dagy + 612 — 2721 + 1203,V + 1200, V-V ),

aos = =03 + 4(V7)? (a20(—602 + 711 + 2020V ") + a1 (=1 + 2V V)
bao = (=11 + a20) V'Y,
b1 = —2(y11 + 2@20V7)V+ + B (—-1+ 4V+V7),
bo2 = Go2 — 2602V TV ™ + 2V (811 — 2611V TV + (11 + 2a20V )V,
bso = B30,
—6

2

bay = — 6630V —an VT + 281V — 28117 VT — 299 VT

a
+%(ﬁ11 + 4y V),

biz = Biz + 612 + 285V +12830(V7)? + Soayn VT — 45 VT +4dag V-V T
—8812V VT 4 2090002V V T — 201,V VT — 6&20711V_V+ + 4’}/21V_V+
+811 (802 — 11 — 2020V ™ — 2502V VT + 6911V V),

bos = —0gy — 2812V " — 3311602V " — 012V + Buiyl V™ + 2020811 (V)3
—282, (V)% = 8B30(V™)? — 2703V T+ — daoy (V7)2VT 4 8619(V )2V T
—4020002 (V)2 VT +4B811602(V7)2 VT 4+ dangyi (V7)2V T — 48117y (V7)2V T,

Appendix C. Normal form reduction of the Poincaré map. When
p:=VTV~™—-1=0,

the Poincaré map has a fixed point, at the singularity, witlh@semisimple double one lin-
earisation. This can be putinto a 1:1 resonance normal faniohnis symmetric, due to the
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constraints imposed by the involution assumption (see AgpeB). The normal form reduc-

tion of map (3.9) is carried out, following a standard pathadinear transformation followed
by a sequence of near-identity transformations (see [4}, &Bninating non-resonant terms
of different degree iteratively. First, the linear partlbétmap (3.9) is simplified through the
parameter-dependent change of variable

xr1 . 2—-4V*tV- 1 &
X9 o —2V+ 0 52

&L= &G+ &,
& 4p&+ (1 +4p)éa,

This corresponds to the Jordan form of the linearised systeenp = 0. In the (z1,22)
coordinates and at the bifurcation, the coordinate &xgoints in the direction of the singular
eigenvector(—1, —V*) of ¢|,—o, while the axis¢, points in thez; direction, hence the
change of variable has turned the plane to align the singidenvector with thé; direction,
and in the new variables thig axis is strictly inside CiRand CR. This is an important
remark, since the crossing map is defined only for orbits inG§ and CR.

Next, the second order, near-identity change of variable

becoming

& = coopd,
& = doop? + diipirpizs + dozpd,

with

by + 2b02(V )2 + b1 VT —agV T
VT (12p + 16p* + 2) ’
16b2op + 4bog + 16boop? + 4boa (V)2 + 4b1 V' 4 2V 4by1p
JF b

2V
_ 6bap + 4boa(VF)? +4b1 V" — 2a90V + 32b20p + 80boop”
V*H(12p + 16p* + 2)
64baop® 4+ 3V 4by1p + VT16b11p?
V*(12p + 16p* + 2)
—4boa (V)2 = 201, VT + 2a90V T + 12b20p + 16bogp?
2V (12p + 16p* + 2)

simplifies the quadratic terms, giving

C20 =

dyg =

do2 =

M1 1 e
p2 v+ Appy + (14 4p)us + Baopd + Biijpupio

with

Boglp=o = 4(az0 —b11 —baoV ™ + a1V — b2V 4+ ag2(V1)?),
B11|p:0 = —4b02V+ - 2b11 - 20,11V+ - 4&20

Due to the involution condition, the terf; ( is identically null neap = 0, and this second
order expansion in structurally unstable. In order to abthe topological normal form of

the Poincaré map, the third order expansion must be carsidéOnce again, through the
near-identity transformation

_ 3 2
B = u1+ esuy + e21ujus,

3 2 3
fh2 uz + faoui + farujus + foszus,
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we simplify the terms of degree 3 in the expansion of the mhtgining the normal form

ur o ur+ug +O(||ullh),
(V%) — 4pu1 —|— (1 + 4p)U2 + B11U1U2 + Bgou% + B21’UJ%U2 + Bogug + (9(||u|\4)

Appendix D. Approximation by a flow. A flow whose unit-time shift approximates
map (3.12) is easily found by means of successive Picamtibers, as explained e.g. in [20].
Forp = 0, thisis

1

By By
- 2 3 2 2 3
U1 = uz — —~U1U + 3 U2 + Caouj + Coruius + Craugus + Cosus,

Uz = Briujug — %Ug + Dsouff + Dayufus + Diguyuj + Dogus
with
Cs0 = —%, Co1 = BT% - % + Bso, Chi2 = —23;%1 23;21 - %,
Coz = —% 3?51 - % + %, D3p = B3, Do = —BT%I + Bo1 — 35;30,
Dyp = 5fé%1 — Ba1 + %, Do3 = B3zo — BT% + %

The quadratic terms can be simplified following the geneng@anov-Takens normal form
reduction (e.g.[20, 25]), by setting

Uy = 511
B B
up =+ 5616 — —&,
2 3
multiplying the resulting flow by the scalar functiant B1,£;, and then setting

51 = K1,
&2 = p2 — Bui&i&e.
Then, the non-resonant cubic terms are eliminated by gettin

1 1

w1 =v + %(2331 — 12Boy1 + 15B3)v} + E(6303 — 5B%, 4 5By — 3Bs)vivs,
Bz 1 2 2 1 2 2

M2 = V2 + T + E(13Bll — 6321 + 3Bgo)V1 Vo + 6(6303 — 4311 + B21)I/1V2

1
+%(45Bog — 7B%1 + 15321 - 3B30)V§.
The resulting flow has equations

=+ O(|lv]*),
. B}
iy = Biivive + Bagl? + (% + Boy — 3330) viva + O(||v|*).

Appendix E. Normal form reduction of the sliding vector field of a visible-invisible
two-fold. The normal form (5.5) is obtained by the same means as in Afipén by mul-
tiplying f* by the quantityV* — 1/V ), and then taking the dynamics along the direction
(V*,1) of the singular eigenvector. The coefficient of the secomi@oterm in (5.5) is

Jr
c _ _ _ _
(E.1) ax= —c;FQVJr — c§r3 + c§r2 + % - 022(V+)2 — 623V+ + 632V+ + C33.
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