
Canards and curvature:

the “smallness of ε” in slow-fast dynamics

By Mathieu Desroches† and Mike R Jeffrey

University of Bristol, Department of Engineering Mathematics, Queen’s Building,

University Walk, Bristol BS8 1TR, UK

A criterion for the existence of canards in singularly perturbed dynamical systems is
presented. Canards are counterintuitive solutions that evolve along both attracting
and repelling branches of invariant manifolds. In two dimensions, canards result in
periodic oscillations whose amplitude and period grow in a highly nonlinear way:
they are slowly varying with respect to a control parameter, except for an expo-
nentially small range of values where they grow extremely rapidly. This sudden
growth, called a canard explosion, has been encountered in many applications rang-
ing from chemistry to neuronal dynamics, aerospace engineering and ecology. Here
we give quantitative meaning to the frequently encountered statement that the sin-
gular perturbation parameter ε, which represents a ratio between fast and slow
time scales, is “small enough” for canards to exist. If limit cycles exist, then the
criterion expresses the condition that ε must be small enough for there to exist a set
of zero-curvature in the neighbourhood of a repelling slow manifold, where orbits
can develop inflection points, and thus form the non-convex cycles observed in a
canard explosion. We apply the criterion to examples in two and three dimensions,
namely to supercritical and subcritical forms of the van der Pol oscillator, and a
prototypical three time scale system with slow passage through a canard explosion.
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1. Introduction

This paper uses changes of flow curvature to characterize dynamical systems of the
form

εẋ = f(x, y, ε), (1.1a)

ẏ = g(x, y, ε), (1.1b)

where a singular perturbation parameter, ε, expresses the ratio between a slow time
scale, t, and a fast time scale, t/ε. The variables x and y are scalars and the dot
denotes differentiation with respect to time. The phrase “for small enough ε” is
often encountered in the literature discussing systems of the form (1.1) that exhibit
the so-called canard phenomenon, and in this paper we show that this phrase can
be replaced with a definite upper bound on ε, for an important class of systems.

A canard cycle is so-named because it is an orbit, solving a set of singularly
perturbed ordinary differential equations, that passes between slow and fast time
scales in such a way as to create a novel duck-like shape (Benôıt 1981), see figure
1. In two dimensions the effect typically appears as a canard explosion: a Hopf
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Figure 1. Canards and relaxation oscillations. Dynamics is slow (single arrows) near the
curve where ẋ = 0, consisting of attracting (full curve) and repelling (dashed curve)
branches. Elsewhere the dynamics is fast (double arrows) and roughly horizontal. For dif-
ferent parameters, this can cause a limit cycle to exist either as: (i) a relaxation oscillation,
(ii) a canard with head, or (iii) a canard without head.

bifurcation generates a small near-circular limit cycle, which grows rapidly, distort-
ing as it grows to form the characteristic canard shape (a canard “with head”, see
figure 1), and eventually forming a relaxation oscillation. Small amplitude cycles
enclose a convex area in state space, so that local curvature along the cycle keeps
a constant sign, whereas large amplitude cycles enclose a non-convex area, so the
local curvature along such a cycle undergoes a change of sign. Consequently, the
canard phenomenon is characterized by the existence of a set of zero-curvature al-
lowing the transition from (convex) small amplitude cycles to (non-convex) large
amplitude cycles. An equation for this set — the inflection curve in planar systems
— can be found using standard differential geometry of curves and surfaces. This
analysis was initiated in the context of chemical models (Brøns & Bar-Eli 1994;
Peng et al. 1991) and has been studied in a more general context recently (Ginoux
& Rossetto 2006a,b; Ginoux 2009), though without a focus on canards. In this paper
we extend the method by considering the dependence of inflection sets on the time
scale ratio ε, showing that no non-convex cycles exist for ε larger than a critical
value ε0, which can be found analytically. We use it to place an upper bound on
the time scale ratio necessary for canards in two and three dimensions.

We demonstrate the inflection of canard cycles first on the van der Pol oscillator,
in two different forms exhibiting supercritical and subcritical Hopf bifurcations, and
then on a prototypical example of a three time scale system with two slow variables,
as introduced in Krupa et al. (2008). This corresponds to adding a second slow time
scale that stabilizes the transition through a nonhyperbolic point, resulting in slow
passage through a canard explosion. We deduce from this a bound in the time scale
ratio necessary for canard cycles to occur, in the parameter region where this slow
passage is well-defined.

The paper is organised as follows. In section 2, we recall the basic facts about
the canard phenomenon in two-dimensional slow-fast dynamical systems, using the
classic example of the van der Pol oscillator. In section 3 we review results on
inflection curves in two dimensions, and extend these to give a new convexity-based
criterion for the existence of canard cycles. In section 4, we apply the method to a
three dimensional three time scale system featuring a slow passage through a canard
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explosion. Finally, in section 5 we give some conclusions and highlight directions
for future research.

2. Canards in R
2: the classic van der Pol example

Consider the van der Pol equation (Van der Pol 1926) with constant forcing q

εẍ + (x2 − 1)ẋ + x − q = 0, (2.1)

with 0 < ε ≪ 1, where q is a parameter. This can be expressed as a set of first-order
ordinary differential equations by introducing a phase variable u = ẋ. A variant of
this is to define a variable y = ẋ + x3/3 − x, and write the system in the Liénard
plane (x, y) as

εẋ = y − 1

3
x3 + x, (2.2a)

ẏ = q − x. (2.2b)

For small ε the variable x evolves on a fast time scale t/ε, and y evolves on a slow
time scale t, thus we refer to x and y respectively as fast and slow variables. The
fast nullcline, where ẋ = 0, is known as the slow curve (or more generally critical

manifold) of (2.2), which we label S0. It organises the dynamics of the system on
the slow time scale, as can be seen by setting ε = 0. This yields a differential-
algebraic system consisting of a differential equation, (2.2b), on the slow time scale,
constrained by an algebraic equation, the cubic curve S0 given by y = 1

3
x3−x. The

slow curve S0 is the phase space of this limiting problem, called the slow subsystem

(or sometimes reduced system), illustrated in figure 2.
Rescaling time in (2.2) by setting τ = ε/t gives

x′ = y − 1

3
x3 + x, (2.3a)

y′ = ε(q − x), (2.3b)

where the prime denotes differentiation with respect to τ . Taking the limit ε = 0
now gives a different limiting problem, where the slow variable y remains constant
and can be considered as a parameter. In this way, we obtain a family of differential
equations on the fast time scale parametrised by y, usually referred to as the fast

subsystem (or sometimes layer problem). It is clear from equation (2.3a) that the
(y-dependent) equilibria of the fast subsystem all belong to the slow curve S0, as
shown in figure 2. These equilibria are attracting along the outermost branches Sa,
and repelling along the inner branch Sr.

By combining these pictures of dynamics in the fast and slow limiting systems,
(2.2) and (2.3), one obtains a first insight into the dynamics of the full system for
small ε. If we take an initial condition at a distance of order 1 with respect to
ε (henceforth written simply as O (1)) away from the slow curve S0, the solution
of the van der Pol equation first evolves on a fast time scale, almost horizontally,
until it reaches an ε-neighbourhood of the attracting sheet Sa of the slow curve
S0; this first epoch is well captured by the horizontal fibers in the dynamics of
the fast subsystem (figure 2). Once in the neighbourhood of S0, where ẋ ≈ 0,
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Figure 2. Fast and slow subsystems of the van der Pol equation. Single arrows indicate slow
motion along the slow curve S0. Double arrows indicate fast motion outside S0, which has
two attracting branches Sa and a repelling branch Sr, separated by fold points (dots) of
the slow curve, which correspond to saddlenode bifurcation points of the fast subsystem.

the slow dynamics dominates and is approximated by the slow subsystem (figure
2). Hence the orbit moves slowly along Sa. This slow epoch can only end when a
change of normal stability of the slow curve Sa occurs. For the van der Pol oscillator
(2.2), such a change corresponds to a saddlenode bifurcation in the fast subsystem,
located at folds of S0, which lie at (x, y) = (−1, 2

3
) and (x, y) = (1,− 2

3
), and

separate the (outer) attracting branches, Sa, from the (inner) repelling branch Sr.
(More generally, the normal stability of the slow curve can also change when the
fast subsystem undergoes a transcritical bifurcation. Although this situation is less
common in applications than the saddlenode, canard orbits can be created in this
case too and they are usually referred to as Morse-type canards (Diener 1984).)
When the slow epoch ends, the orbit re-enters the horizontal fast subsystem. As
the flow makes fast jumps between passages of slow evolution along the attracting
branches Sa, it is possible for a limit cycle to appear.

The limit cycle exists for parameter values |q| < 1, for nonzero ε. As q varies
the system displays a Hopf bifurcation: for |q|<1 a stable equilibrium exists on
the attracting branch Sa of the slow curve, and as |q| decreases through unity the
equilibrium moves to the repelling branch Sr, losing stability and expelling a stable
limit cycle in the process.

Phase portraits and bifurcation diagrams for different values of ε are shown in
figure 3. For a moderate value of ε, the branch of limit cycles which emanates from
the Hopf bifurcation at |q| = 1 behaves normally, in the sense that the envelope
of the family of limit cycles grows as the square-root of q, consistent with the
Andronov-Hopf normal form (see e.g. Kuznetsov (2004)). The bifurcation diagram
is shown in figure 3(d), and a typical cycle is shown in figure 3(a). The situation for
small ε is somewhat different, as shown in figures 3 (c) and (f). In figure 3 (f) we see
that, close to q = 1, the envelope starts increasing quasi-vertically. This corresponds
to an order 1 change in amplitude and period of the cycle, and it can be shown
that this occurs within a band of parameter values of order e−c/ε for some c > 0.
This dramatic event of an almost vertical bifurcation branch was termed a “canard
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Figure 3. Comparison of four limit cycles of the van der Pol system for: (a,d) ε = 1, (b,e)
ε = 0.25, (c,f) ε = 0.1. The limit cycles are illustrated in the (x, y) plane in (a-c), and
wrap around the critical manifold S0 = Sa

∪Sr. In (d-f) the bifurcation diagram is shown,
where the maximum x-value, m(x), along the limit cycle is plotted against the parameter
q. For large ε in (a), the cycles are convex, with an amplitude in (d) that is proportional to
(q − 1)2 until a Hopf bifurcation at q = 1. For small ε in (c), large cycles are non-convex,
and their amplitude in (f) jumps sharply from m ≈ 2 to zero. In (d)-(f), dots on the
bifurcation curve correspond to the four cycles shown in (a)-(c).

explosion” by Brøns (1988). Figures 3 (b) and (e) show a marginal case. Notice
that, as the bifurcation in figure 3 (d)-(f) becomes more sudden, the cycle born
from it in (a)-(c) becomes more distorted, forming in figure 3(c) the characteristic
canard shape.

We can distinguish between two types of canard cycles, according to whether
they leave the ε-neighbourhood of Sr along a fast fiber on the right as depicted
in figure 2, called a canard without head, or on the left, called a canard with head.
Each exist for different values of q, as depicted in figures 1 and 3. The characteristic
feature of canards becomes apparent as we decrease ε, from ε = 1 in figure 3(a) to
ε = 0.1 in figure 3(c). In figure 3(a), a moderate value of ε gives limit cycles that
are convex for any q, and would not be called canards. In figure 3(c), ε is small
enough that smaller limit cycles are convex (canards without ) while larger cycles
are non-convex (canards with head). Both are necessary to constitute a canard
explosion. In the next section we will turn this distinction into a precise criterion
for the existence of non-convex cycles, and hence of canards.

Before proceeding, for completeness we remark that the canard cycles’ counter-
intuitive ability to evolve along the repelling branch, Sr, can be understood from
the viewpoint of invariant manifolds. The slow curve S0 is a set of equilibria of the
fast subsystem and, as such, it is an invariant manifold. However, it is associated
with the singular limit ε = 0. The question of the persistence of invariant man-
ifolds was addressed by Hirsh et al. (1977) and, more specifically in the context
of singularly perturbed dynamical systems, by Fenichel (1972, 1979). In particular,
Fenichel proved that compact normally hyperbolic subsets of an invariant manifold,
such as S0 in the present case, persist as locally invariant manifolds (generally non-
unique) for every small enough ε > 0. Furthermore, these locally invariant manifolds
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are smooth ε-perturbations of the unperturbed object. In planar systems, normal
hyperbolicity is generically lost at isolated fold points, which separate attracting
sheets from repelling ones. Therefore, in the case of a cubic one-dimensional invari-
ant manifold, one can apply Fenichel theory everywhere but at the two fold points.
This guarantees the existence of attracting and repelling manifolds of slow motion,
called slow manifolds, for every sufficiently small ε. Their behaviour is predicted by
Fenichel theory up to the fold points, however they can always be extended past the
folds by following the flow. Analytical techniques, such as parameter blow-up, can
then be used to prove intersections of slow attracting and repelling manifolds, and
hence the existence of canard solutions, past non-hyperbolic points; for more de-
tails, see Krupa & Szmolyan (2001) and Wechselberger (2005). A method to study
such points using nonsmooth approximations, obtained by “pinching” state space
around the fold, has also been discussed recently by Desroches & Jeffrey (2011),
and extends the original studies of canards in terms of nonstandard analysis by
Benôıt et al 1981.

3. An inflection criterion for the existence of canards

Evidently, the appearance of canard cycles — convex when they are without head,
non-convex when they are with head — is intimately related to the flow curvature.
In two dimensions this can be understood by studying inflection points of the canard
cycles. We remark in a related work (Desroches & Jeffrey 2011), where extreme
changes of curvature and canards are described in the language of piecewise-smooth
systems, that torsion comes into effect in three dimensions, for instance in the
appearance of spiking oscillations in the Hindmarsh-Rose model (Hindmarsh & Rose
1984). The use of such higher-curvatures to infer the locations of slow manifolds
is well studied by Ginoux (2009), and their relation to canards is the subject of
ongoing study.

In this section we present a simple result that uses flow curvature to give a crite-
rion to establish when canard cycles are possible. We can paraphrase this criterion
as:

A singularly perturbed system may contain canard cycles only if a locus

of zero-curvature exists in the neighbourhood of the repelling sheet Sr of

the critical manifold S0 = Sa ∪ Sr.

We first derive this as a rigorous condition in the familiar context of the planar van
der Pol oscillator, before applying it to general Liénard-type systems, and finally
(in section 4) to an example in three dimensions.

(a) Convexity of canard cycles in the van der Pol system

Look again at the canard cycles of the van der Pol oscillator in figure 3(c).
Hitherto we have distinguished canard types by whether, after traveling along the
repelling branch Sr of the critical manifold, they curve away from Sr to form a small
cycle (canard without head) or a large cycle (canard with head). An alternative
is to express this difference in terms of local curvature along the canard cycles,
specifically whether their curvature changes near the repelling branch Sr of the
critical manifold, as depicted in figure 4. When the canard develops a head, its
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orbit in the Liénard plane undergoes a change in the sign of its curvature, which
causes the canard with head to enclose a non-convex region of the plane. This
non-convexity arises from competition between the slow time scale, which pulls the
cycle along Sr, and the fast time scale, which pulls the cycle away from Sr. The
idea of using this to quantify time scale separation was introduced by Peng et al.

(1991), in the context of two-dimensional singularly perturbed chemical systems
exhibiting a canard explosion. Brøns and Bar-Eli (1994) developed the idea further
and compared it with other techniques used to characterise canard explosions (e.g.
invariant manifolds, asymptotics). In particular, they showed that the asymptotic
expansion in ε of the repelling slow manifolds — whose existence are guaranteed
close to Sr by Fenichel theory — coincides with the inflection curves to first order
in ε. Here we extend this to form an explicit criterion for the existence of canards.

large canard 
(non-convex)

inflection

small canard 
(convex)

Sr
Iε

Sa

Figure 4. Curvature of a large canard cycle (with head) and small canard cycle (without
head) near the repelling branch Sr of the critical manifold. A large canard cycle is char-
acterised by the presence of an inflection point that makes it non-convex. Hence it crosses
the inflection line Iε whereas the small canard does not.

The radius of curvature 1/κ of a planar curve y = y(x) is given (see e.g. Bruce
& Giblin (1992)) by the formula

κ(x) =
y′′(x)

(1 + y′(x)2)3/2
. (3.1)

Consider the planar singularly perturbed system (1.1). Its trajectories can be ex-
pressed by eliminating time from (1.1) by calculating dy/dx = εg(x, y, ε)/f(x, y, ε),
or, more conveniently,

f(x, y, ε)
dy

dx
= εg(x, y, ε). (3.2)

Differentiating with respect to x gives

dy

dx

d

dx
f(x, y, ε) +

d2y

dx2
f(x, y, ε) = ε

d

dx
g(x, y, ε). (3.3)

The locus of zero curvature of the vector field is where κ(x) = 0. This implies
y′′(x) = 0 by (3.1), hence (3.3) becomes

g(x, y, ε)
d

dx
f(x, y, ε) = f(x, y, ε)

d

dx
g(x, y, ε). (3.4)

Because a canard with head has a change in the sign of its local curvature near the
repelling slow manifold, it should cross the set κ(x) = 0. As it does so it develops
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an inflection point, so the curves κ(x) = 0 are sometimes called inflection curves. If
no inflection curves exist then all cycles in the plane must be convex, from which
we infer that there is no significant separation of time scales, and hence there are
no canards.

(b) Inflection curves in Liénard-type systems

Liénard systems are second-order differential equations of the form ẍ+F (x)ẋ−
g(x) = 0 where F and g are even and odd functions of x respectively. They play an
important role in many applications (models of electronic circuits, neuron dynamics,
mechanical systems etc.) and possess strong properties regarding existence of limit
cycles. The van der Pol oscillator is an example of a Liénard system with F (x) =
x2 − 1. A disparity of time scales between the x and ẋ dynamics arises if instead
the Liénard equations take the form

εẍ + F (x)ẋ − g(x) = 0 (3.5)

for a small parameter ε, where the function F is assumed to be well defined and
at least Lipschitz continuous on R. Let f be a function on the real line such that
f ′(x) = F (x). Then, by setting y = εẋ + f(x), we can rewrite (3.5) as a system of
first-order differential equations,

εẋ = y − f(x), (3.6a)

ẏ = g(x). (3.6b)

Trajectories of this system satisfy

(y − f(x))
dy

dx
= εg(x). (3.7)

Differentiating (3.7) with respect to x, and setting d2y/dx2 = 0 to find an inflection
curve, yields

(

dy

dx

)2

− f ′(x)
dy

dx
− εg′(x) = 0. (3.8)

Substituting in dy/dx from (3.7), and defining a new variable h = y− f(x), we find
that the inflection curve of the Liénard system (3.6) is given by

g′(x)h2 + f ′(x)g(x)h − εg(x)2 = 0. (3.9)

This quadratic equation depending on x has, for fixed ε, two solution branches
h = h±(x), which in turn give two branches y = y±(x) given by

y±(x) = f(x) − g(x)

2g′(x)

[

f ′(x) ±
√

f ′(x)2 + 4εg′(x)
]

. (3.10)

The inflection curve exists only if the solutions of (3.10) are real, hence

y±(x) ∈ R ⇒ (f ′(x))2 + 4εg′(x) > 0. (3.11)
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Notice that this condition depends on ε. Clearly the condition is satisfied trivially
if g′(x) > 0 for all x.

In the case of the van der Pol oscillator with f(x) = x3/3− x and g(x) = q − x,
(3.11) implies (x2 −1)2− (2

√
ε)2 > 0. From this we find that for an inflection curve

to exist we must have

either f ′(x) > +2
√

ε ⇐⇒ x2 > 1 + 2
√

ε, (3.12a)

or f ′(x) < −2
√

ε ⇐⇒ x2 < 1 − 2
√

ε. (3.12b)

Condition (3.12a) always has real solutions, but gives inflection curves in the regions

|x| >
√

1 + 2
√

ε. These lie outside the folds of the critical manifold y = f(x) in
the van der Pol system (at x = ±1), and therefore not in the neighbourhood of the
repelling critical manifold Sr. We are therefore interested only in condition (3.12b),

which gives inflection curves in the region |x| <
√

1 − 2
√

ε, which does contain the
repelling slow manifold, and these have real solutions only if 1− 2

√
ε > 0. Thus we

expect canards consisting of both large non-convex and small convex cycles in the
van der Pol oscillator, only if

ε < ε0 :=
1

4
. (3.13)

We illustrate this criterion in figure 5, showing the inflection curves for the different
values of ε illustrated earlier in figure 3. For ε > 1

4
in figure 5(a), limit cycles appear

almost circular, and the inflection curve exists only for |x| > 1. For the marginal
case ε = 1

4
in figure 5(b), the inflection curves still exist only for |x| > 1 but are

noticeably deformed, and the cycle is developing an inflection. For ε < 1

4
in figure

5(c), a closed inflection curve has appeared in the region |x| < 1 close to Sr, the
cycle becomes non-convex where it crosses the curve, and is recognisably a canard.
Thus the inflection condition ε < 1

4
clearly captures the characteristic canard shape,

whereas the convex cycles for ε > 1

4
more closely resemble moderate distortions of

circular cycles. The corresponding bifurcation diagrams, shown in figure 3(d)-(f),
illustrate the correlation between these visual considerations of convexity, and the
steepness of the bifurcation curve. Of course these are qualitative observations, but
the requirement that an inflection curve exists in the neighbourhood of the repelling
slow manifold solidifies them into a quantitative condition.

ε = 0 .1

S a

I ε

I ε I εI εI ε

x

y

S r

S a

ε = 0 .25

S a

S r

S a

I ε

x

y

(b)(a) (c)ε = 1

S r

S a

S a

I ε

x

y

Figure 5. Comparison of four limit cycles of the van der Pol system for: (a) ε = 1, (b)
ε = ε0 = 0.25, (c) ε = 0.1. These orbits corresponds to those shown in figure 3 (a-c),
with the inflection curves Iε now also shown (dotted). Notice that Iε has a branch in the
neighbourhood of Sr only in (c), when ε is small enough, and (b) is the marginal case
where this branch vanishes.
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Figure 6. Comparison of the zero-curvature curves for the van der Pol system for five
different values of ε ranging from 0.01 to 0.25, respectively, as indicated in the legend.

The inflection curves for several different values of ε are plotted in figure 6. For
the singular value ε = 0 the inflection curve coincides with the critical manifold S0.
For finite ε it splits into three branches: two open curves in the regions |x| > 1, and
a closed loop in the neighbourhood |x| < 1 of the repelling critical manifold Sr. As
ε increases this closed loop shrinks, until it vanishes at ε = 1

4
.

We therefore propose this upper bound in ε, which is obviously system depen-
dent, as a test for the existence of a well-defined canard explosion. If the parameter
ε is too large, then the sharp change of local curvature, which is one of the most
prominent characteristics of the planar canard phenomenon, disappears.

(c) Convexity of canard cycles in the FitzHugh-Nagumo equations

Let us now look at the FitzHugh-Nagumo equations (FitzHugh 1961), which can
be expressed in an abstract form as a subcritical case of the van der Pol oscillator.
The equations read

εẋ = y − 1

3
x3 + rx, (3.14a)

ẏ = q − px − y. (3.14b)

Let us fix r > 0 so that the critical manifold S0, which is now the cubic curve

{(x, y) ∈ R
2; y = f(x) =

1

3
x3 − rx},

has two fold points (where f ′(x) = 0), at (x, y) = ±√
r(1,− 2

3
). Let us also fix

p > r and consider q as a bifurcation parameter. In this case the determinant
∆ = (3q/2)2 + (p− r)3 of the cubic equation satisfied at a zero of (3.14), is strictly
positive for any real number q. The system (3.14) then has a unique equilibrium of
focus type, and changes stability at a subcritical Hopf bifurcation (where f ′(x) =
−ε) with the emergence of an unstable limit cycle. First let us express (3.14) in the
more general form

εẋ = y − f(x), (3.15a)

ẏ = g(x) − y, (3.15b)
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where f and g are a real cubic function and a real affine function, respectively.
Following the steps described in the two previous sections, one can easily calculate
the inflection equation associated with (3.15), given by (omitting arguments)

(f ′ − g′)h2 + (f − g)(f ′ + ε)h + ε(f − g)2 = 0, (3.16)

with h(x, y) = y− f(x). The solution branches y = y±(x) of the inflection equation
(3.16) are then given by

y± = f +
(g − f)(f ′ + ε) ± |g − f |

√

(f ′ − ε)2 + 4εg′

2(f ′ − g′)
. (3.17)

We then investigate the presence of real solutions to the inflection equation (3.16)
close to the repelling part Sr of the critical manifold S0 when the small parameter
ε is increased. From (3.17), this requires

(f ′(x) − ε)2 + 4εg′(x) > 0

for x close to Sr. Taking f and g as in the FitzHugh-Nagumo system (3.14),
this condition implies that, for an inflection curve to exist near Sr, we must have
(

x2 − (r + ε)
)2 − 4εp > 0 with |x| <

√
r. This gives

either x2 > r + ε + 2
√

εp, (3.18a)

or x2 < r + ε − 2
√

εp. (3.18b)

Clearly, condition (3.18a) is incompatible with |x| <
√

r, hence, we focus on the
second condition. Since ε > 0, we have

r + ε − 2
√

εp > 0 ⇐⇒
√

ε ∈ (0,
√

p − ρ−) ∪ (
√

p + ρ+, +∞), (3.19a)

r + ε − 2
√

εp < 0 ⇐⇒
√

ε ∈ (
√

p − ρ−,
√

p + ρ+). (3.19b)

where ρ± =
√

p ± r. We know that the inflection lines do exist for ε = 0, therefore
the range of ε values must include 0, hence we can exclude both (3.19b) and the
unbounded interval in (3.19a). For (3.14) with p > r > 0, we are left with the
following condition on ε for the existence of canards:

0 < ε < ε0 := (
√

p −√
p − r)2. (3.20)

To illustrate this let us take r = 1 and p = 1.5, then the canard criterion becomes
ε < ε0 = (

√
1.5−

√
0.5)2 ≈ 0.2679. In figure 7 we plot limit cycles of the FitzHugh-

Nagumo system (3.14), clearly showing the transition from convex to non-convex
cycles as this criterion is violated, and as the inflection curve close to Sr vanishes,
hence faithfully capturing the existence of canards.

4. The inflection curve method in R
3

(a) Three time scale systems: slow passage through a canard explosion

The dynamics of singularly perturbed systems with canards in R
3 can be much

richer than the phenomena considered above, motivating the search for simple crite-
ria to identify them. In this section we consider systems with two slow variables and
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ε = 0 .01ε = 0 .2679ε = 0 .4

S a
I ε

I ε I ε
I ε I ε
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S r
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I ε

x

y

(b)(a) (c)

S r

S a

S a

I ε

x

y

Figure 7. Comparison of four limit cycles of the FitzHugh-Nagumo system, for: (a) ε = 0.4,
(b) ε = ε0 = 0.2679, (c) ε = 0.01. Two stable and two unstable cycles are shown (full
and dashed respectively). In (a) all cycles are convex and there is no inflection curve Iε

(dotted) near the unstable slow manifold Sr. In (c), large cycles are clearly non-convex,
and Iε has a branch close to Sr. (b) shows the marginal case, at which the inner loop of
Iε vanishes. These apply to the system (3.14) for r = 1 and p = 1.5.

one fast. These can exhibit small oscillations on the slow time scale alternating with
one or several large excursions on the fast time scale. These complex oscillations are
often called “mixed-mode oscillations (MMOs)”, and canards have been shown to
play a key role in their organisation (Wechselberger 2005; Popovic 2008; Desroches,
Guckenheimer et al. 2011). In most situations studied to date, these canards are due,
similar to those considered above, to the presence of non-hyperbolicity associated
with folds of a critical manifold, in particular so-called folded singularities.

Here we focus on a particular system that exhibits the classical canard explosion
over a planar two-dimensional subsystem and, by means of a third even slower
variable, contains a weak return through a region of small oscillations near a fold.
This is referred to as a slow passage through a canard explosion. Such a system
was analysed in Krupa et al. (2008), where the following prototypical model was
introduced:

εẋ = f2x
2 + f3x

3 − y, (4.1a)

ẏ = x − z, (4.1b)

ż = ε(µ − g1y). (4.1c)

A mixed-mode oscillation in this system is shown in figure 8, along with the critical
manifold S0 where ẋ = 0. The system possesses three explicit time scales: fast
(t/ε), slow (t), and super-slow (εt). We can gain some intuition into its dynamics
by considering the planar fast subsystem (4.1a)-(4.1b) in the fast time τ = t/ε,
and treating the slowly varying z as a parameter. This system itself is singularly
perturbed. The fast subsystem has a cubic critical manifold y = f2x

2+f3x
3, making

it similar to the van der Pol oscillator considered in section 3. As z varies this
displays a canard explosion, and in the full system z facilitates a (super-)slow drift
though the family of canard cycles, in conjunction with a weak return mechanism
which re-injects orbits from post-explosion z values to pre-explosion z values.

This regime of dynamic canard explosion occurs only when µ + g1 is of o(1)
relative to ε, i.e. small. Two additional cases that exhibit interesting oscillatory
solutions arise when both µ and g1 are of O (1), or when µ is small and g1 is of
O (1). In the first case, periodic mixed-mode oscillations have a simple pattern of
alternation between small and large amplitude oscillations, organised by canards at
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Figure 8. Mixed-mode periodic attractor of system (4.1) for ε = 0.141 and f2 = 1.5,
f3 = −1, g1 = 0.2. (a) shows a projection onto the (x, y)-space, where one can see that the
mixed-mode oscillation Γ is formed by one small amplitude loop and one large amplitude
loop, both enclosing convex areas of the plane. (b) shows a view of Γ in the (x, y, z)-space
together with the critical manifold S0 of the system.

a folded node. In the second case, mixed-mode oscillations have a more complicated
pattern organised by canards at a folded saddle-node (for a description of folded
nodes/saddle-nodes see Szmolyan & Wechselberger (2001)). It is natural to study
the curvature of solutions in these scenarios to understand the difference between
them. Here, however, we restrict attention to the dynamic canard explosion when
µ + g1 is small.

(b) Canard explosion and the inflection curve in the fast subsystem

By reversing time, t 7→ −t, we can write the fast subsystem of (4.1) in the same
form as (3.6), that is, a singularly perturbed Liénard system with a constant forcing
parameter

x′ = y − f(x), (4.2)

y′ = ε(z − x), (4.3)

where z is a parameter, and the prime denotes differentiation with respect to the
fast time τ = −t/ε. The function f is given by f(x) = f2x

2+f3x
3, and therefore the

critical manifold y = f(x) has folds at x = 0 and x = −2f2/3f3. This implies that
the repelling branch Sr of the critical manifold S0 lies in the range |3f3x+f2| < |f2|.
Let us then apply the criterion (3.11) for the existence of an inflection curve in the
fast subsystem, |f ′(x)| > 2

√
ε. We find that an inflection point exists at x if

either f ′(x) > +2
√

ε ⇐⇒ |3f3x + f2|2 < f2
2 + 6f3

√
ε, (4.4a)

or f ′(x) < −2
√

ε ⇐⇒ |3f3x + f2|2 > f2
2 − 6f3

√
ε, (4.4b)

only the former of which is in the neighbourhood |3f3x+ f2| < |f2| of Sr. It can be
satisfied only if f2

2 + 6f3 > 0, hence if

ε < ε0 :=

(

f2
2

6f3

)2

. (4.5)
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In figures 8-9 we use parameters f2 = 1.5, f3 = −1 and g1 = 0.2, for which

ε0 =

(

3

23

)2

= 0.140625. (4.6)

We conclude that the z-dependent family of limit cycles of the fast subsystem
contain canards (more specifically, non-convex canard cycles) only for ε < ε0. It
is easy to check by direct simulation that the mixed-mode periodic attractor of
the full system does not have a change in the sign of its local curvature in the
(x, y)-plane for ε > ε0, see figure 8. Consequently, we propose that the slow passage
through a canard explosion is well-defined only for ε < ε0. Thus for any ε < ε0,
and for µ and g1 chosen such that µ+ g1 is o(1), the system (4.1) possesses at least
one mixed-mode periodic attractor of its fast subsystem, whose small amplitude
[resp. large amplitude] oscillations resemble canards without head [resp. canards
with head], and which undergoes a proper canard explosion upon variation of the
slowest variable z considered as a parameter.

(c) Canard-like behaviour in the full system

The periodic attractor shown in figure 8 is not the only limit cycle of system
(4.1). In fact, upon variation of µ, one can observe Hopf bifurcations occuring
at µ = 0 and µ = 0.1, connected to one another by a one-parameter family of
limit cycles. This bounds in µ the region of parameter space where single-mode
oscillatory dynamics occurs. For the values of f2, f3 and g1 in figure 8, that region
is µ ∈ [0, 0.1], in which range the dynamics of (4.1) is governed by a slow passage
through a canard explosion.

x

µ

HB

HB

(a) (b )

y

Γ1

Γ2

x

S
a

S
a

S
r

Figure 9. Bifurcations and canard-like cycles of the full system (4.1) obtained upon vari-
ation of the parameter µ, with f2 = 1.5, f3 = −1, g1 = 0.2. (a) shows the bifurcation
diagram with branches of equilibria (thin curve) and limit cycles (thick curve) born at
Hopf bifurcation points (dots). (b) shows two limit cycles, Γ1 for µ = 0.02 and Γ2 for
µ = 0.036 which share several aspects of canard cycles.

Look more closely at the bifurcation diagram presented in figure 9(a). As µ
varies, the maximum value of the variable x along each cycle is plotted on the
vertical axis. One observes that the branch of limit cycles connecting the two Hopf
bifurcations has a sharp increase starting at the left Hopf point. The size of the µ-
interval in which this sharp increase occurs, from small amplitude to large amplitude
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limit cycles, is approximately 0.04. This is on the order of magnitude of the chosen
value ε = 0.01, and lies outside the range of simple canard explosions (which take
place within an interval of the control parameter that is exponentially small in ε).
Despite this, in figure 9(b), one can clearly identify two characteristics of canard
cycles that are present in these limit cycles of the full 3D system (4.1). First,
both cycles remain close to the repelling sheet of the critical manifold S0 for an
O (1) interval of time; second, the local curvature changes sign between the small
and large limit cycles. Hence it seems reasonable to classify these as canard-like
cycles. This was reported by Moehlis (2006) in the context of the Hodgkin-Huxley
equations, where a two-dimensional subsystem displays a canard explosion, and
the full four-dimensional system has a parameter-dependent family of limit cycles
sharing some of the properties of canards, despite occurring in an interval of the
control parameter that is not exponentially small in ε. They can be seen as canard-
like (non-MMO) cycles, but they are much more robust than their two-dimensional
relatives. This robustness is to be expected in systems with more than one slow
variable, owing to the generic existence of robust canards described by Descroches
& Jeffrey (2011).

To clarify the statement that such robust limit cycles are canard-like, we can
apply the inflection criterion to place an upper bound on ε for canards to exist. For
a general three time scale system of the form

x′ = y − f(x), (4.7a)

y′ = εg(x, y, z, ε), (4.7b)

z′ = ε2k(x, y, z, ε), (4.7c)

whose fast subsystem (4.7a)-(4.7b) is a singularly perturbed Liénard system of the
form (3.6), we follow the calculations detailed in section 3. Eliminating time, orbits
must satisfy

dy

dx
=

εg(x, y, z, ε)

y − f(x)
, (4.8)

dz

dx
=

ε2k(x, y, z, ε)

y − f(x)
. (4.9)

Considering these as curves parameterized by x, differentiating (4.8) with respect
to x, and letting y′′(x) = 0, we find the (two-dimensional) inflection surface given
implicitly by (omitting arguments)

dg

dx
h2 +

(

ε2k
dg

dz
+ εg

dg

dy
+ g

df

dx

)

h − g2ε = 0, (4.10)

where h(x, y) = y − f(x). The criterion for the possible existence of canards be-
comes the condition that the quadratic equation (4.10) has a pair of real solutions
y = y±(x, z), and that the inflection surface (x, y±(x, z), z) has branches in the
neighbourhood of the repelling slow manifold Sr. For systems of the form we have
considered, where f is a cubic function of x, Sr lies between the folds of the crit-
ical manifold y = f(x), meaning that x must lie in the range x ∈ (xL, xR) where
f ′(xL) = f ′(xR) = 0. For (4.1), this predicts that a necessary condition for canards
is

ε < ε0 ≈ 0.15.
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This value is comparable to that obtained for the fast subsystem, which makes sense,
since the full system behaves as a super-slow perturbation of its fast subsystem for
the range of µ and g1 considered. Note that the calculation above is based on
considering only two components of curvature, corresponding to projections onto
the (x, y) and (x, z) planes. A more general way of using curvature arguments in
this context is provided in Ginoux & Rossetto (2006a,b), Ginoux (2009), where a
method is developed to compute slow manifolds as loci of zero-curvature in planar
systems, zero-torsion in three-dimensional systems, and more generally as loci of
vanishing flow curvature in n-dimensional singularly perturbed dynamical systems.
In particular, the inflection equations (3.4), (3.16) and (4.10) may be obtained by
this method. These “flow curvature manifolds” have not been used with a focus on
canards, but are closely linked to the more basic inflection curve criteria developed
here.

5. Concluding remarks

In this paper, we made use of the inflection curve method as introduced in the
chemical literature (Brøns 1988; Brøns & Bar-Eli 1994; Peng et al. 1991) to geo-
metrically characterize the canard phenomenon. We found the dependence of the
zero-curvature set on the time scale ratio ε. We showed that there exists a critical
ε-value above which no inflection curve exists in the neighbourhood of the repelling
sheet of the critical manifold. In particular, the distinction between convex small
amplitude canards cycles without head, and non-convex large amplitude canard
cycles with head, cannot be made for ε greater than the critical value ε0. This led
to a convexity criterion for canards in planar singularly perturbed systems. The
criterion does not establish that limit cycles exist, only that, if such cycles exist,
then they can form canards. Finally, we extended this result to three time scale
systems in R

3, where the inflection curve method gives an upper bound in ε, fix-
ing the region where the so-called slow passage through a canard explosion is well
defined.

The different tools applied to singularly perturbed systems here and in a re-
lated paper (Desroches & Jeffrey 2011), namely inflection curves, exponential mi-
croscopes, and pinching, all revolve around one idea which we believe is central to
understanding of the canard phenomenon: extreme changes of local curvature. As
described by Desroches & Jeffrey (2011), canards occur when transversality is lost
between the vector field and certain zero-level sets associated with the flow. These
level sets correspond to the second derivative of an exponential rescaling of the fast
variable, and undergo a bifurcation when passing through the canard point, which
is captured by the method of pinching. Similarly, the inflection criterion discussed
here is based on the fact that the transition between small and large oscillations via
the maximal canard coincides with the crossing of a zero-level set of the curvature
of the flow. The more complex of the examples presented here have not yet been
studied in detail using these ideas, the purpose of the current work being to illus-
trate how the method can refine the definition of a canard, and elucidate its role in
the geometry of singularly perturbed systems. Work is ongoing to extend the more
general ideas of Ginoux & Rossetto (2006a,b) and Ginoux (2009) to use flow curva-
ture to find implicit equations for slow manifolds, to further study non-hyperbolic
points and their role in the canard phenomenon.
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