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Abstract

In this paper the theory of bifurcations in piecewise smdtdtvs is critically surveyed. The focus is on results thatdhil
arbitrarily (but finitely) many dimensions, highlightinggaificant areas where a detailed understanding is preskac#ing. The
clearest results to date concern equilibria undergoing téttions at switching boundaries and limit cycles underggrazing and
sliding bifurcations. After discussing fundamental cquisesuch as topological equivalence of two piecewise smsygtems,
discontinuity-induced bifurcations are defined for eduif and limit cycles. Conditions for equilibria to existiindimensions are
given, followed by the conditions under which they gendlyoandergo codimension-one bifurcations. The extent awledge of
their unfoldings is also summarized. Codimension-onerbitions of limit cycles and boundary-intersection crogsire described
together with techniques for their classification. Codisien-two bifurcations are discussed with suggestionsufahér study.

1. Introduction ing to and sliding along it [49]. The latter is particularligad-
) _ lenging from a theoretical point of view, because solutiwiil
The theory of dynamical systems described by smooth Ord'segments of sliding can be non-unique or non-invertible.
nary differential equations is well developed [59], but fieany

systems of practical importance, the defining equationsaion Example: Consider an object moving on a surface with dis-
discontinuities. In such cases the theoretical underpinof ~ Placementz and velocityu, subject to an elastic force kz
some key results is uncertain. and Coulomb friction—p sign(u) wherey is the coefficient

In the gamut of dynamica| Systems with discontinuities, WeOf friction [82] Thenx satisfies the pieceWise smooth ordinary
must be careful to fix the class of systems of interest. Thdlifferential equations
most general are hybrid systems, which are compounds of con-

tinuous and discrete dynamics (e.g. differential equatimd i i ﬁ’,m — 1 sign(w) )
maps), see for example [17, 4, 84, 78, 26, 52]. Hybrid sys- P ’

tems are too broad in scope to possess a substantially §enera
bifurcation theory as yet. An important subclass of these arDuring slipping the friction force has fixed magnituge and
impact systems, where smooth evolution by a differentiabeq  points in the opposite direction to the velocity, switchaig =
tion can be interrupted by a map from a discontinuity boupdar 0 to give the phase portraitin Fig. 1. If the speed reaches0
to itself, such as the law of restitution for mechanical ictpa at a time whenkz| > p, then the object crosses from leftward
[83, 85, 24, 7, 18, 98, 95, 80]. Grazing solutions, where theslip to rightward slip or vice versa, but|#z| < s it sticks to the
impact velocity is zero, provide insight in the dynamics mea surface. When this happens, solutions are said to “slid&igal
impact bifurcations. Suchrazing bifurcationscan by studied u = 0 in the ¢t-direction of the phase space, u,t), meaning
by analysing the local geometry of the impact manifold, gsin that the object sticks to the surfagce= 0.
singularity theory [23] and so-called discontinuity mapg]f

We restrict attention in this paper to a third important sjas u
that of piecewise smooth flows, consisting of differentiplia- slip to right
tions that are piecewise smooth and have what Filippov calls
“discontinuous righthand sides” [49]. Discontinuitie® aso-
lated to a hypersurface, and unlike hybrid or impact systems -
solutions are generally continuous, and moreover, are §moo 1:
everywhere except on the hypersurface. Our main interést is
describe the dynamical changes that result from invarietst s
contacting such a discontinuity hypersurface. We assume N8gure 1: The dry friction system (1). The friction force sofies direction as
restriction on the degree of the discontinuity. If the sgsteec-  u changes sign. In phase space, orbits slide along the surfac® (shaded)
tor field jumps across the hypersurface then solutions may bt@hen'a myechanical sticking occurs. NoFe}ha} ‘siliding’ hesfers to mechanical
non-differentiable there, either crossing the surfacestimk-  SUcking’ whereu = 0, as opposed to ‘slipping’, where 7 0.

slip to left
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In this paper we survey the theory bifurcationsin piece- 2. Dynamics of piecewise smooth systems
wise smooth flows from a critical perspective. Rather than pr
viding a comprehensive literature review, the aim is to sum
marize the extent of current knowledge, gathering togetier
more general results, and highlighting major areas reaugiri % = fi(x), x€R; CR" )
further work. ’ ’

Piecewise smooth systems have been used for many yeashere the vector fieldg; are smooth, defined on disjoint open
by engineers and physicists, long before being comprelelgsi  regionsR;, and are smoothly extendable to the closurepf
formalised in mathematical terms. Perhaps as a consequen¢&egionsR; are separated by @n—1)-dimensional seXt. called
knowledge of bifurcations in piecewise smooth systems@elg  theswitching boundarywhich consists of finitely many smooth
limited to specific examples, and does not yet approach thre gemanifolds intersecting transversely. The uniortbénd all R;
erality of bifurcation theory in smooth systems. A majortass covers the whole state spabeC R".

cle to the development of a general theory is the inability to , , )
Away from Y, the existence and uniqueness theorems of Pi-

extend results in 2 or 3 dimensional systems tdimensions, ; 5f h ut ; "
due to a lack of dimension reduction techniques, such as ceﬁgrd and Lindel6f [75] ensure that solutions of (2) are el

ter manifolds or normal form theory. Nevertheless, by draw-ned provided eaclf; is sufficiently regular, but do not apply

ing together results from the last half century within thenfie-  Where the vector field is discontinuous, namelyXanFollow-
work provided by the differential inclusions of Filippovq} ing Filippov [49], we overcome this problem by replacing (2)

the sewing (or “C”) bifurcations of Feigin [46], and the geine with a differential inclusion,

Definition 2.1. A piecewise smooth system consists of a finite
set of ordinary differential equations

singularities of Teixeira [92, 93, 94], we can begin the tagk % € F(x) 3)
developing a coherent picture of the theory of bifurcations
piecewise smooth systems. whereF = f; if x € R;, andF' is set-valued itk € 3, given

Piecewise smooth systems are now commonplace in modyy the convex hull offy, ..., f,, whenx lies on the boundary
els of real world dynamics. They are frequently treated by awf regionsRy, ..., R,,. A two dimensional inclusion with four
hoc modifications of tools borrowed from smooth systems; reregions is illustrated in Fig. 2.
views can be found in [12, 70, 74, 99]. A few of the wide
range of applications that exhibit piecewise smooth dyeami
include mechanical problems of friction [43, 82, 35, 96,54,
switched feedback in control theory [97, 61, 39, 28] and-elec
tronics [22, 5, 9, 79, 32], nonsmooth models in economics
[62, 50], ecology [69, 38, 40], neuron signaling [33, 34,,76]
genetic potentials [53, 36, 21, 54], and novel nonlineazatff
of superconductors [8, 63]. Interest in such diverse applic
tions in the vacuum of an insufficiently developed theory has
left behind a nomenclature that is dogged by semantic difficu
ties. This problem is bound to ease as theoretical advaakes t
hold, and rigorous definitions begin to eliminate incoresist
uses of terminology. We shall pick our way through the more
concrete definitions and most useful terminologies, givifg
erence to the alternatives only where it is useful to theudisc
sion. Figure 2: A planar piecewise smooth system with four regidtis i =

The layout of the paper is as follows. We first set out thet, 2, 3, 4, separated by a switching boundafy where the vector field jumps
fundamentals: the definition of a piecewise smooth systein anbetween the valueg;. The righthand side of the differential inclusiofi,(grey

its dynamics in Sec. 2, the forms of switching and indingrtubu Ilnglarea), is set-valued (E‘, and its dimension depends on how many regions
3] is separating at each point (a convex hull of 2 vectors, exa@gihe intersec-

aries in Sec. 3, and_ topological equwaler_]ce between SBSM tion where it is a convex hull of 4 vectors). Vectafs and f5 are shown with
Sec. 4. Then we introduce a geometrical treatment of morelack arrowheadsf» and f4 are shown with white arrowheads.

general discontinuity-induced bifurcations in Sec. 5. iR _ .
results about the unfoldings of these bifurcations areeved Then we can define solutions to (2) as follows:

n S?tc. ﬁ am; we (:ISCUCT? whzlere new rf:sultst:rte nee.?eghMaB\éfinition 2.2. An absolutely continuous functiaq(t), with ¢
resufts have been found for planar systems that await genera;, , , open interval, is a solution of (2) if and only if it satisfies

sation t(_)n dimensions; we review these in Sec. 7. By way ofthe differential inclusion (3) almost everywherefin
concluding remarks, we discuss some broader open problems

and peer into a possible future of piecewise smooth dyndmica This definition is found in [49], along with the proof that,

systems in Sec. 8. under certain conditions, (at least) one solution pasgesidjn
any pointx of system (2). A more general discussion of differ-
ential inclusions is found in [6]. Notice that solutions deeot
be unique, as shown by the following example.




Example: Consider the one-dimensional system- sign(z), We represent as the zero set of a scalar function R™ —
where is the pointz = 0. The righthand side of the corre- R, with

sponding differential inclusion i8" = 1 wherex > 0, F = —1 Y={xeR" : h(x)=0}. (5)
wherez < 0, andF' = [—1,1] atz = 0. Hence, atr = 0 the
three solutions:(t) = 0, z(t) = t, andx(t) = —t are admis-
sible, as well as any solution that remaingifor a finite time
and then departs, left or right, with unit speed.

At points whereX is a smooth hypersurface, we assume that
h is smooth and has nonzero gradient. Notice that the global
smoothness and differentiability afis not a concern, since its
gradient will only be needed in local analysis.

As we see in the one-dimensional example above, a system may We then write the directional derivative bfwith respect to
admit constant solutions on a switching boundary. In gdnerathe vector field in terms of Lie derivative};, h = h x- f;, where

constant solutions of (2) come in two forms: h x is the gradient operator with respectsto(subscripts will
o denote a derivative only when preceded by a comma) »t-tle
Definition 2.3. order Lie derivative is written ag"'h, €.9.,L3 h = Ly, (L, h).
An equilibriumis a point wheref;(x) = 0 for somei. o o _ '
A pseudoequilibriunis a point where) € F'(x), x € 2. Definition 3.1. A sliding vectoris any vectorfs(x) € F that

lies tangent ta: for x € 3.
Example: In n-dimensions, let the vector field change between
f1 (in Ry) and fs (in Ry) acrossy. Then the differential inclu-
sion (3) becomes

According to Definition 2.2, solutions of system (2) that
reachy maycrossthrough if F' contains no sliding vectors,
orslidealongX. if £’ contains a sliding vector. Thus the switch-

xeF={\f1+0-)\fa} (4)  ing boundary is partitioned into three different regiondals
lows.
whereA = 1in Ry, A = 0in Ry, andX € [0,1] onX. By (4), _
o ; Definition 3.2.
pseudoequilibria appear whe¢hn and f» are linearly dependent _ _ _ o
and point in opposite directions, as illustrated in Fig. 3. - In‘acrossing region ' contains no sliding vectors.

- In asliding region F' everywhere contains at least one
sliding vector, and all neighbouring vector fielfispoint
towardsX.

- Inanescaping regionF’ everywhere contains at least one
sliding vector, and at least one of the neighbouring vector
fields f; point into its corresponding regiaR;.

As an example of the definition for an escaping region, con-
sider Fig. 2: the boundary separating regidtisand R, is an
escaping region wherg and f, both point away from:, but
the boundary intersection is also an escaping region wfiere
points away fron®: but all others points towards it.

The distinction between sliding and escaping regions is im-

Over the last thirty years, piecewise smooth systems haveortant: at a sliding region all solutions are confinedtan
been redefined a number of times in slightly different waysforward time, while at an escaping region solutions mayegith
Definitions 2.1 and 2.2 are the simplest and most commonlgontinue sliding or be ejected frol Because of this dual na-
used among those considered in [49]. They are similar to arfure of sliding and escaping, they are sometimes referreetto
other definition, albeit restricted to two-dimensionalteyss,  Spectively as stable and unstable sliding (see for exar6pl. [
given in [19]. The term pseudoequilibrium in Definition 2.3,
introduced in [51], is now quite standard in the literature.

Figure 3: A pseudoequilibrium in a two-region system ocauhere the two
vector fields point in opposite directions.

Example: Consider the system

i = sign(zg + 29), (©)
3. Boundaries io = 1,

To study the dynamical features that distinguish smooth andketched in Fig. 4. The switching boundaXyis the curve
piecewise smooth dynamical systems, we concentrate on the = —z7, and we let?, be the region above it, witR, below.
geometry of solutions at or near the switching boundarfo  The righthand side of the differential inclusioR, is sketched
this end, it is convenient to introduce three mathematmalst  in Fig. 4 with the sliding vectorg,, and the corresponding dy-

a function to describ&, a derivative to detect tangencies be- namics is shown in Fig. 5. The boundaries between crossing
tween solutions and boundaries, and an explicit formula foand sliding/escaping occur at the tangenciesiid T, where
the component of” along¥. in the cases when it exists and the tangent vector t&, given by(1, —2x;), lies alongf; and
is unique. f2 respectively. Then escaping takes placebto the right of
T,, and sliding to the left of T.



Figure 4: A planar piecewise smooth vector field that swischetweenf; in
region Ry and f> in region R>. At the switching boundary we consider the
inclusion F'. This gives sliding/escaping i contains an elemenf; tangent to
32, and crossing otherwise.

R

sliding
escaping

X

Figure 5: The piecewise smooth dynamics correspondinggo4ziThe cross-
ing region is dashed. A sliding segment sticksxan the sliding and escaping
regions, which are bounded by the tangency pointsTk.

In general, boundaries between crossing, sliding, angesca

ing regions can occur either wheeis nonsmooth, which we

As emphasised by Filippov [49] and Teixeira [94], tangen-
cies are central to understanding dynamics at a switchingdho
ary and, as we have seen, they form the boundaries between
regions of crossing, sliding, and escapingarnThe three sim-
plest types of tangency that we encounter on smooth portions
of ¥ dividing regionsR; and R, are (see Fig. 6):

- thefold (quadratic tangency), whe&y, h = 0, while
L}lh # 0, Ly,h # 0, and the gradient vectors afand
Ly, h are linearly independent.

- the cusp(cubic tangency), wher€y h = L?clh =0,
while L‘,ﬁlh # 0, Ls,h # 0, and the gradient vectors of
h,L¢h andﬁﬁ1 h are linearly independent.

- thetwo-fold (double tangency), whewy, h = L, h =
0, while £7 h # 0, £3,h # 0, and the gradient vectors
of h, Ly, h andLy, h are linearly independent.

fold cusp } two-fold
Y TR T

Figure 6: Basic tangencies between a piecewise smoothrvield and a
switching boundary: the fold, where the vector field has gatéz contact with
33; the cusp, where the vector field has cubic contact wiftand the sliding
vector field has quadratic contact with the sliding (or esggpboundary; the
two-fold, where the vector field has quadratic contact witton both sides.
Sliding/escaping regions are shaded, crossing regionsnasteaded.

The simplest tangency is the fold. Given a switching bound-
aryz, = 0 (soh = z1) in coordinates = (x4, o) for a planar
system, a fold is defined [49] as the set= x5 = 0 inthe local
normal form

fi =

fo =

:l:(SllL'Q, 1),

(1 .0), (1)

call boundary intersectionsr whereX is smooth but tangent wheres; takes valuest1. This can be easily extended in

to one of thef;, satisfying theangency conditions

Lsh=0. @)

dimensions demanding that a fold has the normal form

fho=
f2 =

i(sle, 1, O, ),

(1 .0,0,..), (12)

Away from boundary intersections, we can write the vector

field near a switching boundaty= 0 as

e { B
fg (X) |f

The differential inclusion for (8) is then given by (4). Adilng
vector, from Definition 3.1, is the element of (4) tangentto
which fixesA = Ly h(x)/(Ls,h(x) — L h(x)), giving the
sliding vector field

_ Lph(x)/1(x) = L5 h(x)f2(x)
‘szh(x) - ‘Cflh’(x) ’

h(x) >

07
h(x) < 0 (8)

fs(x) xeX. (9
Sliding or escaping occur whex € [0, 1], and hence the dy-
namics in a sliding/escaping region is given by

X = fs(x)' (10)

where the dots denote a sequence of zeras, i§ positive [or
negative] then the flow iR, curves away from [towardsY,
which we call avisible [invisiblg fold. The regionzs < 0 on

Y} is a sliding region if we take thet’ signs in (12), and an
escaping region if we take the-' signs; the latter is illustrated
in Fig. 7. In three dimensions, Fig. 6 illustrates the casa of
visible fold at the boundary of a sliding region.

Consider now the simplest degenerate tangencies, which
take the form either of the cusp or the two-fold. Given again
a switching boundary; = 0 and with dots denoting zeroes,
the cusp can be defined, following [94], as theset= 2o =
x3 = 0 in the local normal form

f
2

i(wg + Slwg, 1,0,...),
+( 1 ,0,0,...),

(13)



Xy Xy aries of crossing/sliding/escaping, but they have a funtbie,
as points through which special solutions (equilibria,itiay-

> So-dxy, Y- cles, etc.) can alter the topology of their intersectiorhvtite
+ * * + switching boundary. Before we can discuss bifurcationséng>
. L wise smooth systems further, we must define the conditions
visible fold invisible fold . . . .
under which two piecewise smooth systems are topologically
equivalent.
Figure 7: The fold as a boundary between escaping (full lan® crossing q
(dashed line), illustrated in two dimensions. It can beegithisible (left) or
invisible (right). By reversing arrows we would swap esoagpiior sliding. 4. Equivalence of piecewise smooth systems

o To discuss the topological properties of piecewise smooth
wher_esl takes valuest1l. There are branches of visible and systems we need to distinguish between different types -of so
invisible folds along ther, > 0 andz, < 0 branches of |iton. Following a definition made in [19], we callsegment
r1 = w3 + s125 = 0. Similarly to the fold, we classify cusps  any smooth solutiox(#) that is entirely contained in a region
either as invisible or visible, but following Jeffreyl0a we R, orin a sliding or escaping region, and defined for any open
so depending respectively on whether the sliqlir_19 flow curvegime intervalt € I. We refer to maximal segmentsIifis maxi-
towards ¢, = +1) or away from §, = —1) the sliding bound- 5| 1n order to distinguish between segments that sliddien t
ary. The cusp appears generically in systems of three or mogyitching boundary and segments that lie in regiinsve call
dimensions. The visible case is shown in Fig. 6 in three dimen, o formersliding segmentand the lattenon-sliding segments

sions. _ _ o Finally, anorbit is a continuous concatenation of closures of
The two-fold can be defined, with a switching boundarygegments. We assume typically that an orbit is maximal.
x1 = 0, as the setr; = 22 = w3 = 0 in the local normal Because segments are solutions of a smooth vector field,
form maximal segments do not overlap in the state space, and there
ho= (s 10,..), (14) fore an equivalence between systems can be defined segment-

fo = (s2m3,b,1,..), wise as a bijection between sets of disjoint elements. Thus,
where the dots denote zeroesandb are constants such that we define the concept of topological equivalence for piesewi
the sliding vector field is structurally stable)(# 1), and thes;  smooth systems as follows.
are signst1 determining visibility of the folds. This extends to
arbitrary dimensions the three-dimensional normal foriverg
in [49, 94]. The fold alongr, = 0 is visible/invisible if s;

Definition 4.1. Two piecewise smooth systems dopologi-
cally equivalentf there exists a homeomorphism sending max-
imal segments of one system onto maximal segments of the

is respectively positive/negative, and the fold along = 0 ; ST . inatine
is visible/invisible if so is respectively negative/positive. The gtzzr’nﬁgﬁeisrvéﬂgi;he g'srggtli%n O::rtggse{nam(j)f;i?(iarzvclzr:)?\tabt w
two fold appears generically in systems of three or more di- 9 9 ping, 9

mensions. The visible-visible case (two visible folds)hinee

dimensions is depicted in Fig. 6. As a consequence, according to this definition of topolog-
A general treatment of sliding boundary topology that ap-ical equivalence, switching boundaries are mapped to bwitc

plies ton > 3 dimensions has not yet been carried out, buting boundaries. Alternative definitions of topological agu

a basic understanding of the fold, cusp, and two-fold is suffilence, based on orbits rather than segments (and thusisistabl

cient for many scenarios that arise in the literature onquiése  ing relations between sets of non-disjoint elements), areng

smooth systems, and they will play a major role in the remainin [49, 73, 12]. It has been pointed out in [57, 55], that these

der of this paper. We summarize their coordinate independemenerally make a stronger restriction than is necessarg+to d

defining conditions in Table 1. fine a topological equivalence, because they preserfleence
those authors call theseequivalences). A weaker topological
tangency | definition | sliding/escaping, and visibility type equivalence can be defined which does not preserve the switch
fold Ly h=o | ViSPleir £y h> 0 invisible if £5, h < 0 ing boundary, but does preserve sliding; let us call thiglitsty
Siding ! ﬁfs?h >0, escaping e p;h < O equivalence’. Two examples are illustrated in Fig. 8: therég
cusp Lyh=0 V|s!blg |f (E. h)(Lg,h) <0, : ; i 3 s PR
and invisible if (L3, h)(L g, h) > 0 on each row grgottopqlogmally (>3.) equivalent by Definition
£3 h =0 | slidingif £,h >0, escaping ifCs,h < 0 4.1, butare sliding equivalent. While useful from a pure math-
Ly h =0 | visible-visible if£3 h > 0> L7 h ematical perspective, this sliding equivalence does rsitrdi
two-fold and invisible-invisible if £ h < 0 < L3 h guish between systems with different crossing topologiés
Lyyh =0 | visible-invisible if (£F h)(£3,h) >0 sliding equivalence is therefore inappropriate for aplans

- . . - . where crossing between different regions is of physicaraxt.
Table 1: Defining conditions of generic tangenciesiit> 3, given the system B he i i f orbit ith th itchi b d
(8). In addition, non-degeneracy requires that the grasliefithe following ecause the intersection of orbits wi € switching bairy

quantities with respect te are linearly independent: andZ s, h for the fold; ~ Will be extremely importantin later sections, we use exekly
h,Lysh andﬁﬁ1 h for the cusph, L, h andL ¢, h for the two-fold. Definition 4.1.

Using Definition 4.1, we define the notion of bifurcation in
In this section we discussed how tangencies form the bound: piecewise smooth system as follows.

5



G4. if a sliding segment passing through a given prirt X
. reaches a boundary of the sliding or escaping regicn at
@ it does so ata fold (sgf,h(X) =0 andﬁ2 h(x) # 0 for
somei, andLy, h(x) # 0 for all other; 7é z)

o

G4 é; G3
Figure 8: Piecewise smooth topological equivalence. Eaeh (i) and (ii)

shows two systems which are not topologically-Y equivalent by Definition G2
4.1, in (i) because orbits crodsin one system but not in the other, in (ii) be-
cause the orbit (bold) tangent ¥ crosses in one system but not in the other.
These are, however, ‘sliding equivalent’, which respegtsadhics in the sliding
region (full line) but not the crossing region (dashed line)

Figure 9: Generic dynamics in a piecewise smooth systems @1 equilibrium
away from:, G2 is a pseudoequilibrium, G3 is a non-sliding segmeningitt
> away from the boundary of sliding, G4 is a sliding segmertirtgta fold

o . . . . . transversely. The sliding region is shaded, the crossigipmes unshaded.
Definition 4.2. A bifurcation occurs if an arbitrarily small per- Y 9red 0

turbation produces a topologically non-equivalent syst@ie  Thege are illustrated in Fig. 9. A fifth case should be addeel he
bifurcation isdiscontinuity-induced it affects the state portrait 5,,5ut which very little is known, namely a sliding segment th

in more than one region, or . reaches a two-fold. This fits into G4 above but violates the

Afurther distinction can be made betwestrongdiscontinuity-condition £y, i # 0 for somej, and instead satisfieS} i #
induced bifurcations, which involve non-generic configima 0. In three dimensions (see Fig. 10) it has been shown that a
of orbits with respect to switching boundaries, avehkdiscontinuigliding segment through a given pointe ¥ can generically
induced bifurcations, where the presence of a switchingidou it a two-fold [31], a fact which is not immediately obvious,
ary is incidental and the bifurcation can be treated usimy thbut follows because the possible topologies of the slidexar
mathematical tools of smooth maps and flows [26]. The forfield (9) include the phase portrait shown in Fig. 10. Two-
mer of these will be our exclusive concern, as they invohee th folds in higher dimensions have not been studied at all (see S
switching boundary in a nontrivial way. Examples of thedatt 8). To highlight this open problem we include the case that,
include a cycle undergoing a bifurcation at a switching ibun generically:
ary but expressible by a smooth Poincaré map throughoat, or G5.
pseudoequilibrium undergoing a bifurcation of the smoatt+v
tor field f, in a sliding or escaping region.

if a sliding segment passing through a given pgiwt >
reaches a boundary of the sliding or escaping region in a
scenario other than G4, it hits a two-fold.

5. Geometric overview of discontinuity-induced bifurcations

We are now in a position to consider bifurcations involv-
ing local and global dynamics. With very few exceptions, the
discontinuity-induced bifurcations that have been mostl-an
ysed in the literature are those affecting equilibria, joeed
quilibria, and limit cycles, so here we focus on these. We wil
classify systems by studying generic configurations ofterbi Figure 10: Generic dynamics in a piecewise smooth systenco@sists of an
and define as generic any configuration that satisfies a ertappen region of sliding segments that hit a two-fold. Slidésgaping regions
(finite) number of inequalities, referred to genericitycondi- ¢ Shaded, crossing regions are unshaded.
tions. Thus, away from boundary intersections, consideain
system defined as in (8), we say that generically:

Let it be clear that G1-G5 do not provide a complete list
of all the configurations of orbits that are generic in pieisew
G1. if there exists an equilibrium, it lies in the interior of a  smooth systems, but describe geometric rules that getigrica

regionR?;, so thath(x) # 0, must be adhered to near a switching boundary by limit cycles
and equilibria, in the absence of boundary intersectiogsviB
olating any one of the inequalities above we obtain a disnaity-
induced bifurcation. As stated in Sec. 4, (strong) discuuity-
induced bifurcations imply non-generic configurations of i
G3. if a non-sliding segment passing through a given pointariant sets and boundaries. Specifically, bifurcationsapfi-

x ¢ Y reachest at x, it does so in the interior of a libria or pseudoequilibria occur when they collide with &tsv-

sliding or crossing region, s6,h(x) # 0 for all ¢, ing or sliding boundary, violating G1-G2, while bifurcati® of

G2. ifthere exists a pseudoequilibrigmit lies in the interior
of a sliding or escaping region, so thatx) = 0 and
Ly h(x) # 0forall i,



limit cycles occur when a cycle intersects a switching atisty ~ This bifurcation has been studied for the first time in [64] in
boundary non-generically, violating G3-G5. Since the ratu three-dimensional systems, but ardimensional analysis has

of these bifurcations is essentially geometric, geomedrylze  not yet been carried out.

used to catalogue them. In the following section, we firsi$y d The conditions that must be satisfied for B1 and B2 to be
cuss codimension-one bifurcations, occurring when onéef t generic have not been rigorously studieddimensions, (with
genericity conditions is violated, and then move on to discu a few exceptions, see Sec. 5.2.1). However, the discussion
a starting point for classifications of codimension-twaibifa-  above implies that B1 and B2 must satisfy the following gener
tions. In both cases, we address first bifurcations of duyiali  icity conditions:

d d ilibria, then th f limit cycles. . A .
and psetidoequilibria, then tose ot fimit cycles B1. the equilibrium and pseudoequilibrium are hyperbolic,

5.1. Codimension-one discontinuity-induced bifurcagion h'.t th? boundafY trgnsversely and, WlthOL.'t IO.SS of gener-
ality, if the equilibrium belongs td?; then it hits where

5.1.1. Equilibria and Pseudoequilibria o L, h # 0, and where the gradient vectorsiofind each
Discontinuity-induced bifurcations of equilibria and pse L7 h(x)form = 1,...,n — 1, are linearly independent
1 900y 9 1

doequilibria occur whenever the genericity conditions @dl a
G2 in Sec. 5 are violated, implying that an equilibrium meets B2. the pseudoequilibrium s hyperbolic, crosses fromirstjd

the switching boundary, or a pseudoequilibrium meets the to escaping regions, and does so whéfeh # 0 and
boundary of a sliding or escaping region. These can happen in £22h # 0.
two ways:

We discuss the unfoldings of these in Sec. 6.1.
B1. the simultaneous collision of an equilibrium and a pseu- o
doequilibrium at the boundary of a sliding/escaping re-5.1.2. Limit cycles

gion, called a boundary equilibrium, Discontinuity-induced bifurcations of limit cycles ocauhen
o o ) conditions G3 and G4 in Sec. 5 are violated. This happens
B2. collision of a pseudoequilibrium with a two-fold. when:

It may not be immediately obvious that B1 and B2 should B3 a non-sliding segment of a cycle reaches a boundary at a
be the only generic ways that a pseudoequilibrium can hit the fold point.

boundary of a sliding/escaping region, or that B1 shoulchiee t
only generic way an equilibrium can hif. These are facts B4. a sliding segment of a cycle reaches a boundary of the
that have not previously come to light in the literature. {he sliding/escaping region at a cusp.
are, however, an immediate consequence of the generic lo
geometry, as we now briefly explain.

Regarding B1, if an equilibriunk, is a generic zero of;
(without loss of generality), then it lies at the intersentbf a
pair of curves given by the following two sets of equations:

C?hese both involve a limit cycle grazing (making quadratin
tact with) a boundary: a non-sliding segment graziho B3,
and a sliding segment grazing the sliding/escaping boyndar
in B4. The list is clearly incomplete. If we relax the gener-
icity condition G4 in Sec. 5, eithe@?lh # 0 is violated in

_ 2 _ _ pn-1 _ which case we can obtain B4 above /M, h # 0 is violated in
Lrnhlx) = Lph(x) = . = L5 7h(x) =0, (19) which case the cycle intersects a twf%ld. At first this appe
wheren is the dimension of the system, i®.c R™, and to be in contradiction to the case G5 in Sec. 5. However, it is
known in three dimensions (see for example [49, 94, 65, 64])
f1(x) = n(x) f2(x), (16) that, depending on the topology of the sliding vector fieldts

an intersection can occur, either generically (as in Fig. dtO
for some scalar function(x), with (%) = 0. If a system with  in the unfolding of a one-parameter bifurcation (as in asoth
x € Yis perturbed, we generically find two points nearby, saycase of the two-fold, shown in Fig. 11). We therefore must
xr € ¥ andxp € ¥, that satisfy (15) and (16) respectively; add, as we did in Sec. 5, a speculative case of codimension-
xr is ann-th order tangency between the flow ff and¥,  one discontinuity-induced bifurcation of limit cycles athoc-
andxp is a pseudoequilibrium of, if n < 0 (f » > 0itisa  curs when:
crossing point). The sign af atxp changes as the equilibrium o
passes through it, and therefore the inequajity 0 is always B5. a_s!ldmg segment o.f a cycle reaches a boundary of the
satisfied — and a pseudoequilibrium exists — on one side of  Sliding/escaping region at a two-fold.
the bifurcation. Part of this analysis is contained, withter
details, in [37].

The codimension-one bifurcation scenarios B3-B5 are known
: . _inthe literature asliding bifurcations In [12, 15] four types of
~ Regarding B2, at a pseudoequilibrium (16) must be satisg|ijing pifurcation are found, under the hypothesis thattih
fied. If the pseudoequilibrium collides with the boundarytsf furcating cycle has no sliding or escaping segments away fro
sliding/escaping region, then eith¢r or f, vanishes, which e tangency. In [65] the local geometry is analysed, réngal
is the boundary equilibrium bifurcation B1, or bofnand f2 a¢ four additional scenarios of sliding bifurcationsdting

are tangent to the switching boundary, which occurs at foldsggcaping regions are possible. We introduce unfoldingalfor
Generically, these intersect transversely and form a ®id-f ¢ ihese in Sec. 6.2
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Figure 11: Generic dynamics in a piecewise smooth systemein the case
G5 (Fig. 10), a limit cycle will not generically hit a two-fd| but may do so as
a parametey. is varied.

Similarly to equilibria in B1-B2, the conditions that must

be satisfied for B3-B5 to be generic have not been rigorously
studied inn-dimensions. However, a brief inspection suggests

that they should satisfy the following genericity conditso

B3. the cycle is hyperbolic, and does not involve non-generi
intersections outside the neighbourhood of the fold, wher

L2 h#0,L,h #0,

B2.2. the pseudoequilibrium grazes the two-fold,
B2.3. a pseudoequilibrium collides with a cusp.
Unfoldings for these will be discussed in Sec. 6.3.
5.2.2. Limit cycles
The genericity conditions B3-B5 in Sec. 5.1.2 can be vio-

lated in three essentially different ways, which were dfeesh
in [67] as:

Type I: the inequalities o'},  are violated,

Type II: the cycle is nonhyperbolic or has homoclinic /
heteroclinic connections to equilibria / pseudoequilibri

Type llI: the cycle has more than one grazing with a
switching boundary, or boundary of a sliding/escaping
region.

Unfolding for these will be discussed in Sec. 6.4.

§.3. Boundary-intersection crossing bifurcations
Dynamics of a piecewise smooth system at a boundary in-

B4. the cycle is hyperbolic, and does not involve non-generi tersection can be rather complex. One reason for this is that
connections outside the neighbourhood of the cusp, whetBe setf” in (3) may contain an infinite number of vectors ly-

L3 h#0,L,h #0.

For case B5 there is insufficient theory to speculate abmémge

ing in the tangent space of the boundary intersection. Aitem
to define simplified dynamics in such cases have been made in
[2, 3, 42]. In the presence of a transverse intersection dwtw

icity conditions inn dimensions, other than that the cycle shouldfinjtely many switching boundaries, the genericity corutit

involve only generic intersections outside the neighboaodof
the two-fold.

5.2. Codimension-two discontinuity-induced bifurcation

The genericity conditions in the previous section suggestG2.

certain codimension-two bifurcation scenarios are alssspo
ble.

5.2.1. Equilibria and Pseudoequilibria
Codimension-two discontinuity-induced bifurcations qtie
libria and pseudoequilibria occur whenever the generiity-

ditions for B1 and B2 in Sec. 5.1.1 are violated. Considering

first B1, this can happen in four ways:

B1.1. the equilibrium or pseudoequilibrium is nonhypeibol
when it hits the boundary,

listed at the beginning of Sec. 5 must be amended:

G1. if there exists an equilibriug, it lies in the interior of a
regionR;, so thath(x) # 0,

if there exists a pseudoequilibriury it lies in the inte-
rior of a sliding or escaping region, away from tangencies
(e.g. folds and cusps) and boundary intersections,

. if a non-sliding segment passing through a given point
x ¢ Y reacheg atx, it does so in the interior of a sliding
or crossing region, away from tangencies and boundary
intersections,

G4. if a sliding segment passing through a given pairg 3
reaches a boundary of the sliding or escaping region, it
does so at a fold, a two-fold, or at an intersection between

two smooth portions of.

B1.2. the equilibrium or pseudoequilibrium grazes (makeslyatig;s,rcations obtained by violating conditior®1, G2, or G4,

contact with) the boundary,

B1.3. an equilibrium off; hits the boundary wheré, is tan-
gent toX,

B1.4. the equilibrium collides with a point of tangency otler
n—+ 1.

Secondly, considering B2, the genericity conditions cawibe
lated in three ways:

B2.1. the pseudoequilibrium is nonhyperbolic when it hits t
two-fold,

in the presence of boundary intersections have never beén st
ied. All existing results concern the violation of condit&'3,
when a non-sliding segment of a limit cycle reaches a bound-
ary intersection. In this case, we must assume that the cy-
cle is hyperbolic, involves only generic intersectionssidg
the neighbourhood of the boundary intersection, that ndne o
the neighbouring vector fields is tangent to any one of the two
smooth portions of:, and that the intersection involves only
two smooth portions of.

The scarcity of results on bifurcations involving boundary
intersections prevents a list of the possible codimensianbi-
furcations being made at this stage.



Near the origin and for smal}, we can approximatg¢; andh

. _ . with their lowest order expansiofi = f1 x(0; 0)x+ f1,,(0;0)~,
Following on from the methods used to define the bifurca-7, £2(0;0), andh = h_,(0;0)x + h_(0;0)v. The quantity

tion scenarios in Sec. 5, we begin to unfold them by analysing}cl_w(o;o)V is identicallyyzero sinceflr(O) is constant. Then,

the local geometry. Most examples of unfoldings in the diter (17) can be simplified to

ture analyse specific systems in low dimensions, and few have

6. Unfoldings

been studied in a way that generalises tdimensions. In this fix(0;0)x = pf2(0;0), p<O, (18)
section we focus only on the discussion of unfoldings thptyap hx(0;0)x = —h,(0;0)y,
in n dimensional piecewise smooth systems. whose solution is

— . -1 .
6.1. Codimension-one bifurcations of equilibria x = “[f1=x(079)i]l (J(;Q.(OO)’VO)’ (19)
6.1.1. B1: The boundary equilibrium bifurcation =7 <(0;0)[f1 :(0.70)]—1f2(0. 0)’

From (16) we have two possible scenarios: o - )
The genericity conditions B1 in Sec. 5.1.1 ensure that these

- Persistence where an equilibrium turns into a pseudoe- expressions are well defined. The pseudoequilibrium esigts
quilibrium. wheny in (19) is negative, while for our choice bfthe equilib-

- Nonsmooth Fold where an equilibrium and a pseudoe- rium exists (belongs td&;) only whenh(0,~) ~ h_(0;0)y >
quilibrium meet at the boundary and annihilate. 0, giving the conditions as above.

These are illustrated in Fig. 12, and analytic conditiorest th Example: Let
discriminate between the two scenarios can be derived from

the local geometry as follows. Assume that the vector fields }01 = E(x)l;)r kw2, 1), (20)
2 = ) ’
PerSiStef}Ce / andh = x5 + v, thenk > 0 gives persistence, while < 0
/% _ gives a nonsmooth fold, aspasses through zero.
\ s 7,,£r/f 1 L
/o0
o~ nonsmooth fold \ P
o \ \ % k>0
\’ y //
. . {’X\ i
y>0 y=0 y<0
Figure 12: The persistence and nonsmooth fold scenarioswidary equi- k<0
librium bifurcations. In any number of dimensions, the fimes f; (x) and
f2(x) are linearly dependent along a one dimensional curve (dasieen
by (16). If this intersects the sliding region (shaded) tagrseudoequilbrium y<0 y>0

exists, while an equilibrium exists 4f > 0.

and the switching boundary depend on a real parametso
f1 = f1~(x), fo = fa4(x), h = h(x). Then assume, with-
out loss of generality, that; has an equilibrium at = 0, un-
dergoing a boundary equilibrium bifurcation whenr= 0, and
thath > 0in R; andh < 0in Ry. Writing the Jacobian matrix
of f; asf; x, we have that:

- if hx(0;0)[f1x(0;0)] 7 f2(0;0) > 0, there is persis-
tence aty = 0,

- if hx(0;0)[f1.x(0;0)] 71 f2(0;0) < 0, there is a nons-
mooth fold aty = 0.

These conditions are derived as follows. For nonzempoint
x € Y is a pseudoequilibrium if it satisfies (16) with< 0 and
it lies on, hence it satisfies:

f1(%,7) pf2(x57),
h( a7) = 0.

p<0, (17)

Wi

Figure 13: Persistencé (> 0) and nonsmooth-foldi( < 0). Phase portraits of
(20) with a switching boundary at, = —~, a sliding region over; < 0 (full
line) and crossing over; > 0 (dashed line). Equilibria (E) lie dtc1,z2) =
(0,0) and pseudoequilibria (P) &1, 22) = (kv,0).

The classification into persistence and nonsmooth foldscase
can alternatively be obtained algebraically, by lineagzthe
vector fieldsf; and fs about the boundary equilibrium point,
and considering the characteristic polynomials of thespee-
tive Jacobians. Such analysis can be found in [14, 16], where
Feigin’s classification [47] for fixed points of piecewiseanth
maps was extended to flows.

The distinction into persistence/nonsmooth fold cases@bo
does not give a full account of the nearby dynamics, and ishdee
none is known. For planar systems, it is known that branches
of limit cycles (and even chaotic attractors) can emergmfro
boundary equilibrium bifurcation points, see Sec. 7.2utio
at present there are no tools known for generalising thesgtse
ton dimensions.



6.1.2. B2: A pseudoequilibrium traversing a two-fold U orazing
No study of bifurcations involving pseudoequilibria paggi sliding
between sliding and escaping regions at two-folds have been
made, to our knowledge, in > 3 dimensions. (However, ref- ) :
erence is made in [49] to a paper [1] that applies point mappin . — - \:\ /(
techniques to study two-folds in higher dimensions.) Thaelle M (i) + ‘ o
ing order dynamics near a two-fold in three dimensions was
studied in [49, 94, 64], but the codimension-one bifuraatid
a pseudoequilibrium, passing between sliding and escaping
gions via a two-fold, is a consequence of higher order analy- <Q
sis briefly introduced in [64], with a deeper analysis forgnin (i) ; }
the subject of a forthcoming paper [31]. An illustrative exa
p|e taken from that paper is shown in F|g 14, where a brancﬁigure' ]:5: The four S.liding bifurcations. Three of t.heset_etaﬂace Wh(?l’l a
ofnon-siding imit cycles which vanishes as fhe pseudiaui 7 S410 Se0Ter s 2 0. 0 e cale razngeang o s
rium traverses the two-fold. Ferdimensional systems, all that ¢sp and is called an adding sliding bifurcation. A cortinsichange of initial
is known is that the bifurcation B2 takes place whgrand f> condition gives a continuous change in the orbit topology] & the orbit's

crossing
~ sliding
> y .

switching
__sliding

.

adding
sliding

are antiparallel at some point on the two-fold. interaction with the switching boundary.
sliding catastrophic .
L grazing visible
7 sliding ___ canard
escaping \:> >
y>0 y=0 <0 % y
o Foo
Figure 14: The passage of a pseudoequilibrium through afdWdoin three
dimensions. A pseudonode in the sliding region becomes adpsaddle in simple robust
the escaping region. A non-sliding limit cycle (existingheir fory > 0 or - Cangrd canard

~ < 0)is also annihilated in the bifurcation. The bifurcatiorrgraetery is the
quantityl — (L, L h)(Lp, Lp h)(Lgy Ly R)™H(Lsy L1, h) ™ evaluated

at the two-fold, and vanishes whefi and f2 are antiparallel there. Such a
cycle is shown fory < 0. A second scenario is obtained by reversing the
direction of time.

(i) )

Figure 16: The four catastrophic sliding bifurcations. 3@énclude one case
that occurs when a non-sliding segment hits a fold, callest@strophic grazing

6.2. Codimension-one bifurcations of limit cycles sliding bifurcation. The others take place when a slidingnsent hits a two-
fold, and are called visible, simple, and robust canards.

In a smooth vector field, the codimension-one bifurcations
that can affect limit cycles have been shown to be few in num-
ber and are well understood (see e.g. [59]). This success apne-parameter set of final conditions, are obtained by savgr
pears unlikely to be replicated in piecewise smooth systasis arrows in the figures. The configuration in Figs. 15 (i)-@f)d
is already clear from the many codimension-one bifurcation 16 (i) take place at a fold, Fig. 15 (iv) at a cusp, and Figs. 16
known in two-dimensions (see Sec. 7.1). To make headwa(ji-iv) at a two-fold.
into the general study of global discontinuity-inducedibifa- To link these portraits with the orbit geometry of bifurcat-
tions, new tools are likely to be needed. At the moment, théng cycles, it suffices to decompose the Poincaré map for the
most promising approaches are based on a local analysis Bifurcating cycle into local and a global parts as followaké
the switching boundary, and exploit the fact that discariin & small neighbourhoog of the tangency point (see Fig. 17),
induced bifurcations correspond to a non-generic conftipra  and a Poincaré section on the boundarypthen the Poincaré
of segments, specifically, in the case of a limit cycle, ahpoi Map can be written as the composition of two maf, ) de-
where the flow is tangent to the switching boundary. scribing the flow inB, and¢(x, ), describing the flow outside

As we saw in Sec. 5.1.2, a cycle undergoes a sliding bifur3. Both maps depend on the bifurcation parameteiCon-
cation when one of its segments reaches a fold (B3), a cuspder a cycle satisfying one of the bifurcation conditiané83),
(B4), or a two-fold (B5). A classification of the possible bi- (B4) or (B5), fory = %, and callx an intersection of the cy-
furcation scenarios is made possible by analysing the gegme cle with the boundary of3. Existence of the cycle ensures that
of the flow near these points. In [65], the authors have identhe image of the couplgx, 7) under one of the four, possibly
tified all structurally stable configurations of orbits drigting ~ set-valued, functions
from a continuous one-parameter set of initial conditioearn

a fold, cusp, or two-fold. These classify the local flow into a . ¢E€(X’V)’7) % (21)
small set of topological classes based on the type of tarygenc o~ (BT (x,7).7) — %, (22)
Figures 15 and 16 portray these configurations. Eight deal sc o(x,7) — H(x,7), (23)
narios, describing families of orbits terminating at a @ombus o~ (x,7) — B(x,7), (24)
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always contains zero. Then, the existence of a family ofag/cl and hence determine what kinds of global bifurcations tsesa
can be discussed with the help of the Implicit Function Tkeor in Fig. 15 will give rise to. The effect of encountering a sedo
whenever one of the functions (21-24) is smooth and single-
valued. The details of this reasoning are summarised in Sec.
6.2.2, here we summarize the basic results:

- If (21) or (22) is single-valued atx,vy) = (x,7), then
the bifurcating cycle belongs to a family parametrised by
~, with geometry near the tangency as in Fig. 15. Notice
that the two branches of the family originatingrat= ¥
may exist on either side af, or on the same side. This p
produces persistence and nonsmooth fold scenarios, as >
explained in Sec. 6.2.1.

o Figure 18: Example of a persistent sliding bifurcation: aleygains a slid-
- If (21) and .(22). are set-valued @RJ) = (XKY), but ing segment. The cycle is smooth away frainso it can be described by an
(23) or (24) is single-valued, then either a one-parameteinvertible return map to the Poincaré sectidn

family of cycles coexists fory = 7, with geometry as

in Fig. 15, or the bifurcating cycle disappears~ass  sliding or escaping region opens up the possibility of theesa
changed, following the scenario in Fig 16 (i). When thesein Fig. 16. For example, Fig.19 shows an instance of the catas
conditions hold, orbits near the bifurcating cycle containtrophic grazing sliding bifurcation from Fig. 16(i) when yote
both sliding and escaping segments. encounters both sliding and escaping regions.

- If (21-24) are all set-valued &k, v) = (X, ¥), then either
¢ andg~! are both set-valued, and no local analysis can
be done, o and3~! are both set-valued, which means

that the cycle is touching a two-fold, following one of the
scenarios in Fig 16 (ii-iv).

Figure 19: Example of a catastrophic sliding bifurcationcyale is abruptly

destroyed. The cycle has a sliding segment away from thedaoyx; where

the bifurcation occurs. Therefore it has no invertible metmap. The case
shown is a catastrophic grazing sliding bifurcation.

Figure 17: Local analysis of a limit cycle at a discontinuityake a neigh-
bogrhoodB of the cycle’s i_ntersection with the switching pound&iyand a 6.2.1. B3-B4: Discontinuity maps at a fold or cusp
Poincaré map on the sectidh, then decompose the map into a local part . . . . . .
inside B, and a global par outside. Consider the configurations in Fig. 15. In all scenarios, as
noted above, the neighbourhoBaan be divided into two parts
One should note that the portraits in Figs. 15 and 16 cai/here the sequence of segments composing an orbit takes a
be applied also to sliding bifurcations of sets other thamitli 9ualitatively different form, such as those shaded and axst
cycles, such as one-dimensional stable manifolds [30]done [N Fig- 20. Consequently, the maptakes two different func-
mensional separatrices, etc., though such extensionsyoet tional forms in the two regions. In the literature, and assil
the scope of this section. trated in Fig. 20, it is common therefore to decompgsato
The key observation here, that study of discontinuity-retii & SMooth parfis,, which is the same in both regions, and a
bifurcations of a limit cycle can be reduced to local geopetr Piecewise-smooth parip,, which is the identity on one re-
is attributable to Nordmark’s pioneering work on grazinfybi ~ 9ion (shaded in Fig. 20). Theh = (s o Spas, andfpa is
cations in impact and friction oscillators (see [81], [35pn  the discontinuity map. _ _
extension to sliding bifurcations was presented in [15] iehe It ¢ and or ¢! a”dﬁf_l are single-valued, the analysis
maps are derived which correct for the presence of the discor?f the dynamics near the bifurcating cycle can be reduced to
tinuity when applied to a smooth flow continued from one sidethe analysis of a Poincaré mapo 3 or 57" o ¢~'. These
of the switching boundary. Thestiscontinuity mapsire, how- ~ are the cases associated with the scenarios in Fig. 15.islf
ever, limited to cases where the cycle encounters no more th&/S0 invertible, the differentiability of the Poincaré piepends
one sliding or escaping region, as in Fig. 18. In such cagss th Only on the properties of, and thus ofip . This may not be
allow us to determine the differentiability of the Poineamap, the case if is notinvertible:
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e crossing-sliding,

X if >0,
Bpum X — > (fo—f1)
x4+ (Ls h) 2L e R if o<,
» (26)

whereo (x) = L, h(x*);

Figure 20: Near a tangency, the state space is divided intorégions with
different orbit topologies, depending on their intersaetwith . In the shaded
region the flow induces a map= Bgs s, While in the unshaded region the flow

e switching-sliding,

induces amap = Bsas © Bp - x , if o>0,
Poa x> x+—2(££1h)2 sQ if o0<0,
: : o 3(Lph)" (L3, h)
Example: Consider a system with the state prortrait depicted (27)
in Fig.21. In this case the mafix), describing the dynamics whereo (x) = —L;, h(x*);

outside B, has constant value for atl due to the sliding seg- _ N
ment. Hence the one-dimensional Poincaré map of the cyclei e adding-sliding,
constant, regardless of the form of map

X if o>0,
Bowix = 0L h? o
x 2(£f2h)2£31hQ if o<0,
(28)
whereo (x) = L, h(Xmin);
>
and where
B Q=qLlph+ (fi — f2)Leh, q= fixfe— faxf1:

>
B These discontinuity maps were derived for the first time B].[1

. _ o ) - o For cases obtained by reversing time in Fig. 15, where a cycle
Figure 21: The Poincaré map of a cycle undergoing a slidifigrdation is . . . .
constant if the cycle has a sliding segment, regardlesseotligcontinuity in has a segment in the escaping region, the (set-valued)ndisco
the local mags. tinuity map can be easily deduced. These discontinuity maps

have been shown to be differentiable in all except the goazin
sliding case, where the map is piecewise smooth but conisiuo
Normal forms for the discontinuity maps of the scenariosat the switching boundary. As a consequence, if a Poincage m
in Fig. 15 are found in the literature. A full review is found s well defined, it is smooth in all scenarios in Fig. 15 except
in [12], and here we report simply their analytic form. In the grazing-sliding. When the Poincaré map is smooth, the only
crossing-sliding and switching-sliding bifurcations, eel x*  expected topological effect of the bifurcation is to chatige
the point where the non-sliding segment of a periodic oritst h  humber and type of segments constituting the cycle. When the
the switching manifold, in the grazing-sliding bifurcatiove  map is piecewise smooth continuous, then persistence; nons
call x,,;, the point along a non-sliding segment of a periodicmooth fold, and nonsmooth period doubling scenarios are pos
orbit (eventually continued beyond the switching manifokdéit  sible, and other invariant sets can be involved in the bifurc
minimises the fUnCtiOlh, and in the addlng-slldlng bifurcation tion. The theory of bifurcations of piecewise smooth contin
we call x,,;, the point along a non-sliding segment of a pe-yous maps is as young and incomplete as that of piecewise
riodic orbit (eventually continued beyond the fold) thatnmi  smooth flows, but some results are found in the literature, fo
imises the functiorCy, h. In all scenarios we assume thatis  example in [87].
defined wheréi(x) > 0. Then, the Taylor expansions of the
(zero-time) discontinuity mapsp . for the four generic slid-  6.2.2. Existence of cycles
ing bifurcations (in Fig. 15) can be written, to leading arde  Here we explain in detail how functions (21-24) can be used
(and omitting arguments), in the form: to obtain the results of the previous section. Consider a cy-
cle O that, for a particular valug of the bifurcation parameter

ing-sliding, ; ; ; i
* grazing-siicing ~ undergoes a bifurcation as in scenarios (B3), (B4) or (B5)

x if >0, (that is, it touches a fold, a cusp, or a two-fold). The Poiaca
Bpy i X — { (fo—f1)h i (25)  map of the cycle can be written as a composition of a local part
Xt Ls,h It o <0, B(x,v) and a global parp(x,~), as in Fig. 17. Both maps

depend on the bifurcation parameteand, if eithery or 5 is
whereo(x) = h(Xmin); set-valued, then so is the Poincaré map. Genericity ciondit

for (B3), (B4), and (B5) require that all intersections avitaym

the neighbourhoo® be transversal, and for (B3) and (B4) they
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requires also that the cycle be hyperbolic (this is not nesmys Example: Consider the system in Fig. 22, with a switching
in the case of a two-fold, where the Poincaré map and its inboundaryh = x2, and where

verse are set-valued and hyperbolicity has no meaning)selrhe

conditions ensure that, if or ¢! is single-valued, then it is fi = (@1 +wrs —w—w iz —wr) (29)
smooth, since all intersections are transversal. Singjlér or fo = (Fw iz —p),

B~1 is single-valued, then it can be expressed as the composi- _ . -
tion of one or two smooth functions, expressing the flow near g(vherew N 10'. Fory. > 0, alimit cycle with a sliding segment
tangency. Hence a compositiong@fs and their inverses gives exists (see Fig. 22). There are two foldsat= (0,0) and

a function that is piecewise smooth, composed of two smootﬁ ~ (“l’_g_)’ W:“Ch Com.C'd_e WheW”:tr?. S0 tgitt‘;:aorbg p_?ﬁses
parts continuously adjoint. rom sliding to escaping; we call this orbi nar e

Now consider the four functions (21-24). Either one Oftange_ncy infl. is visible, yvhile the tange_ncy i!ﬁQ Is invisible
these functions is single-valued néar 5), or bothg andp—t  ©F visible taking respectively the or — signs in (29). These
are set-valued. Moreover, by the considerations abovenyif a are depicted in F|g _22' FW.< 0,1n (.') _aII orbl_ts are att_racted
one of (21-24) is single-valued, thér, 7) is in the zero set of to a pseudoequilibrium (P) in the sliding region, and in i)

both its smooth parts. The Implicit Function Theorem can beOrbItS end up infy; in each case the limit cycle has vanished

; .via a simple (i) or visible (ii) catastrophic sliding bifiaton.
anﬂzgﬂéglii%r;gz;?yo smooth parts, smoothly extended I¥he.fold _that e>_<ists an =0is non—g_eneric, and were we to add
If either (21) or (22) is single-valued, then the hyperhitfic a third dlmen_s;lon, It v_vogld generically “”f_o'd t_o form a two-
of the cycleO aty implies that the Jacobian of (21) or (22)sin fold. From t_hls as_somatlon we see that _th_ls is just an exampl
is nonsingular. By the Implicit Function Theorem,sits at the _Of the two-dimensional analogue of the visible canard diass
intersection of two families of solutions, one for each sthoo " Fig. 16.
part of 5. The two families adjoin continuously, but can be
defined for values ofy on the same side of, or on opposite xz/' (53 /@\ 2/\
sides. This gives nonsmooth fold and persistence scenasos (i) TW - - L
we see in the next section. Since the patk(@f) is continuous, X0y 2
the set of orbits beginning or terminatings&ty) has geometry 1<0 1=0 150
near the tangency as in Fig. 15. The direction of time is as in

the figure if (21) is single-valued, while time is reverse(@i2) x
is single-valued. / ‘s /@\ ! P

If both (21) and (22) are set-valued, but (23) or (24) are (11 Pd ~/4 N T A A \ 4t
single-valued, then the cyoi2 has at least an escaping segment
i i iding regi rith

and IS tOUChmg the border: of a slidi 9 efg onah o .t as a Figure 22: Example of a limit cycle destroyed in (i) a visilsEnard case with
Slldlng SeQmen_t a”q touches a border of an escaping region lﬂeJr sign from (29), and (ii) a simple canard case with theign from (29),
B. The Jacobians ix of both ¢ or ¢=! and3~! or 3 have  of catastrophic sliding bifurcation in two dimensions. Ttetels swap position
a null space that is, typically, one dimensional in the pmese asy changes sign. Whem = 0 the sliding and escaping regions are connected
of sliding and escaping seaments. Unless these null spaees é/ia an orbit which passes through a degenerate-fold, analledcthe ‘canard’

9 P g 9 ' . . _orbit. Both of these have recently been found to play impantales during the
orthogonal, the Jacobian of (23) or (24) has_ a One_'d'meamon“canard explosion” in a singularly perturbed van der Polilzor, see [41],
null space, which means that either no solution existgfoear  and their deeper connection to singular perturbation pinema is the subject
~, or a one-parameter family of solutions coexists at 4. The of ongoing study. Equilibria and pseudoequilibria are redrk and P.
first case corresponds to the scenario in Fig 16 (i). In thersdc
case, a one-parameter family of cycles has local geometry as

Fig. 15. 6.3. Codimension-two bifurcations of equilibria
Finally, if none of (21-24) is single-valued, the Implicitfc- We are not aware of any analysis of bifurcations of type
tion Theorem cannot be used. B1.2-B1.4 from Sec. 5.2.1 that apply in a general number of
dimensions (results limited to two dimensions are disaligse
6.2.3. B5: Canards at a two-fold Sec. 7.1), but some results exist regarding type B1.1. Nonhy

Regarding the canard cases of catastrophic sliding bifurcgerbolic equilibria generically undergo a Hopf or saddéela
tions in Fig. 16 (ii)-(iv), nothing is known other than the-lo bifurcation under one parameter variation. The case of adhou
cal geometry required for them to occur. No tools yet exist toary equilibrium bifurcation simultaneous to a saddle-nofle
analyse them globally, but they have been shown in [41] to béhe pseudoequilibrium has been recently studied in [37]e Th
related to canards in singularly perturbed systems. Thieeo-  local unfolding shows a boundary-equilibrium bifurcat@rang-
tion is briefly discussed in Sec. 8.3, and motivates the @i  ing from persistence to nonsmooth fold across the codimeansi
ogy applied to them in Fig. 16 (ii)-(iv). These ‘nonsmooth ca two point, and a saddle node of pseudoequilibria adjointireg t
nards’ effectively provide a classification of the diffetéocal  point tangentially to the boundary equilibrium. The dusea
formsthat ‘canard explosions’ (to use the terminology f®em  of a boundary equilibrium bifurcation simultaneous to adiad
gular perturbation theory, or ‘catastrophic sliding bdations’  node bifurcation of the equilibrium has not been studiedthi
in our terminology) can take.
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analysis of the same bifurcation in the discrete-time case ¢ bifurcations of cycles which, as seen in Sec. 5.1.2, induce a
ducted in [29] suggests that a similar unfolding should be expiecewise smooth continuous Poincaré map.
pected. All other combinations are still waiting to be explh

6.5. Boundary-intersection crossing bifurcations

6.4. Codimension-two bifurcations of limit cycles As we discussed in Sec. 5.3, the most well studied bifur-
Sliding bifurcations of Type | in Sec. 5.2.2 occur when thecations in this category occur when a non-sliding segment of

tangency between the vector fields and the boundary is degea-limit cycle reaches a boundary intersection. Local difieon

erate. Referring to the genericity conditions in Sec. 5.thz  nuity maps provide useful insights, just as they did in the ab

can be a cusp point or a two-fold in case B3, and a fourth-ordesence of boundary intersections. These maps have been ob-

tangencypj’;1 h=0) or a two-fold in case B4. The case of a graz-tained in [11, 12] in the absence of any sliding/escapingreg

ing with a cusp point or a fourth-order tangency is discussed near the boundary intersection, and have been extended in th

[66], where the discontinuity-induced bifurcations thdiain ~ case of a single sliding region, and provided no sliding egcu

these codimension-two points are listed, but only the whiigi  along the intersection [27]. In all cases, the discontinoiap

of the degenerate crossing-sliding is reported, while tifeld-  has been found to be piecewise smooth and continuous. This

ing of all other cases is left undone. The case of other plassibimplies that, when a Poincaré map can be defined, it is piece-

degeneracies, which involve grazing at two-fold pointsyeha wise smooth continuous. The theory of piecewise smooth con-

not been analysed to date. tinuous maps, discussed in [44, 45, 46, 47, 48, 13], predicts
A partial unfolding of all type Il bifurcations is provided that the cycle can undergo nonsmooth fold, persistence, and

in [29], for nonhyperbolic cycles undergoing a grazing with nonsmooth period doubling scenarios analogous to those at a

boundary, without further assumptions on the dynamics en thgrazing-sliding bifurcation.

other side of the boundary or on the geometry of the boundary.

Intuitively, th(_es_e codimension-two points are the inter'sm_ of 7. Specific results inR™ (n < 3)

(at least) a sliding bifurcation curve and aflip, fold, or Neirk-

Sacker bifurcation curve. The analysis in [29] retrievesitital In this section, we consider a few examples of phenomena

that are unique to piecewise smooth systems, but which loave t

@ T J date eluded generalizationtedimensions. All of these results
Fold ! Flip 2 N are obvious starting points for future work.
SBj SB1
7.1. Planar Filippov systems

SB; An extensive study of one parameter bifurcations in planar

Filippov systems is made by Kuznetsetal. [73]. Here the au-

Figure 23: Partial unfolding of the codimension-two slglibifurcations of thc,)rs gon5|der a FIIIppOV system Wher,e the SWItCh!ng boq’_n,da

nonhyperbolic limit cycles. (i): sliding bifurcation + fd SB; and SB are Yis S|mp|y a smooth curve. Dependmg on certain conditions

sliding bifurcations the two cycles involved in the fold ii¢ation. (ii): slid-  satisfied by the vector fields, there are four types of spstidxl

ing bifurcation + flip; SB and SB are the sliding bifurcations of the period- ing points: singular sliding points, pseudoequilibriaubdary

one and period-two cycle respectively. (iii) sliding bi¢ation + Neimark- A . . -

Sacker; SB is the sliding bifurcation of the cycle, NS is the Neimarkeker, equ'“b”a and tangem points, WhICh we will denmeﬁy o

and GR is a grazing bifurcation of the torus. Bifurcationvesr near any of In order to consider generic cases at a tangency, it is as-

these codimension-two points must be arranged as in one difitee portraits.  sumed that both vectors (7') and f2(7) are nonzero and that

However, the presence of other pif_urcat_ion curves, andyhamics across the point into its corresponding regioﬁi of them is tangent t&.

curves, depend on the type of sliding bifurcation, and thepete unfoldings . . .

are still unknown. This allows for two different types of tangent pointarfgen-
cie9; theinvisibleand thevisible cases, where the flow curves

geometry of these curves near the codimension-two point (reéespectively towards and away from as we introduced in Fig.

ported in Fig. 23) for any of the sliding bifurcations admitby ~ 7. The approach taken in [73] is to propose different biftiora

the configurations in Figs. 15 and 16, but it does not allow descenarios, and examine their topological detail. The stena

duction of the complete set of bifurcation curves, nor oftyipe ~ considered are stated to be generic, and assigned norned,for

of dynamics that surround these curves. The complete unfolddnd a forthcoming paper [58] is intended to prove their gener

ing of a single case, the fold-grazing-sliding, can howeser icity. The different scenarios considered are:

deduced from the results in [90] on the fold border-collisio

a piecewise continuous map, knowing that the Poincaré rhap o

1. codimension 1 local bifurcations

a grazing-sliding cycle is indeed piecewise smooth comtirsu - collisions of a focus witl: (boundary focus

Interestingly, the onset of chaos after the grazing is jotedi - collisions of a node witht (boundary nodp

Car;?‘egeonuetral analysis of Type Il bifurcations has never been . collisions of a saddle with (boundary saddle
Finally, some codimension-two bifurcationseftlimensional - collisions of tangent points

piecewise continuous maps have been studied in [87, 90, 89], - collisions of pseudoequilibria

and the results should apply to codimension-two graziidirg) 2. codimension 1 global bifurcations
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- bifurcations of sliding cycles calledgeneralized Hopf bifurcatior{32, 100, 88] or discontinuity-
induced Hopf bifurcations [12, 16]. The basic idea here has
been to characterize the generalized Hopf bifurcation agbe
given by the change from stable focus to unstable focus via a
3. codimension 2 local bifurcations centre for a basic underlying piecewise linear system, whic
takes the place of linearization in the smooth case.
Again little work has been done to generalize results found
in planar Filippov systems. Notable exceptions are restiito
4. codimension 2 global bifurcations the case where the vector field is continuous across thetswitc
ing surface. For piecewise smooth continuous systems, [71]
extends the idea of an invariant manifold to describe imarari
The constructive approach taken to derive these has its limcones for generalized Hopf bifurcations, and Simpson & Kleis
itations, even in two dimensions. In the case of codimensiofi88] prove the following result:
1 global bifurcations, the authors in [73] considered lm&ir
tions of cycles which collide witi. They uncover the four
familiar sliding bifurcations of grazing-sliding, addirgiding,
switching-sliding and crossing-sliding. But they do notlfthe 0. Asu — 0,, the eigenvalues of the equilibrium approach

catastrophic sliding_bifurcations descriped_in [65], ésippla- AL + iwy, and asp — 0_, they approach-Ag =+ iwy where
nar examples of which are shown here in Figs. 22-26; these als ] Y )

are not discussed generally in a forthcoming paper [58] abut AL, Ar,wr,wr > 0. DefineA = p — o ThenifA <0,
case similar to the ‘simple canard’ in Fig. 22 appears in [58]there exists: > 0 such that for allu € (0, ¢) there is an at-
as part of the codimension two unfolding of a fold-cusp singu tracting periodic orbit whose radius i€ (1) away from*
larity. A direct inspection of orbit configurations on eitride ~ @ndVu € (—¢,0), there are no periodic orbits near”. If
of the switching boundary in Fig. 22 reveals that these bifur & > 0,3¢ > 0 such thatvy. € (—¢,0) there is a repelling peri-
cations must be present in the problem in general, hence it Rdic orbit whose radius i©) () away fromz* andvy. € (0, ¢),
legitimate to ask whether, in the other cases considerezBly [ there are no periodic orbits near".

the constructive approach may have left other codimensian- The same authors emphasize the difference between this

bifurcations undiscovered. and the smooth Hopf bifurcation. First, the generalized fHop
At present it is not known to what extent this work can besolution is made up of two spiral segments; it is not elligtic

generalised, either to systems with boundary intersegtion  Second, the growth rate is linear jn whereas it i90 (u1/2)

with n-dimensions. An obvious generalization is to a bimodalin the smooth case. Finally the criticality of the bifurcatiis

(two-region) system im-dimensions. In that case, the switch- determined by the linear terrh, rather than by cubic terms.

ing boundary has — 1 dimensions. Equilibria close t can A paper by Han & Zhang [60] studies the different ways

then take a large number of different forms, depending on then which planar limit cycles can be produced from the three

eigenvalues of the piecewise smooth vector field’s Jacobian (different possible piecewise smooth foci. They base their r

is not immediately clear how any of these generalizatioms casults on previous results of [25], but as before, the poitsiloif

be achieved. The classification of sliding bifurcations igs=  generalization to higher dimensions is not obvious.

15-16 applies im-dimensions (see [65]) and therefore partially  Simpson & Meiss [88] speculate why it might be difficult

addresses the problem, but only away from boundary interseg¢o generalize their work te-dimensions. The main challenge

tions and equilibria. The incompleteness of the classioalf s that it is not clear how to obtain the required centre nwdif

planar codimension-one bifurcations proposed in [73] a&/e reduction. They also point out that in higher dimensions an

that piecewise smooth systems have surprises to sparee Whigquilibrium on a switching boundary can be unstable evernwhe

completing this even in two dimensions remains an open prolhoth Jacobians have all their eigenvalues in the left haadey!

lem, a more pressing need is to know how current results cagiting an example given in [20].

be applied in higher dimensions.

- pseudo-homoclinic bifurcations
- pseudo-heteroclinic bifurcations

- degenerate boundary focus
- boundary Hopf

- grazing-sliding of a nonhyperbolic cycle

Theorem 7.1 ([88]). Suppose that the system is continuous
and sufficiently differentiable and that it has an equilibri
that crosses the switching boundary at= x* wheny =

7.3. Bifurcations of the sliding boundaries
7.2. Generalized Hopf bifurcation Section 3 provides a short overview on the geometry of
For a smooth system, a Hopf bifurcation occurs when 4he boundaries of crossing, sliding, and escaping reglns
complex conjugate pair of eigenvalues crosses the imaginaiClearly, a perturbation of a system’s equations can in gener
axis. This cannot occur at a switching boundary becauseeof th@lter this geometry, therefore it is natural to consider sar-
impossibility of linearizing the vector field across theatis- vious topological changes that occur at the boundariekereit
tinuity at the origin. Strictly speaking, therefore, a Hdpf  at self-intersections of the switching boundaryor at the slid-

furcation in a piecewise smooth system can only occur éptire INg boundaries or..  Bifurcations concerning uniquely the
within one of the open regions; . geometry of boundary intersections are mostly ignored é th

In this section we consider periodic orbits which bifurcatelitérature. Topological changes of sliding boundariesehe
from stationary solutions of Filippov systems. These haab C€ived more attention, at least in two or three dimensioes (s
[49, 73, 94]).
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Degenerate tangencies give rise to structurally unstétile s X visible-visible double fold

ing boundaries, and when perturbed these produce biforeati A A o A A A
that create regions of sliding, escaping, or crossing. {dens N\ X A4 7\ Y A
for instance the cusp which, as we have mentioned in Sec. 3, is u<0 u=0 >0

topologically stable in three or more dimensions. We car con
sider (13) in the two dimensional space(of, z5) and treatr; Figure 25: Double tangencies and sliding regions: two faide/o dimensions.
as an unfolding parameter. Whegn = 0, ¥ consists of the cusp As a pair of tangencies, one each side3gfexchange ordering, a crossing
: : P [T region (dashed line) opens up between two visible foldaglyietween sliding
point S_u_rrounded _by r_eglons of (_:ros_s_lng ifthe cusp is itwesi and escaping regions (full lines). This corresponds to {@@) the ‘+’ signs
and sliding/escaping if the cusp is visible. Agpasses through  and withs; = —s, = 1.
zero a bifurcation takes place that opens a region between th
pointszy = +,/z3 onz; = 0, bounded by folds, one visible _ _
and one invisible. The normal form (13) gives sliding if weaa  (Which occurs at a fourth order tangency), the lips and beak-

the ‘+ signs and escaping if we take the"signs; the latter is  t0-beak (which occur at a degenerate form of the cusp), and
illustrated in Fig. 24. the degenerate two-fold (where two fold curves intersecino

transversally); each of these will have topologically &aioun-
X invisible cusp terparts in four or more dimensions, just as the planar codp a

. } ~\ } } j } } j } double fold have stable counterparts in three or more dimen-
(R Py

t + >X2 * + ””” ++ sions.

3<0 x3=0 x3>0
Y visible cusp 8. Where do we go from here?
s Nk o Loh b \ VA In previous sections we have drawn together results that
+ * * + * * * * * point towards a general theory of discontinuity-inducddtoia-
x3<0 x3=0 x3>0 tions, and efforts to this end are unlikely to have peakeds$r

ing concerns involve how to balance generality and rigour in
Figure 24: Double tangencies and sliding regions: the auswa dimensions. classifying nonsmooth systems, to avoid, for instance asem

As two tangencies on one sideXfcollide in a cusp, a region opens up between .. . . . . AT
them. Regions of crossing (dashed line) surround a regioescéping (full tic differences obscuring dynamical similarities. Whee &vo

lines) in the case of an invisible cusp, and a regions of esgagurround a  NONsMooth systems topologically equivalent, and when ey th
region of crossing in the case of a visible cusp. Reversingwar changes  undergo bifurcations? In spite of the results we have brbugh

escaping to sliding. together here, these are issues on which a consensus is yet to

) o be reached. In this section we briefly outline some promising
The same reasoning applies in the case of the two-foldy; actions for future progress.

Its two-dimensional counterpart is the “double fold”, odog
when the piecewise smooth flow has tangencies above and bg-; Pinching and regularization
low 33, which exchange ordering as a parameter varies, given

by a normal form One way of dealing with a discontinuity on the righthand

side of the equatiok = f is to smooth it out. Iff = f+

fi = £(s122, 1), 30 forh < 0, andf = f~ for h > 0, we can approximate the
fo = Z£(sa(x1 4+ 2z —p), 1), (30) discontinuity ath = 0 by a ramp ovefh| < ¢, for somee > 0,
by writin
where we can choose the signs on each row independently, Y J
wheres; » take valuest1 andy is an unfolding parameter. The . 1+ oh(x)/e) ., 1—o(h(x)/e€) ,_
two folds lie atzo = 0 andxo = p/2, and their visibility de- x= 2 )+ 2 f~(x), @1
pends ons; and sy as in (14). Asp changes sign, either a
region of crossing closes and re-opens and lies betwedngglid Where¢(y) = —1fory < —1, ¢(y) = +1fory > 1, and

and escaping regions (shown in Fig. 25 for the case with tw@(¥) € (=1,1) fory < —1. Then (31) is called a regulariza-
visible folds) or a region of sliding closes then a region &f e tion, an_d¢ IS a transition fqnctlon. Furtl_w(_ar smqothlng.can be
caping opens, lying between crossing regions. In each caseCQnvenient for numerical simulations, giviaga differentiable
bifurcation has taken place aschanged Sign. (We should re- sigmoidal form instead. Whatever the differentiabilityﬁoflt is
mark that in [73] the double fold is given by different normal "0t known how well regularization approximates the dynamic
forms depending on the types of visibility involved. Howgve &t & discontinuity. _ o _
(30) provides a single form giving the correct topology fir a It has been shown th_at, given the regularization of a piece-
cases, including pseudoequilibria and limit cycles whighde ~ WiS€ smooth system, a singularly perturbed system can Inelfou
not discuss here). that is topologically equivalent [77], and in particulanat a
Likewise, higher order degeneracies of tangency points wilSiding region is then homeomorphic to a normally hyperoli
cause bifurcations in two or more dimensions. Teixeira [94]slow manifold. Results so far do not extend to points where a
has considered four cases of one-parameter bifurcaticsislof
ing regions in three dimensional systems, called the ddveta
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piecewise smooth vector field is tangent to a switching beunda given discontinuity-induced bifurcation irdimensions can

ary, which are likely to be associated with a loss of hyperbo
icity of a slow manifold. Non-hyperbolic points commonlyre
quire the introduction of artificial “blow-up” parametemsnd

Ibe reduced to a planar problem.
An exception is given by the discontinuity mappings in Sec.
6.2.1, which classify one-parameter sliding bifurcatiosimg

their study is ongoing. In [41], however, it was shown by alocal geometry in lower dimensions, in the neighbourhooa of

different method, called pinching, that when slow maniold
are indeed approximated by switching boundaries, their no
hyperbolic points are approximated by two-fold singulast

switching boundary. The implication of Sec. 6.2 is that many
ndifferent discontinuity-induced bifurcations can be slfied as
sliding bifurcations, provided they occur where orbitszgréhe

Pinching, which can be thought of as a converse to reguswitching boundary, regardless of the object (such as agieri
larization, was introduced in [86] and expanded upon in.[41] orbit or invariant manifold) undergoing the bifurcation hi$

Pinching approximates a smooth vector field by a discontisuo

idea of topological reduction is very different to, thougttthe

one, by collapsing a region of state space to form a switchingpirit of, centre manifold or normal form reduction.

boundary. Let
x = f(x) +9(x), (32

where f and g are smooth functions of the state vector=
(x1,22,73,...). Lete be a positive constant, and letx) >
f(x) for|z1] < andf(x) > g(x) forzq > e. We call|z1| <
e the pinch zone. We then introduce a new coordinate=
x1 — € sign(x1) over the regiorr; > ¢, whereg is negligible.

This defines a new state variabte= (y1, 22, x3, ...), which
satisfies ‘). i
. f y) [ Y1 > 05
= . 33
y {f(y), if 31 <0, (33)

wheref*(y) = f(y1 £ ¢, 12,...), and whergy < f has been
neglected.

The result of pinching is that, at a poipt= (0, 2, 3, ...)
on the switching boundary, we have the differential in@usi

We can approximate the set-valued righthand side by arinter

polation between the values ¢f+ g at¢ = +e, whereg is
negligible, resulting in

YT+ 1 -Nf"(y) : A€ (0,1)} ony =0.
(35)

The utility of the topological classification of sliding bif
cations (Figs. 15-16) can be seen by their ability to predict
previously unknown global bifurcations. As an example,. Fig
26 (and our earlier Fig. 22) illustrate codimension-oneatué-
tions of stable limit cycles that have escaped classifipatitil
now, but which are easily deduced from the geometry of catas-
trophic sliding bifurcations. Fig. 26 consists simply of am
stable focus in the upper vector field, with sliding and esaap
on the rightmost and leftmost parts of the switching boupdar
respectively. Fop, > 0 a stable limit cycle with a sliding seg-
ment encircles an unstable focus. /At 0 the cycle grazes the
boundary of an escaping region, and the catastrophic grazin
sliding bifurcation takes place. Then, far< 0, inspection of
the state portrait reveals that no limit cycles can exist, alh
orbits eventually end up below the switching boundary.

*

u=0

;o .

u<0

4

u>0

Figure 26: Example of a periodic orbit destroyed in a cabgétic grazing-
sliding bifurcation. As a parameter changes we have: (i) a stable periodic
orbit with a sliding segment, (i) the periodic orbit grazesisible fold at the
boundary of an escaping region, (iii) no attractors remain.

Then the system (33) with (35) is a Filippov system. Note that
we have derived this as an approximation to the smooth system These bifurcations can equally well occur in higher dimen-

(32), replacing the dynamics in the regibm| < e whereg

sional systems, or those with more complex switching bound-

dominates, with dynamics at a switching boundary given byary topologies.

(35).

In [41] it was shown that pinching can be used to StUdy b|-83 A pivota] point: the two-fold Singu]arity

furcations in singularly perturbed systems, and is intergly
related to the nonstandard analysis [10] approach to stgdyi
the highly nonlinear phenomenon of canards. It is hoped th
the concepts of pinching and regularization will continoe t
give insight into the correspondence of singularities aifigr-b
cations between smooth and piecewise smooth systems.

8.2. The notion of a sliding bifurcation

Among the most powerful concepts in bifurcation theory is

that of center manifold reduction, whereby a bifurcatiomin

Two-fold singularities were proposed in [49] and [93] to be
of fundamental importance if piecewise smooth dynamicsd sy
&ems theory was to venture beyond the plane. Their impogtanc

lies in allowing orbits to pass from attracting to repellirey
gions of state space, that is, from sliding to escaping regio
(noting that the attraction/repulsion is strong in the sghst it
is not asymptotic, but takes place in finite time). Such srait
called canards, see Fig. 27.

In [41] it was shown that canards at two-folds (as in Fig.
16) are not only consistent with the canards familiar in sing

Qimensions is redqced to a Iowe_r dimensional problem. _Veryany perturbed systems [10, 91], indeed they can be derived
little has been achieved concerning center manifolds inepie  as approximations to them, and furthermore reveal thatrdana

wise smooth systems. As a result, many bifurcations have beexplosions are examples of catastrophic sliding bifuoceti
described in planar systems, without much discussion ofiwhe
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canard

Figure 27: Canards and two-folds: (i) a canard passes thraugo-fold, from
sliding to escaping regions; (ii) a faux canard passes freoagng to slid-
ing regions; and (iii) a two-fold without canards. Slidingtaping regions are
shaded, crossing regions are unshaded, and the boundetveseb them are
folds.

These novel types of behaviour are deserving of furtherystud
in three dimensions and beyond.
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Canards can have local consequences too, as are revealeg]

at the invisible two-fold, also called the Teixeira singiia
Since the far reaching work of Filippov [49] and Teixeira]93
the Teixeira singularity has continued to reveal novel laga
namics [28, 64], and remains a subject of ongoing interdgt [3
When the Teixeira singularity exhibits a faux canard, arint
cally wind around the singularity only a finite number of tisne
before entering the sliding region. In [64], a “nonsmooth di
abolo” bifurcation was derived, whereby an invariant deubl
cone self-annihilates, and turns faux canards into canaegs
Fig. 28. Analysis of higher order terms near the bifurcation
[31], has shown that for certain parameters, orbits lodzglgin
and end at the singularity via escaping and sliding segntleats
lie along a canard. Locally, solutions in the flow therefoisitv
the singularity recurrently, but become non-unique eacte ti
they traverse the two-fold. This means that the trajectbano
orbit leaving the singularity is not determined by how itemed,
and the resulting behaviour exhibits a non-deterministienf
of chaos. In particular, the study of canards from the piésew

Surdeosd

crossing

Figure 28: The two-fold and non-deterministic chaos. Fotaie parameters
the two-fold takes the form depicted, with a pseudosaddihénescaping re-
gion and a family of canards passing through the two-folde fidids are both
invisible. The dotted curves are the paths followed by Hatirg orbit seg-

ments on successive crossings. A typical orbit is shownitotbcally wrap

around the singularity, and after finitely many crossingsythlide, following

a canard through the two-fold. The outward trajectory thiothe escaping
region is not uniquely determined. Wherever the orbit em®&rg again begins
winding around to the sliding region and hence to the twd;fod be ejected
again in an undetermined direction. The resulting dynamsichaotic but non-
deterministic.

smooth perspective [41] is quite new, and in spite of a pricaf t
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