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Abstract

In this paper the theory of bifurcations in piecewise smoothflows is critically surveyed. The focus is on results that hold in
arbitrarily (but finitely) many dimensions, highlighting significant areas where a detailed understanding is presently lacking. The
clearest results to date concern equilibria undergoing bifurcations at switching boundaries and limit cycles undergoing grazing and
sliding bifurcations. After discussing fundamental concepts such as topological equivalence of two piecewise smoothsystems,
discontinuity-induced bifurcations are defined for equilibria and limit cycles. Conditions for equilibria to exist inn-dimensions are
given, followed by the conditions under which they generically undergo codimension-one bifurcations. The extent of knowledge of
their unfoldings is also summarized. Codimension-one bifurcations of limit cycles and boundary-intersection crossing are described
together with techniques for their classification. Codimension-two bifurcations are discussed with suggestions for further study.

1. Introduction

The theory of dynamical systems described by smooth ordi-
nary differential equations is well developed [59], but formany
systems of practical importance, the defining equations contain
discontinuities. In such cases the theoretical underpinning of
some key results is uncertain.

In the gamut of dynamical systems with discontinuities, we
must be careful to fix the class of systems of interest. The
most general are hybrid systems, which are compounds of con-
tinuous and discrete dynamics (e.g. differential equations and
maps), see for example [17, 4, 84, 78, 26, 52]. Hybrid sys-
tems are too broad in scope to possess a substantially general
bifurcation theory as yet. An important subclass of these are
impact systems, where smooth evolution by a differential equa-
tion can be interrupted by a map from a discontinuity boundary
to itself, such as the law of restitution for mechanical impact
[83, 85, 24, 7, 18, 98, 95, 80]. Grazing solutions, where the
impact velocity is zero, provide insight in the dynamics near
impact bifurcations. Suchgrazing bifurcationscan by studied
by analysing the local geometry of the impact manifold, using
singularity theory [23] and so-called discontinuity maps [12].

We restrict attention in this paper to a third important class,
that of piecewise smooth flows, consisting of differential equa-
tions that are piecewise smooth and have what Filippov calls
“discontinuous righthand sides” [49]. Discontinuities are iso-
lated to a hypersurface, and unlike hybrid or impact systems,
solutions are generally continuous, and moreover, are smooth
everywhere except on the hypersurface. Our main interest isto
describe the dynamical changes that result from invariant sets
contacting such a discontinuity hypersurface. We assume no
restriction on the degree of the discontinuity. If the system vec-
tor field jumps across the hypersurface then solutions may be
non-differentiable there, either crossing the surface, orstick-

ing to and sliding along it [49]. The latter is particularly chal-
lenging from a theoretical point of view, because solutionswith
segments of sliding can be non-unique or non-invertible.

Example: Consider an object moving on a surface with dis-
placementx and velocityu, subject to an elastic force−kx
and Coulomb friction,−µ sign(u) whereµ is the coefficient
of friction [82]. Thenx satisfies the piecewise smooth ordinary
differential equations

ẋ = u,
u̇ = −kx − µ sign(u),
ṫ = 1.

(1)

During slipping, the friction force has fixed magnitudeµ, and
points in the opposite direction to the velocity, switchingatu =
0 to give the phase portrait in Fig. 1. If the speed reachesu = 0
at a time when|kx| > µ, then the object crosses from leftward
slip to rightward slip or vice versa, but if|kx| < µ it sticks to the
surface. When this happens, solutions are said to “slide” along
u = 0 in the t-direction of the phase space(x, u, t), meaning
that the object sticks to the surfaceu = 0.
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Figure 1: The dry friction system (1). The friction force switches direction as
u changes sign. In phase space, orbits slide along the surfaceu = 0 (shaded)
where mechanical sticking occurs. Note that ‘sliding’ hererefers to mechanical
‘sticking’, whereu = 0, as opposed to ‘slipping’, whereu 6= 0.
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In this paper we survey the theory ofbifurcationsin piece-
wise smooth flows from a critical perspective. Rather than pro-
viding a comprehensive literature review, the aim is to sum-
marize the extent of current knowledge, gathering togetherthe
more general results, and highlighting major areas requiring
further work.

Piecewise smooth systems have been used for many years
by engineers and physicists, long before being comprehensively
formalised in mathematical terms. Perhaps as a consequence,
knowledge of bifurcations in piecewise smooth systems is largely
limited to specific examples, and does not yet approach the gen-
erality of bifurcation theory in smooth systems. A major obsta-
cle to the development of a general theory is the inability to
extend results in 2 or 3 dimensional systems ton dimensions,
due to a lack of dimension reduction techniques, such as cen-
ter manifolds or normal form theory. Nevertheless, by draw-
ing together results from the last half century within the frame-
work provided by the differential inclusions of Filippov [49],
the sewing (or “C”) bifurcations of Feigin [46], and the generic
singularities of Teixeira [92, 93, 94], we can begin the taskof
developing a coherent picture of the theory of bifurcationsin
piecewise smooth systems.

Piecewise smooth systems are now commonplace in mod-
els of real world dynamics. They are frequently treated by ad
hoc modifications of tools borrowed from smooth systems; re-
views can be found in [12, 70, 74, 99]. A few of the wide
range of applications that exhibit piecewise smooth dynamics
include mechanical problems of friction [43, 82, 35, 96, 68,56],
switched feedback in control theory [97, 61, 39, 28] and elec-
tronics [22, 5, 9, 79, 32], nonsmooth models in economics
[62, 50], ecology [69, 38, 40], neuron signaling [33, 34, 76],
genetic potentials [53, 36, 21, 54], and novel nonlinear effects
of superconductors [8, 63]. Interest in such diverse applica-
tions in the vacuum of an insufficiently developed theory has
left behind a nomenclature that is dogged by semantic difficul-
ties. This problem is bound to ease as theoretical advances take
hold, and rigorous definitions begin to eliminate inconsistent
uses of terminology. We shall pick our way through the more
concrete definitions and most useful terminologies, givingref-
erence to the alternatives only where it is useful to the discus-
sion.

The layout of the paper is as follows. We first set out the
fundamentals: the definition of a piecewise smooth system and
its dynamics in Sec. 2, the forms of switching and sliding bound-
aries in Sec. 3, and topological equivalence between systems in
Sec. 4. Then we introduce a geometrical treatment of more
general discontinuity-induced bifurcations in Sec. 5. Existing
results about the unfoldings of these bifurcations are reviewed
in Sec. 6, and we discuss where new results are needed. Many
results have been found for planar systems that await generali-
sation ton dimensions; we review these in Sec. 7. By way of
concluding remarks, we discuss some broader open problems
and peer into a possible future of piecewise smooth dynamical
systems in Sec. 8.

2. Dynamics of piecewise smooth systems

Definition 2.1. A piecewise smooth system consists of a finite
set of ordinary differential equations

ẋ = fi(x), x ∈ Ri ⊂ R
n, (2)

where the vector fieldsfi are smooth, defined on disjoint open
regionsRi, and are smoothly extendable to the closure ofRi.
RegionsRi are separated by an(n−1)-dimensional setΣ called
theswitching boundary, which consists of finitely many smooth
manifolds intersecting transversely. The union ofΣ and allRi

covers the whole state spaceD ⊆ R
n.

Away fromΣ, the existence and uniqueness theorems of Pi-
card and Lindelöf [75] ensure that solutions of (2) are wellde-
fined provided eachfi is sufficiently regular, but do not apply
where the vector field is discontinuous, namely onΣ. Follow-
ing Filippov [49], we overcome this problem by replacing (2)
with a differential inclusion,

ẋ ∈ F (x) (3)

whereF = fi if x ∈ Ri, andF is set-valued ifx ∈ Σ, given
by the convex hull off1, ..., fm whenx lies on the boundary
of regionsR1, ..., Rm. A two dimensional inclusion with four
regions is illustrated in Fig. 2.
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Figure 2: A planar piecewise smooth system with four regionsRi, i =
1, 2, 3, 4, separated by a switching boundaryΣ, where the vector field jumps
between the valuesfi. The righthand side of the differential inclusion,F (grey
line/area), is set-valued onΣ, and its dimension depends on how many regions
Σ is separating at each point (a convex hull of 2 vectors, except at the intersec-
tion where it is a convex hull of 4 vectors). Vectorsf1 andf3 are shown with
black arrowheads,f2 andf4 are shown with white arrowheads.

Then we can define solutions to (2) as follows:

Definition 2.2. An absolutely continuous functionx(t), with t
in an open intervalI, is a solution of (2) if and only if it satisfies
the differential inclusion (3) almost everywhere inI.

This definition is found in [49], along with the proof that,
under certain conditions, (at least) one solution passes through
any pointx of system (2). A more general discussion of differ-
ential inclusions is found in [6]. Notice that solutions need not
be unique, as shown by the following example.
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Example: Consider the one-dimensional systemẋ = sign(x),
whereΣ is the pointx = 0. The righthand side of the corre-
sponding differential inclusion isF = 1 wherex > 0, F = −1
wherex < 0, andF = [−1, 1] at x = 0. Hence, atx = 0 the
three solutionsx(t) = 0, x(t) = t, andx(t) = −t are admis-
sible, as well as any solution that remains in0 for a finite time
and then departs, left or right, with unit speed.

As we see in the one-dimensional example above, a system may
admit constant solutions on a switching boundary. In general,
constant solutions of (2) come in two forms:

Definition 2.3.
An equilibriumis a point wherefi(x) = 0 for somei.
A pseudoequilibriumis a point where0 ∈ F (x), x ∈ Σ.

Example: In n-dimensions, let the vector field change between
f1 (in R1) andf2 (in R2) acrossΣ. Then the differential inclu-
sion (3) becomes

ẋ ∈ F = {λf1 + (1 − λ)f2}, (4)

whereλ = 1 in R1, λ = 0 in R2, andλ ∈ [0, 1] onΣ. By (4),
pseudoequilibria appear whenf1 andf2 are linearly dependent
and point in opposite directions, as illustrated in Fig. 3.
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Figure 3: A pseudoequilibrium in a two-region system occurswhere the two
vector fields point in opposite directions.

Over the last thirty years, piecewise smooth systems have
been redefined a number of times in slightly different ways.
Definitions 2.1 and 2.2 are the simplest and most commonly
used among those considered in [49]. They are similar to an-
other definition, albeit restricted to two-dimensional systems,
given in [19]. The term pseudoequilibrium in Definition 2.3,
introduced in [51], is now quite standard in the literature.

3. Boundaries

To study the dynamical features that distinguish smooth and
piecewise smooth dynamical systems, we concentrate on the
geometry of solutions at or near the switching boundaryΣ. To
this end, it is convenient to introduce three mathematical tools:
a function to describeΣ, a derivative to detect tangencies be-
tween solutions and boundaries, and an explicit formula for
the component ofF alongΣ in the cases when it exists and
is unique.

We representΣ as the zero set of a scalar functionh : R
n 7→

R, with
Σ = {x ∈ R

n : h(x) = 0}. (5)

At points whereΣ is a smooth hypersurface, we assume that
h is smooth and has nonzero gradient. Notice that the global
smoothness and differentiability ofh is not a concern, since its
gradient will only be needed in local analysis.

We then write the directional derivative ofh with respect to
the vector field in terms of Lie derivativesLfi

h = h,x·fi, where
h,x is the gradient operator with respect tox (subscripts will
denote a derivative only when preceded by a comma). Them-th
order Lie derivative is written asLm

fi
h, e.g.,L2

fi
h = Lfi

(Lfi
h).

Definition 3.1. A sliding vectoris any vectorfs(x) ∈ F that
lies tangent toΣ for x ∈ Σ.

According to Definition 2.2, solutions of system (2) that
reachΣ maycrossthroughΣ if F contains no sliding vectors,
or slidealongΣ if F contains a sliding vector. Thus the switch-
ing boundary is partitioned into three different regions asfol-
lows.

Definition 3.2.

· In acrossing region, F contains no sliding vectors.

· In a sliding region, F everywhere contains at least one
sliding vector, and all neighbouring vector fieldsfi point
towardsΣ.

· In anescaping region, F everywhere contains at least one
sliding vector, and at least one of the neighbouring vector
fieldsfi point into its corresponding regionRi.

As an example of the definition for an escaping region, con-
sider Fig. 2: the boundary separating regionsR1 andR2 is an
escaping region wheref1 andf2 both point away fromΣ, but
the boundary intersection is also an escaping region wheref1

points away fromΣ but all others points towards it.
The distinction between sliding and escaping regions is im-

portant: at a sliding region all solutions are confined toΣ in
forward time, while at an escaping region solutions may either
continue sliding or be ejected fromΣ. Because of this dual na-
ture of sliding and escaping, they are sometimes referred tore-
spectively as stable and unstable sliding (see for example [65]).

Example: Consider the system

ẋ1 = sign(x2 + x2
1),

ẋ2 = 1,
(6)

sketched in Fig. 4. The switching boundaryΣ is the curve
x2 = −x2

1, and we letR1 be the region above it, withR2 below.
The righthand side of the differential inclusion,F , is sketched
in Fig. 4 with the sliding vectorsfs, and the corresponding dy-
namics is shown in Fig. 5. The boundaries between crossing
and sliding/escaping occur at the tangencies T1 and T2 where
the tangent vector toΣ, given by(1,−2x1), lies alongf1 and
f2 respectively. Then escaping takes place onΣ to the right of
T2, and sliding to the left of T1.
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Figure 4: A planar piecewise smooth vector field that switches betweenf1 in
regionR1 andf2 in regionR2. At the switching boundaryΣ we consider the
inclusionF . This gives sliding/escaping ifF contains an elementfs tangent to
Σ, and crossing otherwise.
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Figure 5: The piecewise smooth dynamics corresponding to Fig. 4. The cross-
ing region is dashed. A sliding segment sticks toΣ in the sliding and escaping
regions, which are bounded by the tangency points T1, T2.

In general, boundaries between crossing, sliding, and escap-
ing regions can occur either whereΣ is nonsmooth, which we
call boundary intersections, or whereΣ is smooth but tangent
to one of thefi, satisfying thetangency conditions

Lfi
h = 0. (7)

Away from boundary intersections, we can write the vector
field near a switching boundaryh = 0 as

ẋ =

{

f1(x) if h(x) > 0,
f2(x) if h(x) < 0.

(8)

The differential inclusion for (8) is then given by (4). A sliding
vector, from Definition 3.1, is the element of (4) tangent toΣ,
which fixesλ = Lf1

h(x)/(Lf2
h(x) − Lf1

h(x)), giving the
sliding vector field

fs(x) =
Lf2

h(x)f1(x) − Lf1
h(x)f2(x)

Lf2
h(x) − Lf1

h(x)
, x ∈ Σ. (9)

Sliding or escaping occur whenλ ∈ [0, 1], and hence the dy-
namics in a sliding/escaping region is given by

ẋ = fs(x). (10)

As emphasised by Filippov [49] and Teixeira [94], tangen-
cies are central to understanding dynamics at a switching bound-
ary and, as we have seen, they form the boundaries between
regions of crossing, sliding, and escaping, onΣ. The three sim-
plest types of tangency that we encounter on smooth portions
of Σ dividing regionsR1 andR2, are (see Fig. 6):

· the fold (quadratic tangency), whereLf1
h = 0, while

L2
f1

h 6= 0, Lf2
h 6= 0, and the gradient vectors ofh and

Lf1
h are linearly independent.

· the cusp(cubic tangency), whereLf1
h = L2

f1
h = 0,

while L3
f1

h 6= 0, Lf2
h 6= 0, and the gradient vectors of

h, Lf1
h andL2

f1
h are linearly independent.

· the two-fold (double tangency), whereLf1
h = Lf2

h =
0, while L2

f1
h 6= 0, L2

f2
h 6= 0, and the gradient vectors

of h, Lf1
h andLf2

h are linearly independent.

two-foldcuspfold

Figure 6: Basic tangencies between a piecewise smooth vector field and a
switching boundary: the fold, where the vector field has quadratic contact with
Σ; the cusp, where the vector field has cubic contact withΣ, and the sliding
vector field has quadratic contact with the sliding (or escaping) boundary; the
two-fold, where the vector field has quadratic contact withΣ on both sides.
Sliding/escaping regions are shaded, crossing regions areunshaded.

The simplest tangency is the fold. Given a switching bound-
aryx1 = 0 (soh = x1) in coordinatesx = (x1, x2) for a planar
system, a fold is defined [49] as the setx1 = x2 = 0 in the local
normal form

f1 = ±(s1x2, 1),
f2 = ±(1 , 0),

(11)

wheres1 takes values±1. This can be easily extended inn
dimensions demanding that a fold has the normal form

f1 = ±(s1x2, 1, 0, ...),
f2 = ±(1 , 0, 0, ...),

(12)

where the dots denote a sequence of zeros. Ifs1 is positive [or
negative] then the flow inR1 curves away from [towards]Σ,
which we call avisible [invisible] fold. The regionx2 < 0 on
Σ is a sliding region if we take the ‘+’ signs in (12), and an
escaping region if we take the ‘−’ signs; the latter is illustrated
in Fig. 7. In three dimensions, Fig. 6 illustrates the case ofa
visible fold at the boundary of a sliding region.

Consider now the simplest degenerate tangencies, which
take the form either of the cusp or the two-fold. Given again
a switching boundaryx1 = 0 and with dots denoting zeroes,
the cusp can be defined, following [94], as the setx1 = x2 =
x3 = 0 in the local normal form

f1 = ±(x3 + s1x
2
2, 1, 0, ...),

f2 = ±( 1 , 0, 0, ...),
(13)
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Figure 7: The fold as a boundary between escaping (full line)and crossing
(dashed line), illustrated in two dimensions. It can be either visible (left) or
invisible (right). By reversing arrows we would swap escaping for sliding.

wheres1 takes values±1. There are branches of visible and
invisible folds along thex2 > 0 and x2 < 0 branches of
x1 = x3 + s1x

2
2 = 0. Similarly to the fold, we classify cusps

either as invisible or visible, but following Jeffrey10a wedo
so depending respectively on whether the sliding flow curves
towards (s1 = +1) or away from (s1 = −1) the sliding bound-
ary. The cusp appears generically in systems of three or more
dimensions. The visible case is shown in Fig. 6 in three dimen-
sions.

The two-fold can be defined, with a switching boundary
x1 = 0, as the setx1 = x2 = x3 = 0 in the local normal
form

f1 = (s1x2, 1, a, ...),
f2 = (s2x3, b, 1, ...),

(14)

where the dots denote zeroes,a andb are constants such that
the sliding vector field is structurally stable (ab 6= 1), and thesi

are signs±1 determining visibility of the folds. This extends to
arbitrary dimensions the three-dimensional normal forms given
in [49, 94]. The fold alongx2 = 0 is visible/invisible if s1

is respectively positive/negative, and the fold alongx3 = 0
is visible/invisible if s2 is respectively negative/positive. The
two fold appears generically in systems of three or more di-
mensions. The visible-visible case (two visible folds) in three
dimensions is depicted in Fig. 6.

A general treatment of sliding boundary topology that ap-
plies to n > 3 dimensions has not yet been carried out, but
a basic understanding of the fold, cusp, and two-fold is suffi-
cient for many scenarios that arise in the literature on piecewise
smooth systems, and they will play a major role in the remain-
der of this paper. We summarize their coordinate independent
defining conditions in Table 1.

tangency definition sliding/escaping, and visibility type

fold Lf1
h = 0

visible if L2

f1
h > 0, invisible if L2

f1
h < 0

sliding if Lf2
h > 0, escaping ifLf2

h < 0

cusp
Lf1

h = 0 visible if (L3

f1
h)(Lf2

h) < 0,
and invisible if (L3

f1
h)(Lf2

h) > 0

L2

f1
h = 0 sliding if Lf2

h > 0, escaping ifLf2
h < 0

two-fold
Lf1

h = 0 visible-visible ifL2

f1
h > 0 > L2

f2
h

and invisible-invisible ifL2

f1
h < 0 < L2

f2
h

Lf2
h = 0 visible-invisible if (L2

f1
h)(L2

f2
h) > 0

Table 1: Defining conditions of generic tangencies inn ≥ 3, given the system
(8). In addition, non-degeneracy requires that the gradients of the following
quantities with respect tox are linearly independent:h andLf1

h for the fold;
h, Lf1

h andL2

f1
h for the cusp;h, Lf1

h andLf2
h for the two-fold.

In this section we discussed how tangencies form the bound-

aries of crossing/sliding/escaping, but they have a further role,
as points through which special solutions (equilibria, limit cy-
cles, etc.) can alter the topology of their intersection with the
switching boundary. Before we can discuss bifurcations in piece-
wise smooth systems further, we must define the conditions
under which two piecewise smooth systems are topologically
equivalent.

4. Equivalence of piecewise smooth systems

To discuss the topological properties of piecewise smooth
systems we need to distinguish between different types of so-
lution. Following a definition made in [19], we call asegment
any smooth solutionx(t) that is entirely contained in a region
Ri or in a sliding or escaping region, and defined for any open
time intervalt ∈ I. We refer to maximal segments ifI is maxi-
mal. In order to distinguish between segments that slide on the
switching boundary and segments that lie in regionsRi, we call
the formersliding segmentsand the latternon-sliding segments.
Finally, anorbit is a continuous concatenation of closures of
segments. We assume typically that an orbit is maximal.

Because segments are solutions of a smooth vector field,
maximal segments do not overlap in the state space, and there-
fore an equivalence between systems can be defined segment-
wise as a bijection between sets of disjoint elements. Thus,
we define the concept of topological equivalence for piecewise
smooth systems as follows.

Definition 4.1. Two piecewise smooth systems aretopologi-
cally equivalentif there exists a homeomorphism sending max-
imal segments of one system onto maximal segments of the
other, preserving the direction of time, and preserving whether
a segment is sliding, escaping, crossing, or not in contact with
Σ.

As a consequence, according to this definition of topolog-
ical equivalence, switching boundaries are mapped to switch-
ing boundaries. Alternative definitions of topological equiva-
lence, based on orbits rather than segments (and thus establish-
ing relations between sets of non-disjoint elements), are given
in [49, 73, 12]. It has been pointed out in [57, 55], that these
generally make a stronger restriction than is necessary to de-
fine a topological equivalence, because they preserveΣ (hence
those authors call theseΣ-equivalences). A weaker topological
equivalence can be defined which does not preserve the switch-
ing boundary, but does preserve sliding; let us call this ‘sliding
equivalence’. Two examples are illustrated in Fig. 8: the figures
on each row arenot topologically (Σ-) equivalent by Definition
4.1, but⁀are sliding equivalent. While useful from a pure math-
ematical perspective, this sliding equivalence does not distin-
guish between systems with different crossing topologies.The
sliding equivalence is therefore inappropriate for applications
where crossing between different regions is of physical interest.
Because the intersection of orbits with the switching boundary
will be extremely important in later sections, we use exclusively
Definition 4.1.

Using Definition 4.1, we define the notion of bifurcation in
a piecewise smooth system as follows.
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(i)

(ii)

Σ

Σ Σ

Figure 8: Piecewise smooth topological equivalence. Each row (i) and (ii)
shows two systems which are not topologically (Σ-) equivalent by Definition
4.1, in (i) because orbits crossΣ in one system but not in the other, in (ii) be-
cause the orbit (bold) tangent toΣ crosses in one system but not in the other.
These are, however, ‘sliding equivalent’, which respects dynamics in the sliding
region (full line) but not the crossing region (dashed line).

Definition 4.2. A bifurcation occurs if an arbitrarily small per-
turbation produces a topologically non-equivalent system. The
bifurcation isdiscontinuity-inducedif it affects the state portrait
in more than one region, or inΣ.

A further distinction can be made betweenstrongdiscontinuity-
induced bifurcations, which involve non-generic configuration
of orbits with respect to switching boundaries, andweakdiscontinuity-
induced bifurcations, where the presence of a switching bound-
ary is incidental and the bifurcation can be treated using the
mathematical tools of smooth maps and flows [26]. The for-
mer of these will be our exclusive concern, as they involve the
switching boundary in a nontrivial way. Examples of the latter
include a cycle undergoing a bifurcation at a switching bound-
ary but expressible by a smooth Poincaré map throughout, ora
pseudoequilibrium undergoing a bifurcation of the smooth vec-
tor fieldfs in a sliding or escaping region.

5. Geometric overview of discontinuity-induced bifurcations

We are now in a position to consider bifurcations involv-
ing local and global dynamics. With very few exceptions, the
discontinuity-induced bifurcations that have been most anal-
ysed in the literature are those affecting equilibria, pseudoe-
quilibria, and limit cycles, so here we focus on these. We will
classify systems by studying generic configurations of orbits,
and define as generic any configuration that satisfies a certain
(finite) number of inequalities, referred to asgenericitycondi-
tions. Thus, away from boundary intersections, considering a
system defined as in (8), we say that generically:

G1. if there exists an equilibrium̄x, it lies in the interior of a
regionRi, so thath(x̄) 6= 0,

G2. if there exists a pseudoequilibrium̄x, it lies in the interior
of a sliding or escaping region, so thath(x̄) = 0 and
Lfi

h(x̄) 6= 0 for all i,

G3. if a non-sliding segment passing through a given point
x 6∈ Σ reachesΣ at x̄, it does so in the interior of a
sliding or crossing region, soLfi

h(x̄) 6= 0 for all i,

G4. if a sliding segment passing through a given pointx ∈ Σ
reaches a boundary of the sliding or escaping region atx̄,
it does so at a fold (soLfi

h(x̄) = 0 andL2
fi

h(x̄) 6= 0 for
somei, andLfj

h(x̄) 6= 0 for all otherj 6= i).

G1

G2

G4G3
G3

Figure 9: Generic dynamics in a piecewise smooth system: G1 is an equilibrium
away fromΣ, G2 is a pseudoequilibrium, G3 is a non-sliding segment hitting
Σ away from the boundary of sliding, G4 is a sliding segment hitting a fold
transversely. The sliding region is shaded, the crossing region is unshaded.

These are illustrated in Fig. 9. A fifth case should be added here
about which very little is known, namely a sliding segment that
reaches a two-fold. This fits into G4 above but violates the
conditionLfj

h 6= 0 for somej, and instead satisfiesL2
fj

h 6=
0. In three dimensions (see Fig. 10) it has been shown that a
sliding segment through a given pointx ∈ Σ can generically
hit a two-fold [31], a fact which is not immediately obvious,
but follows because the possible topologies of the sliding vector
field (9) include the phase portrait shown in Fig. 10. Two-
folds in higher dimensions have not been studied at all (see Sec.
8). To highlight this open problem we include the case that,
generically:

G5. if a sliding segment passing through a given pointx ∈ Σ
reaches a boundary of the sliding or escaping region in a
scenario other than G4, it hits a two-fold.

G5

Figure 10: Generic dynamics in a piecewise smooth system: G5consists of an
open region of sliding segments that hit a two-fold. Sliding/escaping regions
are shaded, crossing regions are unshaded.

Let it be clear that G1-G5 do not provide a complete list
of all the configurations of orbits that are generic in piecewise
smooth systems, but describe geometric rules that generically
must be adhered to near a switching boundary by limit cycles
and equilibria, in the absence of boundary intersections. By vi-
olating any one of the inequalities above we obtain a discontinuity-
induced bifurcation. As stated in Sec. 4, (strong) discontinuity-
induced bifurcations imply non-generic configurations of in-
variant sets and boundaries. Specifically, bifurcations ofequi-
libria or pseudoequilibria occur when they collide with a switch-
ing or sliding boundary, violating G1-G2, while bifurcations of
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limit cycles occur when a cycle intersects a switching or sliding
boundary non-generically, violating G3-G5. Since the nature
of these bifurcations is essentially geometric, geometry can be
used to catalogue them. In the following section, we firstly dis-
cuss codimension-one bifurcations, occurring when one of the
genericity conditions is violated, and then move on to discuss
a starting point for classifications of codimension-two bifurca-
tions. In both cases, we address first bifurcations of equilibria
and pseudoequilibria, then those of limit cycles.

5.1. Codimension-one discontinuity-induced bifurcations

5.1.1. Equilibria and Pseudoequilibria
Discontinuity-induced bifurcations of equilibria and pseu-

doequilibria occur whenever the genericity conditions G1 and
G2 in Sec. 5 are violated, implying that an equilibrium meets
the switching boundaryΣ, or a pseudoequilibrium meets the
boundary of a sliding or escaping region. These can happen in
two ways:

B1. the simultaneous collision of an equilibrium and a pseu-
doequilibrium at the boundary of a sliding/escaping re-
gion, called a boundary equilibrium,

B2. collision of a pseudoequilibrium with a two-fold.

It may not be immediately obvious that B1 and B2 should
be the only generic ways that a pseudoequilibrium can hit the
boundary of a sliding/escaping region, or that B1 should be the
only generic way an equilibrium can hitΣ. These are facts
that have not previously come to light in the literature. They
are, however, an immediate consequence of the generic local
geometry, as we now briefly explain.

Regarding B1, if an equilibrium,̄x, is a generic zero off1

(without loss of generality), then it lies at the intersection of a
pair of curves given by the following two sets of equations:

Lf1
h(x) = L2

f1
h(x) = ... = Ln−1

f1
h(x) = 0, (15)

wheren is the dimension of the system, i.e.x ∈ R
n, and

f1(x) = η(x)f2(x), (16)

for some scalar functionη(x), with η(x̄) = 0. If a system with
x̄ ∈ Σ is perturbed, we generically find two points nearby, say
xT ∈ Σ andxP ∈ Σ, that satisfy (15) and (16) respectively;
xT is ann-th order tangency between the flow off1 andΣ,
andxP is a pseudoequilibrium offs if η < 0 (if η > 0 it is a
crossing point). The sign ofη atxP changes as the equilibrium
passes through it, and therefore the inequalityη < 0 is always
satisfied — and a pseudoequilibrium exists — on one side of
the bifurcation. Part of this analysis is contained, with further
details, in [37].

Regarding B2, at a pseudoequilibrium (16) must be satis-
fied. If the pseudoequilibrium collides with the boundary ofits
sliding/escaping region, then eitherf1 or f2 vanishes, which
is the boundary equilibrium bifurcation B1, or bothf1 andf2

are tangent to the switching boundary, which occurs at folds.
Generically, these intersect transversely and form a two-fold.

This bifurcation has been studied for the first time in [64] in
three-dimensional systems, but ann-dimensional analysis has
not yet been carried out.

The conditions that must be satisfied for B1 and B2 to be
generic have not been rigorously studied inn-dimensions, (with
a few exceptions, see Sec. 5.2.1). However, the discussion
above implies that B1 and B2 must satisfy the following gener-
icity conditions:

B1. the equilibrium and pseudoequilibrium are hyperbolic,
hit the boundary transversely and, without loss of gener-
ality, if the equilibrium belongs toR1 then it hits where
Lf2

h 6= 0, and where the gradient vectors ofh and each
Lm

f1
h(x) for m = 1, ..., n − 1, are linearly independent,

B2. the pseudoequilibrium is hyperbolic, crosses from sliding
to escaping regions, and does so whereL2

f1
h 6= 0 and

L2
f2

h 6= 0.

We discuss the unfoldings of these in Sec. 6.1.

5.1.2. Limit cycles
Discontinuity-inducedbifurcations of limit cycles occurwhen

conditions G3 and G4 in Sec. 5 are violated. This happens
when:

B3. a non-sliding segment of a cycle reaches a boundary at a
fold point.

B4. a sliding segment of a cycle reaches a boundary of the
sliding/escaping region at a cusp.

These both involve a limit cycle grazing (making quadratic con-
tact with) a boundary: a non-sliding segment grazingΣ in B3,
and a sliding segment grazing the sliding/escaping boundary
in B4. The list is clearly incomplete. If we relax the gener-
icity condition G4 in Sec. 5, eitherL2

f1
h 6= 0 is violated in

which case we can obtain B4 above, orLf2
h 6= 0 is violated in

which case the cycle intersects a two-fold. At first this appears
to be in contradiction to the case G5 in Sec. 5. However, it is
known in three dimensions (see for example [49, 94, 65, 64])
that, depending on the topology of the sliding vector field, such
an intersection can occur, either generically (as in Fig. 10) or
in the unfolding of a one-parameter bifurcation (as in another
case of the two-fold, shown in Fig. 11). We therefore must
add, as we did in Sec. 5, a speculative case of codimension-
one discontinuity-induced bifurcation of limit cycles, that oc-
curs when:

B5. a sliding segment of a cycle reaches a boundary of the
sliding/escaping region at a two-fold.

The codimension-one bifurcation scenarios B3-B5 are known
in the literature assliding bifurcations. In [12, 15] four types of
sliding bifurcation are found, under the hypothesis that the bi-
furcating cycle has no sliding or escaping segments away from
the tangency. In [65] the local geometry is analysed, revealing
that four additional scenarios of sliding bifurcations involving
escaping regions are possible. We introduce unfoldings forall
of these in Sec. 6.2.
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μ

Figure 11: Generic dynamics in a piecewise smooth system. Except in the case
G5 (Fig. 10), a limit cycle will not generically hit a two-fold, but may do so as
a parameterµ is varied.

Similarly to equilibria in B1-B2, the conditions that must
be satisfied for B3-B5 to be generic have not been rigorously
studied inn-dimensions. However, a brief inspection suggests
that they should satisfy the following genericity conditions:

B3. the cycle is hyperbolic, and does not involve non-generic
intersections outside the neighbourhoodof the fold, where
L2

f1
h 6= 0, Lf2

h 6= 0,

B4. the cycle is hyperbolic, and does not involve non-generic
connections outside the neighbourhoodof the cusp, where
L3

f1
h 6= 0, Lf2

h 6= 0.

For case B5 there is insufficient theory to speculate about gener-
icity conditions inn dimensions, other than that the cycle should
involve only generic intersections outside the neighbourhood of
the two-fold.

5.2. Codimension-two discontinuity-induced bifurcations

The genericity conditions in the previous section suggest
certain codimension-two bifurcation scenarios are also possi-
ble.

5.2.1. Equilibria and Pseudoequilibria
Codimension-two discontinuity-inducedbifurcations of equi-

libria and pseudoequilibria occur whenever the genericitycon-
ditions for B1 and B2 in Sec. 5.1.1 are violated. Considering
first B1, this can happen in four ways:

B1.1. the equilibrium or pseudoequilibrium is nonhyperbolic
when it hits the boundary,

B1.2. the equilibrium or pseudoequilibrium grazes (makes quadratic
contact with) the boundary,

B1.3. an equilibrium off1 hits the boundary wheref2 is tan-
gent toΣ,

B1.4. the equilibrium collides with a point of tangency of order
n + 1.

Secondly, considering B2, the genericity conditions can bevio-
lated in three ways:

B2.1. the pseudoequilibrium is nonhyperbolic when it hits the
two-fold,

B2.2. the pseudoequilibrium grazes the two-fold,

B2.3. a pseudoequilibrium collides with a cusp.

Unfoldings for these will be discussed in Sec. 6.3.

5.2.2. Limit cycles
The genericity conditions B3-B5 in Sec. 5.1.2 can be vio-

lated in three essentially different ways, which were classified
in [67] as:

Type I: the inequalities onLn
fi

h are violated,

Type II: the cycle is nonhyperbolic or has homoclinic /
heteroclinic connections to equilibria / pseudoequilibria,

Type III: the cycle has more than one grazing with a
switching boundary, or boundary of a sliding/escaping
region.

Unfolding for these will be discussed in Sec. 6.4.

5.3. Boundary-intersection crossing bifurcations
Dynamics of a piecewise smooth system at a boundary in-

tersection can be rather complex. One reason for this is that
the setF in (3) may contain an infinite number of vectors ly-
ing in the tangent space of the boundary intersection. Attempts
to define simplified dynamics in such cases have been made in
[2, 3, 42]. In the presence of a transverse intersection between
finitely many switching boundaries, the genericity conditions
listed at the beginning of Sec. 5 must be amended:

G̃1. if there exists an equilibrium̄x, it lies in the interior of a
regionRi, so thath(x̄) 6= 0,

G̃2. if there exists a pseudoequilibrium̄x, it lies in the inte-
rior of a sliding or escaping region, away from tangencies
(e.g. folds and cusps) and boundary intersections,

G̃3. if a non-sliding segment passing through a given point
x /∈ Σ reachesΣ at x̃, it does so in the interior of a sliding
or crossing region, away from tangencies and boundary
intersections,

G̃4. if a sliding segment passing through a given pointx ∈ Σ
reaches a boundary of the sliding or escaping region, it
does so at a fold, a two-fold, or at an intersection between
two smooth portions ofΣ.

Bifurcations obtained by violating conditions̃G1, G̃2, or G̃4,
in the presence of boundary intersections have never been stud-
ied. All existing results concern the violation of conditionsG̃3,
when a non-sliding segment of a limit cycle reaches a bound-
ary intersection. In this case, we must assume that the cy-
cle is hyperbolic, involves only generic intersections outside
the neighbourhood of the boundary intersection, that none of
the neighbouring vector fields is tangent to any one of the two
smooth portions ofΣ, and that the intersection involves only
two smooth portions ofΣ.

The scarcity of results on bifurcations involving boundary
intersections prevents a list of the possible codimension-two bi-
furcations being made at this stage.
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6. Unfoldings

Following on from the methods used to define the bifurca-
tion scenarios in Sec. 5, we begin to unfold them by analysing
the local geometry. Most examples of unfoldings in the litera-
ture analyse specific systems in low dimensions, and few have
been studied in a way that generalises ton dimensions. In this
section we focus only on the discussion of unfoldings that apply
in n dimensional piecewise smooth systems.

6.1. Codimension-one bifurcations of equilibria

6.1.1. B1: The boundary equilibrium bifurcation
From (16) we have two possible scenarios:

· Persistence, where an equilibrium turns into a pseudoe-
quilibrium.

· Nonsmooth Fold, where an equilibrium and a pseudoe-
quilibrium meet at the boundary and annihilate.

These are illustrated in Fig. 12, and analytic conditions that
discriminate between the two scenarios can be derived from
the local geometry as follows. Assume that the vector fields

persistence

γ>0          γ=0            γ<0

nonsmooth fold

Figure 12: The persistence and nonsmooth fold scenarios of boundary equi-
librium bifurcations. In any number of dimensions, the functions f1(x) and
f2(x) are linearly dependent along a one dimensional curve (dashed) given
by (16). If this intersects the sliding region (shaded) thena pseudoequilbrium
exists, while an equilibrium exists ifγ > 0.

and the switching boundary depend on a real parameterγ, so
f1 = f1,γ(x), f2 = f2,γ(x), h = h,γ(x). Then assume, with-
out loss of generality, thatf1 has an equilibrium atx = 0, un-
dergoing a boundary equilibrium bifurcation whenγ = 0, and
thath > 0 in R1 andh < 0 in R2. Writing the Jacobian matrix
of fi asfi,x, we have that:

· if h,x(0; 0)[f1,x(0; 0)]−1f2(0; 0) > 0, there is persis-
tence atγ = 0,

· if h,x(0; 0)[f1,x(0; 0)]−1f2(0; 0) < 0, there is a nons-
mooth fold atγ = 0.

These conditions are derived as follows. For nonzeroγ, a point
x̄ ∈ Σ is a pseudoequilibrium if it satisfies (16) withµ < 0 and
it lies onΣ, hence it satisfies:

f1(x̄, γ) = µf2( ¯x, γ), µ < 0,
h(x̄, γ) = 0.

(17)

Near the origin and for smallγ, we can approximatefi andh
with their lowest order expansionf1 = f1,x(0; 0)x+f1,γ(0; 0)γ,
f2 = f2(0; 0), andh = h,x(0; 0)x + h,γ(0; 0)γ. The quantity
f1,γ(0; 0)γ is identically zero sincef1(0) is constant. Then,
(17) can be simplified to

f1,x(0; 0)x = µf2(0; 0), µ < 0,
h,x(0; 0)x = −h,γ(0; 0)γ,

(18)

whose solution is

x = µ[f1,x(0; 0)]−1f2(0; 0),

µ =
−h,γ(0; 0)γ

h,x(0; 0)[f1,x(0; 0)]−1f2(0; 0)
.

(19)

The genericity conditions B1 in Sec. 5.1.1 ensure that these
expressions are well defined. The pseudoequilibriumexistsonly
whenµ in (19) is negative, while for our choice ofh the equilib-
rium exists (belongs toR1) only whenh(0, γ) ≃ h,γ(0; 0)γ >
0, giving the conditions as above.

Example: Let

f1 = (x1 + kx2, x1),
f2 = (0, 1),

(20)

andh = x2 + γ, thenk > 0 gives persistence, whilek < 0
gives a nonsmooth fold, asγ passes through zero.

x
1

x
2

k > 0

P

P

E

E

k < 0

γ < 0 γ > 0

x
1

x
2

x
1

x
2

x
1

x
2

Figure 13: Persistence (k > 0) and nonsmooth-fold (k < 0). Phase portraits of
(20) with a switching boundary atx2 = −γ, a sliding region overx1 < 0 (full
line) and crossing overx1 > 0 (dashed line). Equilibria (E) lie at(x1, x2) =
(0, 0) and pseudoequilibria (P) at(x1, x2) = (kγ, 0).

The classification into persistence and nonsmooth fold cases
can alternatively be obtained algebraically, by linearizing the
vector fieldsf1 andfs about the boundary equilibrium point,
and considering the characteristic polynomials of their respec-
tive Jacobians. Such analysis can be found in [14, 16], where
Feigin’s classification [47] for fixed points of piecewise smooth
maps was extended to flows.

The distinction into persistence/nonsmooth fold cases above
does not give a full account of the nearby dynamics, and indeed
none is known. For planar systems, it is known that branches
of limit cycles (and even chaotic attractors) can emerge from
boundary equilibrium bifurcation points, see Sec. 7.2, though
at present there are no tools known for generalising these results
to n dimensions.
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6.1.2. B2: A pseudoequilibrium traversing a two-fold
No study of bifurcations involving pseudoequilibria passing

between sliding and escaping regions at two-folds have been
made, to our knowledge, inn > 3 dimensions. (However, ref-
erence is made in [49] to a paper [1] that applies point mapping
techniques to study two-folds in higher dimensions.) The lead-
ing order dynamics near a two-fold in three dimensions was
studied in [49, 94, 64], but the codimension-one bifurcation of
a pseudoequilibrium, passing between sliding and escapingre-
gions via a two-fold, is a consequence of higher order analy-
sis briefly introduced in [64], with a deeper analysis forming
the subject of a forthcoming paper [31]. An illustrative exam-
ple taken from that paper is shown in Fig. 14, where a branch
of non-sliding limit cycles which vanishes as the pseudoquilib-
rium traverses the two-fold. Forn dimensional systems, all that
is known is that the bifurcation B2 takes place whenf1 andf2

are antiparallel at some point on the two-fold.

γ>0          γ=0            γ<0

sliding

escaping

Figure 14: The passage of a pseudoequilibrium through a two-fold in three
dimensions. A pseudonode in the sliding region becomes a pseudosaddle in
the escaping region. A non-sliding limit cycle (existing either for γ > 0 or
γ < 0) is also annihilated in the bifurcation. The bifurcation parameterγ is the
quantity1 − (Lf1

Lf2
h)(Lf2

Lf1
h)(Lf1

Lf1
h)−1(Lf2

Lf2
h)−1 evaluated

at the two-fold, and vanishes whenf1 andf2 are antiparallel there. Such a
cycle is shown forγ < 0. A second scenario is obtained by reversing the
direction of time.

6.2. Codimension-one bifurcations of limit cycles

In a smooth vector field, the codimension-one bifurcations
that can affect limit cycles have been shown to be few in num-
ber and are well understood (see e.g. [59]). This success ap-
pears unlikely to be replicated in piecewise smooth systems, as
is already clear from the many codimension-one bifurcations
known in two-dimensions (see Sec. 7.1). To make headway
into the general study of global discontinuity-induced bifurca-
tions, new tools are likely to be needed. At the moment, the
most promising approaches are based on a local analysis at
the switching boundary, and exploit the fact that discontinuity-
induced bifurcations correspond to a non-generic configuration
of segments, specifically, in the case of a limit cycle, at points
where the flow is tangent to the switching boundary.

As we saw in Sec. 5.1.2, a cycle undergoes a sliding bifur-
cation when one of its segments reaches a fold (B3), a cusp
(B4), or a two-fold (B5). A classification of the possible bi-
furcation scenarios is made possible by analysing the geometry
of the flow near these points. In [65], the authors have iden-
tified all structurally stable configurations of orbits originating
from a continuous one-parameter set of initial conditions near
a fold, cusp, or two-fold. These classify the local flow into a
small set of topological classes based on the type of tangency.
Figures 15 and 16 portray these configurations. Eight dual sce-
narios, describing families of orbits terminating at a continuous

Figure 15: The four sliding bifurcations. Three of these take place when a
non-sliding segment hits a fold, and are called: grazing, crossing, and switch-
ing sliding bifurcations. The fourth takes place when a sliding segment hits a
cusp, and is called an adding sliding bifurcation. A continuous change of initial
condition gives a continuous change in the orbit topology, and in the orbit’s
interaction with the switching boundary.

Figure 16: The four catastrophic sliding bifurcations. These include one case
that occurs when a non-sliding segment hits a fold, called a catastrophic grazing
sliding bifurcation. The others take place when a sliding segment hits a two-
fold, and are called visible, simple, and robust canards.

one-parameter set of final conditions, are obtained by reversing
arrows in the figures. The configuration in Figs. 15 (i)-(iii)and
16 (i) take place at a fold, Fig. 15 (iv) at a cusp, and Figs. 16
(ii-iv) at a two-fold.

To link these portraits with the orbit geometry of bifurcat-
ing cycles, it suffices to decompose the Poincaré map for the
bifurcating cycle into local and a global parts as follows. Take
a small neighbourhoodB of the tangency point (see Fig. 17),
and a Poincaré section on the boundary ofB, then the Poincaré
map can be written as the composition of two maps,β(x, γ) de-
scribing the flow inB, andφ(x, γ), describing the flow outside
B. Both maps depend on the bifurcation parameterγ. Con-
sider a cycle satisfying one of the bifurcation conditions in (B3),
(B4) or (B5), forγ = γ̄, and callx̄ an intersection of the cy-
cle with the boundary ofB. Existence of the cycle ensures that
the image of the couple(x̄, γ̄) under one of the four, possibly
set-valued, functions

φ(β(x, γ), γ) − x, (21)

φ−1(β−1(x, γ), γ) − x, (22)

φ(x, γ) − β−1(x, γ), (23)

φ−1(x, γ) − β(x, γ), (24)
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always contains zero. Then, the existence of a family of cycles
can be discussed with the help of the Implicit Function Theorem
whenever one of the functions (21-24) is smooth and single-
valued. The details of this reasoning are summarised in Sec.
6.2.2, here we summarize the basic results:

· If (21) or (22) is single-valued at(x, γ) = (x̄, γ̄), then
the bifurcating cycle belongs to a family parametrised by
γ, with geometry near the tangency as in Fig. 15. Notice
that the two branches of the family originating atγ = γ̄
may exist on either side of̄γ, or on the same side. This
produces persistence and nonsmooth fold scenarios, as
explained in Sec. 6.2.1.

· If (21) and (22) are set-valued at(x, γ) = (x̄, γ̄), but
(23) or (24) is single-valued, then either a one-parameter
family of cycles coexists forγ = γ̄, with geometry as
in Fig. 15, or the bifurcating cycle disappears asγ is
changed, following the scenario in Fig 16 (i). When these
conditions hold, orbits near the bifurcating cycle contain
both sliding and escaping segments.

· If (21-24) are all set-valued at(x, γ) = (x̄, γ̄), then either
φ andφ−1 are both set-valued, and no local analysis can
be done, orβ andβ−1 are both set-valued, which means
that the cycle is touching a two-fold, following one of the
scenarios in Fig 16 (ii-iv).

Σ

∏

B

ϕ

β

Figure 17: Local analysis of a limit cycle at a discontinuity. Take a neigh-
bourhoodB of the cycle’s intersection with the switching boundaryΣ, and a
Poincaré map on the sectionΠ, then decompose the map into a local partβ

insideB, and a global partφ outside.

One should note that the portraits in Figs. 15 and 16 can
be applied also to sliding bifurcations of sets other than limit
cycles, such as one-dimensional stable manifolds [30], onedi-
mensional separatrices, etc., though such extensions are beyond
the scope of this section.

The key observation here, that study of discontinuity-induced
bifurcations of a limit cycle can be reduced to local geometry,
is attributable to Nordmark’s pioneering work on grazing bifur-
cations in impact and friction oscillators (see [81], [35]). An
extension to sliding bifurcations was presented in [15] where
maps are derived which correct for the presence of the discon-
tinuity when applied to a smooth flow continued from one side
of the switching boundary. Thesediscontinuity mapsare, how-
ever, limited to cases where the cycle encounters no more than
one sliding or escaping region, as in Fig. 18. In such cases they
allow us to determine the differentiability of the Poincar´e map,

and hence determine what kinds of global bifurcations the cases
in Fig. 15 will give rise to. The effect of encountering a second

Figure 18: Example of a persistent sliding bifurcation: a cycle gains a slid-
ing segment. The cycle is smooth away fromΣ, so it can be described by an
invertible return map to the Poincaré sectionΠ.

sliding or escaping region opens up the possibility of the cases
in Fig. 16. For example, Fig.19 shows an instance of the catas-
trophic grazing sliding bifurcation from Fig. 16(i) when a cycle
encounters both sliding and escaping regions.

Σ1

Σ2

Figure 19: Example of a catastrophic sliding bifurcation: acycle is abruptly
destroyed. The cycle has a sliding segment away from the boundaryΣ1 where
the bifurcation occurs. Therefore it has no invertible return map. The case
shown is a catastrophic grazing sliding bifurcation.

6.2.1. B3-B4: Discontinuity maps at a fold or cusp
Consider the configurations in Fig. 15. In all scenarios, as

noted above, the neighbourhoodB can be divided into two parts
where the sequence of segments composing an orbit takes a
qualitatively different form, such as those shaded and unshaded
in Fig. 20. Consequently, the mapβ takes two different func-
tional forms in the two regions. In the literature, and as illus-
trated in Fig. 20, it is common therefore to decomposeβ into
a smooth partβSM which is the same in both regions, and a
piecewise-smooth partβDM which is the identity on one re-
gion (shaded in Fig. 20). Thenβ = βSM ◦ βDM , andβDM is
the discontinuity map.

If φ andβ or φ−1 andβ−1 are single-valued, the analysis
of the dynamics near the bifurcating cycle can be reduced to
the analysis of a Poincaré mapφ ◦ β or β−1 ◦ φ−1. These
are the cases associated with the scenarios in Fig. 15. Ifφ is
also invertible, the differentiability of the Poincaré map depends
only on the properties ofβ, and thus ofβDM . This may not be
the case ifφ is not invertible:
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βSM

βSM

β

βDM

Σ

Figure 20: Near a tangency, the state space is divided into two regions with
different orbit topologies, depending on their intersection withΣ. In the shaded
region the flow induces a mapβ = βSM , while in the unshaded region the flow
induces a mapβ = βSM ◦ βDM .

Example: Consider a system with the state prortrait depicted
in Fig.21. In this case the mapφ(x), describing the dynamics
outsideB, has constant value for allx due to the sliding seg-
ment. Hence the one-dimensional Poincaré map of the cycle is
constant, regardless of the form of mapβ.

β

Σ

Σ

B

ϕ

Figure 21: The Poincaré map of a cycle undergoing a sliding bifurcation is
constant if the cycle has a sliding segment, regardless of the discontinuity in
the local mapβ.

Normal forms for the discontinuity maps of the scenarios
in Fig. 15 are found in the literature. A full review is found
in [12], and here we report simply their analytic form. In the
crossing-sliding and switching-sliding bifurcations, wecall x∗

the point where the non-sliding segment of a periodic orbit hits
the switching manifold, in the grazing-sliding bifurcation we
call xmin the point along a non-sliding segment of a periodic
orbit (eventually continued beyond the switching manifold) that
minimises the functionh, and in the adding-sliding bifurcation
we call xmin the point along a non-sliding segment of a pe-
riodic orbit (eventually continued beyond the fold) that min-
imises the functionLf1

h. In all scenarios we assume thatf1 is
defined whereh(x) > 0. Then, the Taylor expansions of the
(zero-time) discontinuity mapsβDM for the four generic slid-
ing bifurcations (in Fig. 15) can be written, to leading order
(and omitting arguments), in the form:

• grazing-sliding,

βDM : x 7→
{

x if σ ≥ 0,

x +
(f2 − f1)h

Lf2
h

if σ < 0,
(25)

whereσ(x) = h(xmin);

• crossing-sliding,

βDM : x 7→







x if σ ≥ 0,

x + (Lf1
h)

2 (f2 − f1)
2Lf2

hL2
f1

h
if σ < 0,

(26)
whereσ(x) = Lf1

h(x∗);

• switching-sliding,

βDM : x 7→







x if σ ≥ 0,

x +
2(Lf1

h)3

3(Lf2
h)2(L2

f1
h)2

Q if σ < 0,

(27)
whereσ(x) = −Lf1

h(x∗);

• adding-sliding,

βDM : x 7→







x if σ ≥ 0,

x − 9(Lf1
h)2

2(Lf2
h)2L3

f1
h

Q if σ < 0,

(28)
whereσ(x) = Lf1

h(xmin);

and where

Q = qLf2
h + (f1 − f2)Lqh, q = f1,xf2 − f2,xf1.

These discontinuity maps were derived for the first time in [15].
For cases obtained by reversing time in Fig. 15, where a cycle
has a segment in the escaping region, the (set-valued) discon-
tinuity map can be easily deduced. These discontinuity maps
have been shown to be differentiable in all except the grazing-
sliding case, where the map is piecewise smooth but continuous
at the switching boundary. As a consequence, if a Poincaré map
is well defined, it is smooth in all scenarios in Fig. 15 except
grazing-sliding. When the Poincaré map is smooth, the only
expected topological effect of the bifurcation is to changethe
number and type of segments constituting the cycle. When the
map is piecewise smooth continuous, then persistence, nons-
mooth fold, and nonsmooth period doubling scenarios are pos-
sible, and other invariant sets can be involved in the bifurca-
tion. The theory of bifurcations of piecewise smooth contin-
uous maps is as young and incomplete as that of piecewise
smooth flows, but some results are found in the literature, for
example in [87].

6.2.2. Existence of cycles
Here we explain in detail how functions (21-24) can be used

to obtain the results of the previous section. Consider a cy-
cle O that, for a particular valuēγ of the bifurcation parameter
γ undergoes a bifurcation as in scenarios (B3), (B4) or (B5)
(that is, it touches a fold, a cusp, or a two-fold). The Poincaré
map of the cycle can be written as a composition of a local part
β(x, γ) and a global partφ(x, γ), as in Fig. 17. Both maps
depend on the bifurcation parameterγ and, if eitherφ or β is
set-valued, then so is the Poincaré map. Genericity conditions
for (B3), (B4), and (B5) require that all intersections awayfrom
the neighbourhoodB be transversal, and for (B3) and (B4) they
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requires also that the cycle be hyperbolic (this is not necessary
in the case of a two-fold, where the Poincaré map and its in-
verse are set-valued and hyperbolicity has no meaning). These
conditions ensure that, ifφ or φ−1 is single-valued, then it is
smooth, since all intersections are transversal. Similarly, if β or
β−1 is single-valued, then it can be expressed as the composi-
tion of one or two smooth functions, expressing the flow near a
tangency. Hence a composition ofφ, β and their inverses gives
a function that is piecewise smooth, composed of two smooth
parts continuously adjoint.

Now consider the four functions (21-24). Either one of
these functions is single-valued near(x̄, γ̄), or bothβ andβ−1

are set-valued. Moreover, by the considerations above, if any
one of (21-24) is single-valued, then(x̄, γ̄) is in the zero set of
both its smooth parts. The Implicit Function Theorem can be
applied to each of the two smooth parts, smoothly extended in
a neighbourhood of(x̄, γ̄).

If either (21) or (22) is single-valued, then the hyperbolicity
of the cycleO at γ̄ implies that the Jacobian of (21) or (22) inx
is nonsingular. By the Implicit Function Theorem,O sits at the
intersection of two families of solutions, one for each smooth
part of β. The two families adjoin continuously, but can be
defined for values ofγ on the same side of̄γ, or on opposite
sides. This gives nonsmooth fold and persistence scenarios, as
we see in the next section. Since the path ofx(γ) is continuous,
the set of orbits beginning or terminating atx(γ) has geometry
near the tangency as in Fig. 15. The direction of time is as in
the figure if (21) is single-valued, while time is reversed if(22)
is single-valued.

If both (21) and (22) are set-valued, but (23) or (24) are
single-valued, then the cycleO has at least an escaping segment
and is touching the border of a sliding region inB, or it has a
sliding segment and touches a border of an escaping region in
B. The Jacobians inx of both φ or φ−1 andβ−1 or β have
a null space that is, typically, one dimensional in the presence
of sliding and escaping segments. Unless these null spaces are
orthogonal, the Jacobian of (23) or (24) has a one-dimensional
null space, which means that either no solution exists forγ near
γ̄, or a one-parameter family of solutions coexists atγ = γ̄. The
first case corresponds to the scenario in Fig 16 (i). In the second
case, a one-parameter family of cycles has local geometry asin
Fig. 15.

Finally, if none of (21-24) is single-valued, the Implicit Func-
tion Theorem cannot be used.

6.2.3. B5: Canards at a two-fold
Regarding the canard cases of catastrophic sliding bifurca-

tions in Fig. 16 (ii)-(iv), nothing is known other than the lo-
cal geometry required for them to occur. No tools yet exist to
analyse them globally, but they have been shown in [41] to be
related to canards in singularly perturbed systems. This connec-
tion is briefly discussed in Sec. 8.3, and motivates the terminol-
ogy applied to them in Fig. 16 (ii)-(iv). These ‘nonsmooth ca-
nards’ effectively provide a classification of the different local
forms that ‘canard explosions’ (to use the terminology fromsin-
gular perturbation theory, or ‘catastrophic sliding bifurcations’
in our terminology) can take.

Example: Consider the system in Fig. 22, with a switching
boundaryh = x2, and where

f1 = (x1 + ωx2 − ω − ω−1, x2 − ωx1)
f2 = (±ω−1, x1 − µ),

(29)

whereω = 10. Forµ > 0, a limit cycle with a sliding segment
exists (see Fig. 22). There are two folds, atx = (0, 0) and
x = (µ, 0), which coincide whenµ = 0 so that an orbit passes
from sliding to escaping; we call this orbit thecanard. The
tangency inf1 is visible, while the tangency inf2 is invisible
or visible taking respectively the+ or − signs in (29). These
are depicted in Fig. 22. Forµ < 0, in (i) all orbits are attracted
to a pseudoequilibrium (P) in the sliding region, and in (ii)all
orbits end up inR2; in each case the limit cycle has vanished
via a simple (i) or visible (ii) catastrophic sliding bifurcation.
The fold that exists atµ = 0 is non-generic, and were we to add
a third dimension, it would generically unfold to form a two-
fold. From this association we see that this is just an example
of the two-dimensional analogue of the visible canard classified
in Fig. 16.

x1

x2

(i)

(ii)

μ<0        μ=0        μ>0

x1

x2

P

E

P

E

EEE

P

E

Figure 22: Example of a limit cycle destroyed in (i) a visiblecanard case with
the+ sign from (29), and (ii) a simple canard case with the− sign from (29),
of catastrophic sliding bifurcation in two dimensions. Twofolds swap position
asµ changes sign. Whenµ = 0 the sliding and escaping regions are connected
via an orbit which passes through a degenerate-fold, and is called the ‘canard’
orbit. Both of these have recently been found to play important roles during the
“canard explosion” in a singularly perturbed van der Pol oscillator, see [41],
and their deeper connection to singular perturbation phenomena is the subject
of ongoing study. Equilibria and pseudoequilibria are marked E and P.

6.3. Codimension-two bifurcations of equilibria

We are not aware of any analysis of bifurcations of type
B1.2-B1.4 from Sec. 5.2.1 that apply in a general number of
dimensions (results limited to two dimensions are discussed in
Sec. 7.1), but some results exist regarding type B1.1. Nonhy-
perbolic equilibria generically undergo a Hopf or saddle-node
bifurcation under one parameter variation. The case of a bound-
ary equilibrium bifurcation simultaneous to a saddle-nodeof
the pseudoequilibrium has been recently studied in [37]. The
local unfolding shows a boundary-equilibriumbifurcationchang-
ing from persistence to nonsmooth fold across the codimension-
two point, and a saddle node of pseudoequilibria adjoining the
point tangentially to the boundary equilibrium. The dual case
of a boundary equilibrium bifurcation simultaneous to a saddle-
node bifurcation of the equilibrium has not been studied, but the
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analysis of the same bifurcation in the discrete-time case con-
ducted in [29] suggests that a similar unfolding should be ex-
pected. All other combinations are still waiting to be explored.

6.4. Codimension-two bifurcations of limit cycles

Sliding bifurcations of Type I in Sec. 5.2.2 occur when the
tangency between the vector fields and the boundary is degen-
erate. Referring to the genericity conditions in Sec. 5.1.2, this
can be a cusp point or a two-fold in case B3, and a fourth-order
tangency (L3

f1
h=0) or a two-fold in case B4. The case of a graz-

ing with a cusp point or a fourth-order tangency is discussedin
[66], where the discontinuity-induced bifurcations that adjoin
these codimension-two points are listed, but only the unfolding
of the degenerate crossing-sliding is reported, while the unfold-
ing of all other cases is left undone. The case of other possible
degeneracies, which involve grazing at two-fold points, have
not been analysed to date.

A partial unfolding of all type II bifurcations is provided
in [29], for nonhyperbolic cycles undergoing a grazing witha
boundary, without further assumptions on the dynamics on the
other side of the boundary or on the geometry of the boundary.
Intuitively, these codimension-two points are the intersection of
(at least) a sliding bifurcation curve and a flip, fold, or Neimark-
Sacker bifurcation curve. The analysis in [29] retrieves the local

Fold Flip NS GR
(i) (ii) (iii)

SB1

SB1 SB1

SB2

SB2

Figure 23: Partial unfolding of the codimension-two sliding bifurcations of
nonhyperbolic limit cycles. (i): sliding bifurcation + fold; SB1 and SB2 are
sliding bifurcations the two cycles involved in the fold bifurcation. (ii): slid-
ing bifurcation + flip; SB1 and SB2 are the sliding bifurcations of the period-
one and period-two cycle respectively. (iii) sliding bifurcation + Neimark-
Sacker; SB1 is the sliding bifurcation of the cycle, NS is the Neimark-Sacker,
and GR is a grazing bifurcation of the torus. Bifurcation curves near any of
these codimension-two points must be arranged as in one of the three portraits.
However, the presence of other bifurcation curves, and the dynamics across the
curves, depend on the type of sliding bifurcation, and the complete unfoldings
are still unknown.

geometry of these curves near the codimension-two point (re-
ported in Fig. 23) for any of the sliding bifurcations admitted by
the configurations in Figs. 15 and 16, but it does not allow de-
duction of the complete set of bifurcation curves, nor of thetype
of dynamics that surround these curves. The complete unfold-
ing of a single case, the fold-grazing-sliding, can howeverbe
deduced from the results in [90] on the fold border-collision in
a piecewise continuous map, knowing that the Poincaré map of
a grazing-sliding cycle is indeed piecewise smooth continuous.
Interestingly, the onset of chaos after the grazing is predicted.

A general analysis of Type III bifurcations has never been
carried out.

Finally, some codimension-two bifurcations ofn-dimensional
piecewise continuous maps have been studied in [87, 90, 89],
and the results should apply to codimension-two grazing-sliding

bifurcations of cycles which, as seen in Sec. 5.1.2, induce a
piecewise smooth continuous Poincaré map.

6.5. Boundary-intersection crossing bifurcations

As we discussed in Sec. 5.3, the most well studied bifur-
cations in this category occur when a non-sliding segment of
a limit cycle reaches a boundary intersection. Local disconti-
nuity maps provide useful insights, just as they did in the ab-
sence of boundary intersections. These maps have been ob-
tained in [11, 12] in the absence of any sliding/escaping region
near the boundary intersection, and have been extended in the
case of a single sliding region, and provided no sliding occurs
along the intersection [27]. In all cases, the discontinuity map
has been found to be piecewise smooth and continuous. This
implies that, when a Poincaré map can be defined, it is piece-
wise smooth continuous. The theory of piecewise smooth con-
tinuous maps, discussed in [44, 45, 46, 47, 48, 13], predicts
that the cycle can undergo nonsmooth fold, persistence, and
nonsmooth period doubling scenarios analogous to those at a
grazing-sliding bifurcation.

7. Specific results inRn (n ≤ 3)

In this section, we consider a few examples of phenomena
that are unique to piecewise smooth systems, but which have to
date eluded generalization ton-dimensions. All of these results
are obvious starting points for future work.

7.1. Planar Filippov systems

An extensive study of one parameter bifurcations in planar
Filippov systems is made by Kuznetsovet al. [73]. Here the au-
thors consider a Filippov system where the switching boundary
Σ is simply a smooth curve. Depending on certain conditions
satisfied by the vector fields, there are four types of specialslid-
ing points: singular sliding points, pseudoequilibria, boundary
equilibria and tangent points, which we will denote byT .

In order to consider generic cases at a tangency, it is as-
sumed that both vectorsf1(T ) andf2(T ) are nonzero and that
point into its corresponding regionRi of them is tangent toΣ.
This allows for two different types of tangent points (tangen-
cies); the invisibleand thevisiblecases, where the flow curves
respectively towards and away fromΣ, as we introduced in Fig.
7. The approach taken in [73] is to propose different bifurcation
scenarios, and examine their topological detail. The scenarios
considered are stated to be generic, and assigned normal forms,
and a forthcoming paper [58] is intended to prove their gener-
icity. The different scenarios considered are:

1. codimension 1 local bifurcations

· collisions of a focus withΣ (boundary focus)

· collisions of a node withΣ (boundary node)

· collisions of a saddle withΣ (boundary saddle)

· collisions of tangent points

· collisions of pseudoequilibria

2. codimension 1 global bifurcations
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· bifurcations of sliding cycles

· pseudo-homoclinic bifurcations

· pseudo-heteroclinic bifurcations

3. codimension 2 local bifurcations

· degenerate boundary focus

· boundary Hopf

4. codimension 2 global bifurcations

· grazing-sliding of a nonhyperbolic cycle

The constructive approach taken to derive these has its lim-
itations, even in two dimensions. In the case of codimension
1 global bifurcations, the authors in [73] considered bifurca-
tions of cycles which collide withΣ. They uncover the four
familiar sliding bifurcations of grazing-sliding, adding-sliding,
switching-sliding and crossing-sliding. But they do not find the
catastrophic sliding bifurcations described in [65], explicit pla-
nar examples of which are shown here in Figs. 22-26; these also
are not discussed generally in a forthcoming paper [58], buta
case similar to the ‘simple canard’ in Fig. 22 appears in [58]
as part of the codimension two unfolding of a fold-cusp singu-
larity. A direct inspection of orbit configurations on either side
of the switching boundary in Fig. 22 reveals that these bifur-
cations must be present in the problem in general, hence it is
legitimate to ask whether, in the other cases considered in [73],
the constructive approach may have left other codimension-one
bifurcations undiscovered.

At present it is not known to what extent this work can be
generalised, either to systems with boundary intersections, or
with n-dimensions. An obvious generalization is to a bimodal
(two-region) system inn-dimensions. In that case, the switch-
ing boundary hasn − 1 dimensions. Equilibria close toΣ can
then take a large number of different forms, depending on the
eigenvalues of the piecewise smooth vector field’s Jacobian. It
is not immediately clear how any of these generalizations can
be achieved. The classification of sliding bifurcations in Figs.
15-16 applies inn-dimensions (see [65]) and therefore partially
addresses the problem, but only away from boundary intersec-
tions and equilibria. The incompleteness of the classification of
planar codimension-one bifurcations proposed in [73] reveals
that piecewise smooth systems have surprises to spare. While
completing this even in two dimensions remains an open prob-
lem, a more pressing need is to know how current results can
be applied in higher dimensions.

7.2. Generalized Hopf bifurcation

For a smooth system, a Hopf bifurcation occurs when a
complex conjugate pair of eigenvalues crosses the imaginary
axis. This cannot occur at a switching boundary because of the
impossibility of linearizing the vector field across the discon-
tinuity at the origin. Strictly speaking, therefore, a Hopfbi-
furcation in a piecewise smooth system can only occur entirely
within one of the open regionsRi.

In this section we consider periodic orbits which bifurcate
from stationary solutions of Filippov systems. These have been

calledgeneralized Hopf bifurcations[72, 100, 88] or discontinuity-
induced Hopf bifurcations [12, 16]. The basic idea here has
been to characterize the generalized Hopf bifurcation as being
given by the change from stable focus to unstable focus via a
centre for a basic underlying piecewise linear system, which
takes the place of linearization in the smooth case.

Again little work has been done to generalize results found
in planar Filippov systems. Notable exceptions are restricted to
the case where the vector field is continuous across the switch-
ing surface. For piecewise smooth continuous systems, [71]
extends the idea of an invariant manifold to describe invariant
cones for generalized Hopf bifurcations, and Simpson & Meiss
[88] prove the following result:

Theorem 7.1 ([88]). Suppose that the system is continuous
and sufficiently differentiable and that it has an equilibrium
that crosses the switching boundary atx = x∗ whenµ =
0. Asµ → 0+, the eigenvalues of the equilibrium approach
λL ± iωL and asµ → 0−, they approach−λR ± iωR where

λL, λR, ωL, ωR > 0. DefineΛ = λL
ωL

− λR
ωR

. Then ifΛ < 0,
there existsǫ > 0 such that for allµ ∈ (0, ǫ) there is an at-
tracting periodic orbit whose radius isO (µ) away fromx∗

and ∀µ ∈ (−ǫ, 0), there are no periodic orbits nearx∗. If
Λ > 0, ∃ǫ > 0 such that∀µ ∈ (−ǫ, 0) there is a repelling peri-
odic orbit whose radius isO (µ) away fromx∗ and∀µ ∈ (0, ǫ),
there are no periodic orbits nearx∗.

The same authors emphasize the difference between this
and the smooth Hopf bifurcation. First, the generalized Hopf
solution is made up of two spiral segments; it is not elliptical.
Second, the growth rate is linear inµ, whereas it isO

(

µ1/2
)

in the smooth case. Finally the criticality of the bifurcation is
determined by the linear termΛ, rather than by cubic terms.

A paper by Han & Zhang [60] studies the different ways
on which planar limit cycles can be produced from the three
different possible piecewise smooth foci. They base their re-
sults on previous results of [25], but as before, the possibility of
generalization to higher dimensions is not obvious.

Simpson & Meiss [88] speculate why it might be difficult
to generalize their work ton-dimensions. The main challenge
is that it is not clear how to obtain the required centre manifold
reduction. They also point out that in higher dimensions an
equilibrium on a switching boundary can be unstable even when
both Jacobians have all their eigenvalues in the left hand plane,
citing an example given in [20].

7.3. Bifurcations of the sliding boundaries
Section 3 provides a short overview on the geometry of

the boundaries of crossing, sliding, and escaping regionsΣ.
Clearly, a perturbation of a system’s equations can in general
alter this geometry, therefore it is natural to consider some ob-
vious topological changes that occur at the boundaries: either
at self-intersections of the switching boundaryΣ, or at the slid-
ing boundaries onΣ. Bifurcations concerning uniquely the
geometry of boundary intersections are mostly ignored in the
literature. Topological changes of sliding boundaries have re-
ceived more attention, at least in two or three dimensions (see
[49, 73, 94]).
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Degenerate tangencies give rise to structurally unstable slid-
ing boundaries, and when perturbed these produce bifurcations
that create regions of sliding, escaping, or crossing. Consider
for instance the cusp which, as we have mentioned in Sec. 3, is
topologically stable in three or more dimensions. We can con-
sider (13) in the two dimensional space of(x1, x2) and treatx3

as an unfolding parameter. Whenx3 = 0, Σ consists of the cusp
point surrounded by regions of crossing if the cusp is invisible,
and sliding/escaping if the cusp is visible. Asx3 passes through
zero a bifurcation takes place that opens a region between the
pointsx2 = ±√

x3 on x1 = 0, bounded by folds, one visible
and one invisible. The normal form (13) gives sliding if we take
the ‘+’ signs and escaping if we take the ‘−’ signs; the latter is
illustrated in Fig. 24.

Σ

x1

x3<0 x3=0 x3>0

x3<0 x3=0 x3>0

x2

Σ

x1

x2

invisible cusp

visible cusp

Figure 24: Double tangencies and sliding regions: the cusp in two dimensions.
As two tangencies on one side ofΣ collide in a cusp, a region opens up between
them. Regions of crossing (dashed line) surround a region ofescaping (full
lines) in the case of an invisible cusp, and a regions of escaping surround a
region of crossing in the case of a visible cusp. Reversing arrows changes
escaping to sliding.

The same reasoning applies in the case of the two-fold.
Its two-dimensional counterpart is the “double fold”, occuring
when the piecewise smooth flow has tangencies above and be-
low Σ, which exchange ordering as a parameter varies, given
by a normal form

f1 = ±(s1 x2 , 1),
f2 = ±(s2(x1 + 2x2 − µ) , 1),

(30)

where we can choose the± signs on each row independently,
wheres1,2 take values±1 andµ is an unfolding parameter. The
two folds lie atx2 = 0 andx2 = µ/2, and their visibility de-
pends ons1 and s2 as in (14). Asµ changes sign, either a
region of crossing closes and re-opens and lies between sliding
and escaping regions (shown in Fig. 25 for the case with two
visible folds) or a region of sliding closes then a region of es-
caping opens, lying between crossing regions. In each case a
bifurcation has taken place asµ changed sign. (We should re-
mark that in [73] the double fold is given by different normal
forms depending on the types of visibility involved. However,
(30) provides a single form giving the correct topology for all
cases, including pseudoequilibria and limit cycles which we do
not discuss here).

Likewise, higher order degeneracies of tangency points will
cause bifurcations in two or more dimensions. Teixeira [94]
has considered four cases of one-parameter bifurcations ofslid-
ing regions in three dimensional systems, called the dovetail

Σ

x1

x2

μ<0 μ=0 μ>0

visible-visible double fold

Figure 25: Double tangencies and sliding regions: two foldsin two dimensions.
As a pair of tangencies, one each side ofΣ, exchange ordering, a crossing
region (dashed line) opens up between two visible folds, lying between sliding
and escaping regions (full lines). This corresponds to (30)with the ‘+’ signs
and withs1 = −s2 = 1.

(which occurs at a fourth order tangency), the lips and beak-
to-beak (which occur at a degenerate form of the cusp), and
the degenerate two-fold (where two fold curves intersect non-
transversally); each of these will have topologically stable coun-
terparts in four or more dimensions, just as the planar cusp and
double fold have stable counterparts in three or more dimen-
sions.

8. Where do we go from here?

In previous sections we have drawn together results that
point towards a general theory of discontinuity-inducedbifurca-
tions, and efforts to this end are unlikely to have peaked. Press-
ing concerns involve how to balance generality and rigour in
classifying nonsmooth systems, to avoid, for instance, seman-
tic differences obscuring dynamical similarities. When are two
nonsmooth systems topologically equivalent, and when do they
undergo bifurcations? In spite of the results we have brought
together here, these are issues on which a consensus is yet to
be reached. In this section we briefly outline some promising
directions for future progress.

8.1. Pinching and regularization

One way of dealing with a discontinuity on the righthand
side of the equatioṅx = f is to smooth it out. Iff = f+

for h < 0, andf = f− for h > 0, we can approximate the
discontinuity ath = 0 by a ramp over|h| < ǫ, for someǫ > 0,
by writing

ẋ =
1 + φ(h(x)/ǫ)

2
f+(x) +

1 − φ(h(x)/ǫ)

2
f−(x), (31)

whereφ(y) = −1 for y ≤ −1, φ(y) = +1 for y ≥ 1, and
φ(y) ∈ (−1, 1) for y < −1. Then (31) is called a regulariza-
tion, andφ is a transition function. Further smoothing can be
convenient for numerical simulations, givingφ a differentiable
sigmoidal form instead. Whatever the differentiability ofφ, it is
not known how well regularization approximates the dynamics
at a discontinuity.

It has been shown that, given the regularization of a piece-
wise smooth system, a singularly perturbed system can be found
that is topologically equivalent [77], and in particular, that a
sliding region is then homeomorphic to a normally hyperbolic
slow manifold. Results so far do not extend to points where a
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piecewise smooth vector field is tangent to a switching bound-
ary, which are likely to be associated with a loss of hyperbol-
icity of a slow manifold. Non-hyperbolic points commonly re-
quire the introduction of artificial “blow-up” parameters,and
their study is ongoing. In [41], however, it was shown by a
different method, called pinching, that when slow manifolds
are indeed approximated by switching boundaries, their non-
hyperbolic points are approximated by two-fold singularities.

Pinching, which can be thought of as a converse to regu-
larization, was introduced in [86] and expanded upon in [41].
Pinching approximates a smooth vector field by a discontinuous
one, by collapsing a region of state space to form a switching
boundary. Let

ẋ = f(x) + g(x), (32)

wheref andg are smooth functions of the state vectorx =
(x1, x2, x3, ...). Let ǫ be a positive constant, and letg(x) ≫
f(x) for |x1| < ǫ, andf(x) ≫ g(x) for x1 > ǫ. We call|x1| <
ǫ the pinch zone. We then introduce a new coordinatey1 =
x1 − ǫ sign(x1) over the regionx1 > ǫ, whereg is negligible.
This defines a new state variabley = (y1, x2, x3, ...), which
satisfies

ẏ =

{

f+(y), if y1 > 0,
f−(y), if y1 < 0,

(33)

wheref±(y) = f(y1 ± ǫ, x2, ...), and whereg ≪ f has been
neglected.

The result of pinching is that, at a pointy = (0, x2, x3, ...)
on the switching boundary, we have the differential inclusion

ẏ = {f(z) + g(z) : z = (ξ, x2, x3, ...) , ξ ∈ (−ǫ, ǫ)}. (34)

We can approximate the set-valued righthand side by an inter-
polation between the values off + g at ξ = ±ǫ, whereg is
negligible, resulting in

ẏ ≈ {f+(y) + (1 − λ)f−(y) : λ ∈ (0, 1)} on y1 = 0.
(35)

Then the system (33) with (35) is a Filippov system. Note that
we have derived this as an approximation to the smooth system
(32), replacing the dynamics in the region|x0| < ǫ whereg
dominates, with dynamics at a switching boundary given by
(35).

In [41] it was shown that pinching can be used to study bi-
furcations in singularly perturbed systems, and is interestingly
related to the nonstandard analysis [10] approach to studying
the highly nonlinear phenomenon of canards. It is hoped that
the concepts of pinching and regularization will continue to
give insight into the correspondence of singularities and bifur-
cations between smooth and piecewise smooth systems.

8.2. The notion of a sliding bifurcation

Among the most powerful concepts in bifurcation theory is
that of center manifold reduction, whereby a bifurcation inn-
dimensions is reduced to a lower dimensional problem. Very
little has been achieved concerning center manifolds in piece-
wise smooth systems. As a result, many bifurcations have been
described in planar systems, without much discussion of when

a given discontinuity-induced bifurcation inn-dimensions can
be reduced to a planar problem.

An exception is given by the discontinuity mappings in Sec.
6.2.1, which classify one-parameter sliding bifurcationsusing
local geometry in lower dimensions, in the neighbourhood ofa
switching boundary. The implication of Sec. 6.2 is that many
different discontinuity-induced bifurcations can be classified as
sliding bifurcations, provided they occur where orbits graze the
switching boundary, regardless of the object (such as a periodic
orbit or invariant manifold) undergoing the bifurcation. This
idea of topological reduction is very different to, though in the
spirit of, centre manifold or normal form reduction.

The utility of the topological classification of sliding bifur-
cations (Figs. 15-16) can be seen by their ability to predict
previously unknown global bifurcations. As an example, Fig.
26 (and our earlier Fig. 22) illustrate codimension-one bifurca-
tions of stable limit cycles that have escaped classification until
now, but which are easily deduced from the geometry of catas-
trophic sliding bifurcations. Fig. 26 consists simply of anun-
stable focus in the upper vector field, with sliding and escaping
on the rightmost and leftmost parts of the switching boundary
respectively. Forµ > 0 a stable limit cycle with a sliding seg-
ment encircles an unstable focus. Atµ = 0 the cycle grazes the
boundary of an escaping region, and the catastrophic grazing
sliding bifurcation takes place. Then, forµ < 0, inspection of
the state portrait reveals that no limit cycles can exist, and all
orbits eventually end up below the switching boundary.

μ>0        μ=0        μ<0

Figure 26: Example of a periodic orbit destroyed in a catastrophic grazing-
sliding bifurcation. As a parameterµ changes we have: (i) a stable periodic
orbit with a sliding segment, (ii) the periodic orbit grazesa visible fold at the
boundary of an escaping region, (iii) no attractors remain.

These bifurcations can equally well occur in higher dimen-
sional systems, or those with more complex switching bound-
ary topologies.

8.3. A pivotal point: the two-fold singularity

Two-fold singularities were proposed in [49] and [93] to be
of fundamental importance if piecewise smooth dynamical sys-
tems theory was to venture beyond the plane. Their importance
lies in allowing orbits to pass from attracting to repellingre-
gions of state space, that is, from sliding to escaping regions
(noting that the attraction/repulsion is strong in the sense that it
is not asymptotic, but takes place in finite time). Such orbits are
called canards, see Fig. 27.

In [41] it was shown that canards at two-folds (as in Fig.
16) are not only consistent with the canards familiar in singu-
larly perturbed systems [10, 91], indeed they can be derived
as approximations to them, and furthermore reveal that canard
explosions are examples of catastrophic sliding bifurcations.
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canard faux 
canard

no canard

Figure 27: Canards and two-folds: (i) a canard passes through a two-fold, from
sliding to escaping regions; (ii) a faux canard passes from escaping to slid-
ing regions; and (iii) a two-fold without canards. Sliding/escaping regions are
shaded, crossing regions are unshaded, and the boundaries between them are
folds.

Canards can have local consequences too, as are revealed
at the invisible two-fold, also called the Teixeira singularity.
Since the far reaching work of Filippov [49] and Teixeira [93],
the Teixeira singularity has continued to reveal novel local dy-
namics [28, 64], and remains a subject of ongoing interest [31].
When the Teixeira singularity exhibits a faux canard, orbits lo-
cally wind around the singularity only a finite number of times
before entering the sliding region. In [64], a “nonsmooth di-
abolo” bifurcation was derived, whereby an invariant double
cone self-annihilates, and turns faux canards into canards, see
Fig. 28. Analysis of higher order terms near the bifurcation, in
[31], has shown that for certain parameters, orbits locallybegin
and end at the singularity via escaping and sliding segmentsthat
lie along a canard. Locally, solutions in the flow therefore visit
the singularity recurrently, but become non-unique each time
they traverse the two-fold. This means that the trajectory of an
orbit leaving the singularity is not determined by how it entered,
and the resulting behaviour exhibits a non-deterministic form
of chaos. In particular, the study of canards from the piecewise

sliding

crossing

escap
in
g

Figure 28: The two-fold and non-deterministic chaos. For certain parameters
the two-fold takes the form depicted, with a pseudosaddle inthe escaping re-
gion and a family of canards passing through the two-fold. The folds are both
invisible. The dotted curves are the paths followed by non-sliding orbit seg-
ments on successive crossings. A typical orbit is shown: orbits locally wrap
around the singularity, and after finitely many crossings they slide, following
a canard through the two-fold. The outward trajectory through the escaping
region is not uniquely determined. Wherever the orbit emerges, it again begins
winding around to the sliding region and hence to the two-fold, to be ejected
again in an undetermined direction. The resulting dynamicsis chaotic but non-
deterministic.

smooth perspective [41] is quite new, and in spite of a proof that
Teixeira singularities can occur generically in control systems
[28], they have not yet been identified in specific applications.

These novel types of behaviour are deserving of further study
in three dimensions and beyond.
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regulatory networks: Theory and example, Springer-Verlag, 2007.

[55] M. Guardia, From non-smooth to analytic dynamical systems: low codi-
mension bifurcations and exponentially small splitting ofseparatrices,
Ph.D. thesis, Universitat politécnica de Catalunya, 2010.
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