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Abstract

The nonsmooth dynamical model of a superconducting respisatliscussed, based
on previous experimental and analytical studies. The @dgia superconducting sen-
sor whose key elements are a sensor probe attached to a tiogding, around which
flows an electric current. The ring is interrupted by a miciddpe of superconduct-
ing material, whose temperature can be altered to sergitieatrol the device’s con-
ductivity. In certain conditions, novel self-sustainingwer oscillations are observed,
and can suddenly disappear. It was previously shown thatdisappearance can be
described by a periodic attractor undergoing a catasteogllding bifurcation. Here
we reveal the sequence of bifurcations that leads up to teistebeginning with the
change in stability of a fixed point that creates an attraatwd the birth of a saddle-type
periodic orbit by means of a Hopf-like discontinuity-indgtbifurcation.

1. Introduction

Sliding is a discontinuity-induced phenomenon that arises/stems of ordinary
equations that are piecewise-smooth, meaning the eqsati@ensmooth everywhere
except on certain hypersurfaces, caldsdtching manifoldswhere they are discontin-
uous. A solution is said telide when it evolves along a switching manifold. In me-
chanics this describes sticking caused by dry frictionwiftched control it describes
modes confined to codimension one control surfaces, amangmmus other engineer-
ing and biological applications, see e.g. [3, 5]. In thisgrape study the piecewise
smooth model of a superconducting resonator, derived ih]112, 13] to explain the
appearance of novel self-sustaining oscillations, to show an attractor is created,
and the oscillations destroyed, via a sequence of disaattimduced bifurcations
whose theory that are novel from both theoretical and erpartal perspectives.

In the main part of the paper, Secs. 2 to 4, we elaborate onxedcdthe study
of the superconducting resonator, focusing on fixed point$ lifurcations of the
piecewise-smooth dynamical system rather than the phykibe device, though in the
closing remarks, Sec. 4, we revisit this and discuss the hsqatactical significance.
We find three discontinuity-induced bifurcations that adeusequence, from the cre-
ation of a periodic orbit of saddle-type (one positive ané argative eigenvalue), to
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its subsequent role in the catastrophic sliding bifurcatimt destroys a self-sustaining
thermal oscillation. The sequence of bifurcations is camdid numerically in the limit
of fast heat transfer — 0, where the system becomes piecewise-linear. The persis-
tence of these results for nonzercand their significance in the physical device, are
proposed as the subject of further study.

We begin with a brief introduction to piecewise-smooth egst and discontinuity-
induced bifurcations. Consider the system

. fo(z) if h(z) >0,
‘”—f("’”)—{ @) i R <o (1)

wherefy(z) € R™ andh(z) € R are smooth functions of the statec R™, and the
dot denotes derivative with respect to time. The conditian) = 0 implicitly defines
a switching manifold which we labél.

crossing stable sliding unstable sliding

Figure 1: Dynamics at a switching manifokt (i) crossing; (ii) stable sliding, where orbits convergem
the manifold; (iii) unstable sliding, where orbits diverfyjem the manifold, each in finite time. The system
consists of a piecewise-smooth vector field which is disooous along® (jumps between the valuegs™
and ), and in (ii)-(iii) this induces a sliding vector fielg*! on X. Pseudoequilibria — fixed points of the
sliding dynamics shown in (ii)-(iii) — are points whefe- and f ~ are antiparallel.

The piecewise-smooth systein/dt = f(x) can be solved as a differential inclu-
sion, also called a Filippov system [7]. If the vector fieldmie through®, meaning
(Vh-f1)(Vh-f_) > 0, then solutions cross through it as shown in Fig. 1(i). Ifithe-
tor field points towards or away frobd on both sides, meanii’ .- f+)(Vh-f-) <0,
we take a convex combination ¢f andf_,

Vh-f_
Vh- (-~ 11

called thesliding vector field with \ defined such thaf,; lies in the tangent space of
Y. Sliding orbits are solutions of = f,; on X whereA € (0,1), as illustrated in
Fig. 1(ii)-(iii). The following standard distinction beten fixed points of’+ and f;
is useful:
Definition. We call a pointwherg,. = 0 or f_ = 0 anequilibrium and a point where
fs1 = 0 apseudoequilibrium

Switching manifolds can cause qualitative changes in @&systdynamics, termed
discontinuity-induced bifurcationi8]. They include local bifurcations caused when
an equilibrium meets a switching manifold, calledaundary equilibrium bifurca-
tion. They also include global bifurcations caused when andiitg periodic orbit
meets a switching manifold and thereby loses/gains a segrhsiiding, called aslid-
ing bifurcation Recently, a topological classification of sliding bifuticas revealed a

fa =M+ +(0=XNf_ where \= (2)



new class otatastrophic sliding bifurcationf®]. In these, instead of losing/gaining a
sliding segment, an attracting periodic orbit is destroga@strophically, without any
significant change in its amplitude or period prior to theubihtion. (All of these are
more thoroughly reviewed in the artickifurcations of piecewise smooth flows: per-
spectives, methodologies and open problesné. Colombo et al, also in this journal
issue.)

The simplest examples of these three classes of discotytimaiuced bifurcation
are illustrated in Fig. 2: (i) a boundary equilibrium bifat®on, (i) a sliding bifurca-
tion, and (iii) a catastrophic sliding bifurcation, eactsdébed in the figure. In this
paper we will study an application that involves a sequeri¢bree bifurcations, one
in each class, and the particular examples involved arelsédtand described in Fig. 3.
The boundary equilibrium bifurcation shown involves a af@aof stability as an equi-
librium becomes a pseudoequilibrium, and is therefore mesoént of the well-known
Hopf bifurcation [10], or of the Hopf-like bifurcation in danar Filippov system de-
rived in [4].

@) (ii) (iii) catastrophic

grazing grazing
3@ ];:rsiil;ltirri/ce sliding :liding

Figure 2: Three examples of discontinuity-induced biftimes. The switching manifol& is made up of
sliding regions (shaded) and crossing regions (unshaded)the bifurcations take place on the boundary
between them. Each picture shows three images of a phasaipoanging as a parameter varies: (i) an
equilibrium persists when it hitS and becomes a pseudoequilibrium; (ii) a periodic attrapessists when

it hits X and gains a sliding segment; (iii) a periodic attractor istdged when it hitss. In (i)-(ii) the
sliding region is stable and in (iii) it is unstable.

(ii) PSRN

catastrophic
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grazing-sliding

switching-sliding >{ _ &~

Figure 3: Three discontinuity-induced bifurcations ity unstable sliding. Each picture shows two im-
ages of a phase portrait changing as a parameter varies:s{@bie focus changes stability as it his
becoming a pseudoequilibrium of saddle-type in an unstsliding region, and a periodic orbit (also of
saddle-type) is annihilated in the process; (ii) a periadit with a sliding segment develops an arc below
¥, by what is called awitching-slidingbifurcation in [3]; (iii) a periodic orbit is destroyed by atastrophic
grazing-sliding bifurcation (see [9]).

The theory of discontinuity-induced bifurcations in higldémensions faces many
fundamental difficulties. There are many possible clasésgsiem that can be stud-



ied, primarily because switching manifolds come in variéarsns. Models derived
from applications frequently have nontrivial switching mifald topologies, may in-
volve strong simplifications that make the models highly-gemeric, and may provide
simulated or experimental data of great complexity. Herestuely a recent experi-
mentally motivated model, proposed to describe novelsgdtaining thermal oscilla-
tions observed in a superconducting resonator device {§emfl references therein).
The model contains many elements that are attractive fooengtrical study. Firstly,
it is three dimensional (therefore non-planar, but suffitielow dimensional to be
tractable). Secondly, it contains not only switching bebawr (between normal and
super conducting temperature regimes), but also involivegiar perturbation, in the
form of fast evolution towards surfaces inhabited by slowedir dynamics, and the
slow surfaces intersect the switching manifold. In addititne model is accompanied
by clear experimental data that shows destruction of thessistaining oscillations,
through what was shown in [8] to be a catastrophic slidingro#tion. The central in-
teresting feature of the superconducting resonator medgéi it involves sliding, but
contrary to many well studied systems, the sliding dynanigsrtant to the resonator
is unstable

Atan unstable sliding region (Fig. 1(iii)), orbits everyare diverge from the switch-
ing manifold. The state of a system cannot evolve onto arablessliding region in
forward time, except at its boundary. The interaction aBatiors with the boundary of
unstable sliding is central to the existence of catastiogliding bifurcations [9].

2. Piecewise-smooth model of a superconducting resonator

The superconducting resonator is an experimental deviesigded as a sensor
whose fine sensitivity could be controlled by laser heatihg wiobium nitride (NbN)
microbridge [13]. The microbridge sits around the circurafee of a conducting ring
attached to a sensor probe. In experiment, however, nolfedisgaining oscillations
are observed|[1, 11, 12, 13]. They have a simple physicalgmgmely the oscillation
of the microbridge between normal and superconductingstait a low temperature
the microbridge is superconducting, passing a high cumwéith heats the bridge, un-
til its temperature exceeds the threshold where it ceases ®uperconducting, the
conductance falls, the current therefore decreases arttetitang effect drops, so the
bridge temperature falls below the threshold, the bridg®bees superconducting, and
the process is seen to repeat periodically. The result tsp@odic oscillations are
observed in the device’s power output for certain experialgrarameters. It was ob-
served, however, that these self-sustaining oscillatbousgd vanish suddenly, without
significant prior change in period or amplitude, after whicé system would settle to
a stable fixed point in either the normal or superconductngpterature range.

The non-dimensionalized dynamical model proposed for thécé [1, 8] can be
expressed in terms of the power in the ring, whose complexiardp is given by,
and the temperatureof the microbridge, satisfying

& = s@O5 -6, )



wherei = /—1. The positive constantis small, indicating that heat transfer from
the microbridge to a surrounding coolant is very fast coragao the dynamics of the
power amplitude3. The parameters € R andA € C relate the response of the ring
respectively to the driving amplitude and frequency. Theinperature dependence can
be expressed as piecewise-smooth constant, jumping atehsvg manifold® given
by 6 = 1, between norma#(> 1) and super{ < 1) conducting modes. Denoting the
modes by+ and—, we let

C A i 01, s i 01,
A(9>—{A_ it p<1,  and 5(9>—{3_ it <1 @

Physical values of the constantg. ands.. lie in the rangeRe AL < 0 andsy >
s— > 0[8].

Three surfaces are illustrated in Fig. 4(i) that play a vitdé in the dynamics.
These include thé-nulliclines of (3), which are

Xy = {(ﬁae):n+(ﬁa9):0a9>1}v (5)
Yo {(ﬁae):n7(679)2059<1}5

where
n+(B,0) = s+ |B|* — 0. (6)

(Treated as a singular perturbation problein, are critical manifolds, however the
theory of normally hyperbolic manifolds [6] does not app&anthe switching manifold
.) Fore < 1 the system (3) splits into fast dynamics, where the l&rgemponent
pushes the state towards., and slow dynamics in a neighbourhoodXf (where
6 = 0), where the system reduces to the lineaquation. This is illustrated in Fig. 4(i),
with (ii)-(iii) showing different representations that weake use of in Sect. 4.

Rep

top view

Figure 4: Dynamics of the superconducting resonator. Achivig manifoldX separates normal (abo¥®
and super (below) conducting modes. Orbits flow fast (double arrows) towdhgsslow (single arrows)
critical manifoldsX .+, and away from the unstable sliding regibn;. Three projections are shown: (i) in
coordinategRe/3, Img, 6), (i) in coordinates(| 3|, arg 3, #), (iii) a top view into the complexs plane.

The third important surface is the region dhdelimited by its intersection with
34, giving the annular region in Figs. 4 (i) & (iii) and the stiip(ii), defined as

Sa={(8.0): 0=1, |8 € (1/s_,1/s4)}. (7)



Y4 1S a region of unstable sliding, where the vector fields ing@nt away from>

(recall Fig. 1(iii)). The sliding vector field, by (2), is g by

A+77— (57 1) B A—n‘ﬁ‘(ﬁa 1)
n-(8,1) = n4(8,1)

Elsewhere the flow crosseés The three regionk;, ¥, and¥_, form a continuous

(but nonsmooth) surface upon whiéh= 0.

B= B—i on Xg. (8)

3. Equilibria and pseudoequilibria in the model

Given thatd vanishes only orE,; or X4, we know that any fixed points of the
piecewise-smooth system must be contained within the$acas;, in the form of equi-
libria where (3) vanishes, and pseudoequilibria where éB)shes.

Lemma 1. (i) A stable focus exists o, if and only ifn (i/A,1) > 0.
(i) A stable focus exists on_ if and only ifp_ (i/A_,1) < 0.

Proof. The system (3)-(4) has zeros @, 0) = (8%,05) = (i/A+,s+/|A+|?).
Each solution(3%%, 057) is only valid if it lies on its respective surfa¢e, that is: (i)
if 057 > 1, implying 74 (i/A4,1) > 0, and (i) if 0 < 1, implying n_(i/A—,1) <
0. Both of these are stable foci, because the Jacobian médt(®) at (557, 0%7) has
one negative eigenvaluel /¢, and two complex eigenvalues with negative real parts
ReAy < 0.0

The only other fixed points in this system are the pseudoibgiailon X;, where
(8) vanishes. For these we have:

Lemma 2. The number of pseudoequilibria, where (8) vanishes, is:

1 if n+ (A+a 1)77— (A—a 1) <0, (9)
0 if n+(A+a 1)77—(A—1 1) > j2/|A+A—|2 >0, (10)
0 if ne(Ay, D) (A1) >0, and j/|A_ PPy (A1) >0, (11)
.2 .
. J J
2 if — S (A D (A, 1)>0and——7 <0, (12
|A+A7|2 77+( + )77 ( ) |A7|2777(A,,1) ( )

wherej = 1(s_ 4+ s;) — Re [ALA%].
Proof. Instead of solving for the zeros of (8), it is easier to notfr(2) (and as
illustrated in Fig. 1), that a pseudoequilibrium occurs atoint onX;; when there
existsy, < 0, such that the upper{) and lower ) vector fields in (3)-(4) satisfy
A+ﬁ —-i = /L(A—ﬁ - 1)7
13

S 8P =1 = (s |82 - 1). 13
Eliminating 5 from (13) we find
VP IAA P (/A Dy /A1)

A[P—(i/A_. 1)

Real negative values ¢f therefore occur as listed in (9)-(12), and each real pasitiv
solution corresponds to a zero of the unstable sliding védigtiol. [

(14)
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Lemma 3. The number of fixed points in the resonator system is eithe31 o

Proof. Combining Lemmas 1 and 2 we have the following caseg; {fA,1) > 0 >
n—(A_, 1) there exists one pseudoequilibrium By, and one equilibrium on each of
YyandX_;if ny(Ay,1) < 0 < n_(A_,1) there exists one pseudoequilibrium on
Y. but there are no equilibria on_ or ¥ ; if n (A4, 1)n_(A_,1) < 0 there are
either2 or 0 pseudoequilibria oix's;, and one equilibrium either of;. or ¥_ but not
both. In each case the total number of equilibria and psemdiileriais 1 or 3. [J

Lemma 3 permits the number of fixed points to change as theneess\ + or s+
are varied. Since these fixed points must lieXap or X, they can appear/disappear
in only two ways, given by the following two lemmas.

Lemma 4. Pseudoequilibria undergo a saddle-node bifurcation whethh values
in (14) coincide.

This can be proven from (8). For brevity we remark only thag implied by Lemma
2: whenj? = |[A4A_|?n (A4, 1)n—(A_, 1), two pseudoequilibria coincide and under
perturbation there exist eith@ror 2, and since the sliding vector field is smoothX¥n
this constitutes a saddle-node bifurcation.

Lemma 5. Equilibria pass continuously betweéiy; and either>, or ¥_, respec-
tively wher (i/A4,1) =0orn_(i/A_,1) = 0.

Proof. By Lemmas 1-2, when (i/A4, 1)n_(i/A_,1) < 0andny(i/A4,1) < 0,
the only fixed point in the system is a pseudoequilibriumdp. If 7 (i/A4,1)
changes sign withy_(i/A_,1) # 0, an equilibrium appears o8B, and simultane-
ously the pseudoequilibrium vanishes becapsg/A , 1)n_(i/A_, 1) changes sign.
To state that a fixed point has passed fragpto >, it remains to show that it disap-
peared front;; and appeared iR . at the same coordinates. The transition takes place
whenn, (i/A4, 1) = 0, which means the equilibrium 01, lies on the intersection of
¥4 with 3, therefore), (5,1) = 0 andg = i/A,.. From (8), the sliding vector field
at that point is zero, hence the zeroqf and>:, coincide there. The argument for
fixed points passing frol®; to ¥_ whenn_(i/A_, 1) = 0 is analogous.[J

Lemma 5 describes a boundary equilibrium bifurcation. Hmvethe fixed point’s
stability must change when it passes frély to X, because a focus on.. is stable
by Lemma 1, while a pseudoequilibrium @k, is repelling at least in the direction nor-
mal to > ;. Generically, in a smooth dynamical system, when an eqitilib changes
stability as one parameter changes, it does so via a Hopfchifion: two eigenvalues
of the equilibrium cross the imaginary axis, and a limit eyid created or destroyed.
Although Hopf-like boundary equilibrium bifurcations faleen studied in planar Fil-
ippov systems, see [4], such results have not yet been eedagndhigher dimensions.

In the following section we will give numerical verificatiaf the following:

Conjecture 6. When a fixed point moves frony; to ¥, or X_, a periodic orbit of
saddle-type is created; this boundary equilibrium bifuioa therefore corresponds
qualitatively to a subcritical Hopf bifurcation.

The root of this conjecture lies in the limit of smal(though note that so far we have
made no assumptions on the sizeeah Lemmas 1-5). Let = 0 in (3), then in



# > 1 orbits converge infinitely fast towards, , in # < 1 they converge infinitely fast
towardsY: _, thusX 4+ become switching manifolds upon which stable sliding oscur
Let us say that a Hopf-like bifurcation occurs if the traiositof a fixed point from

Yg to X4 involves two of its eigenvalues crossing the imaginary &xat necessarily
in a continuous fashion), accompanied by the creation @i ¢iycle in the neighbour-
hood of the fixed point. The only way a periodic orbit can ekishe neighbourhood
of the fixed point is if it passes through,;, implying that it is unstable in one direction,
and also passes through or X (whichever the fixed point moves to), implying that
it is stable in one direction. This implies that the perioafibit is of saddle type, having
one stable (negative) and one unstable (positive) eigeavah the following section
we confirm that, indeed, a saddle-type periodic orbit exidten the fixed point is on
>+, and that its transition fromi; resembles a subcritical Hopf bifurcation.

4. The three bifurcations

Fig. 5 shows the Hopf-like boundary equilibrium bifurcaticonjectured at the end
of the previous section. The top row of Fig. 5 shows a sket¢hércoordinate system
depicted in Fig. 4(ii), and the bottom row shows a numerigalusation of (3) with
e = 0, using the top view depicted in Fig. 4(iii). The simulatiaaenfirm that a Hopf-
like boundary equilibrium bifurcation is indeed observadaddle pseudoequilibrium
onXg; becomes a stable focus equilibrium¥n, and develops a saddle-type periodic
orbit; this is as introduced in Fig. 3(i)

Figure 5: A Hopf-like bifurcation in the resonator model.pli@w shows a sketch, and bottom row shows a
simulation of (3) withe = 0. In (i) a saddle-type pseudoequilibrium lies B;. In (ii) the fixed point lies

on the boundary betweexi;; andX . In (iii) the fixed point becomes a stable focus equilibrium30,.,
surrounded by a saddle-type periodic orbit (dashed) witbgment on the stable surfage, and unstable
sliding regionX ;. Orbits are labeled-, —, sl, according to whether they lie a4, X_ or X; (coloured
respectively red, blue, black, in colour version). Pararsefires . = 3.891, s = 1.297, A_ = —0.2+1,
ReAy = —0.5 with: (@) ImA4+ = 2.2, (b) ImA = 1.9, (¢) ImA = 1.7.



Now consider what happens as the periodic orbit in Fig. 5 gr@own in Fig. 6.
Eventually it may intersect the boundary betwegp andX_ as in Fig. 6(ii), and in
doing so it can develop a segmenton, Fig. 6(iii). The transition in (ii) is a switching-
sliding bifurcation of a saddle-type periodic orbit, as idégd earlier in Fig. 3(ii).

® (i) (iii)

(ii)

Figure 6: A switching-sliding bifurcation of a piecewisesoth saddle-type periodic orbit in the resonator
model. Top row shows a sketch, and bottom row shows a siroolatbntinued from Fig. 5. From (i) to (iii)
the periodic orbit (dashed) grows and develops a segmetjtithps offY; ontoX_. Parameter values and
labels are as in Fig. 5, with: (@nA4 = 1.6, (b) ImA = 1.58, (¢) ImA = 1.573.

A second, stable, periodic orbit exists in the system; ithesen omitted from Figs.
5-6 for clarity, but we now shown it in Fig. 7(i). Unlike thedidle-type periodic orbit
above, implicit formulae for the stable periodic orbit arelwn, derived in [8]. More-
over, itis known that the stable periodic orbit suddenlyishas as a parameter is varied
continuously. An explanation for this was provided in [8]tlwexistence conditions,
in terms of the catastrophic grazing-sliding bifurcatisimilar to Fig. 3(iii). We will
now see that the saddle-type periodic orbit, born in Fig.égumowing through Fig. 6,
is also involved in this bifurcation.

As shown in Fig. 7(i), the saddle periodic orbit now visits takee regions:;,
34, andX_, while the stable periodic orbit visits only the stable cegiX., and>_.
The stable orbit shrinks and develops a tangency to the @oyrd X, in Fig. 7(ii).
Meanwhile the saddle orbit grows until at least part of itnoides with the stable
orbit. Interestingly, the two periodic orbits do not fullgiacide when the catastrophic
sliding bifurcation takes place in Fig. 7(ii) (as they woufdr instance, in a saddle-
node bifurcation of periodic orbits, see e.g. [10]). UndetHier parameter variation,
Fig. 7(iii), both periodic orbits vanish.



Figure 7: Catastrophic grazing-sliding bifurcation in tgerconducting resonator model. Top row shows a
sketch and bottom row shows a simulation, continued from &idn (i) a stable periodic orbit (bold curve,
omitted from Figs. 5-6 for clarity) and the smaller saddlpet periodic orbit (dashed curve). In (ii) the two
orbits coalesce by forming a tangencyXoat which the forward evolution is nonunique — a solutionldou
follow the periodic orbit or evolve towards the focus. Ir)(&ll solutions evolve towards a stable focus.
Parameters are as in Fig. 5 with: @A = 1.572, (b) ImA4 = 1.57, (¢) ImA 4 = 1.56.

5. Concluding Remarks

In this paper we have calculated the fixed points of tempezatnd power dynam-
ics in an experimentally motivated model of a supercondgatesonator device. The
model involves features of both discontinuity, betweenmmairand super conducting
temperature regimes, and singular perturbation, due taya feeat transfer coefficient
1/e. Note that Lemmas 1-5 apply to nonzeroand while we provided numerical
evidence supporting Conjecture 6 in the singular limit= 0 of instantaneous heat
transfer, we propose that the Conjecture remains true fozerme. One might eas-
ily test Conjecture 6 numerically for nonze¢dy smoothing out (or ‘regularizing’)

the discontinuity af>. However, in the current absence of a theory to say how the

choice of such smoothing will affect the system, one caneatdstain how closely it
corresponds to the original discontinuous model; furtherwis needed.

The Hopf-like boundary equilibrium bifurcation found heseof interest because
little is known about boundary equilibrium bifurcationsnion-planar systems (a no-
table exception being fold or persistence criteria givef8]h particularly in the pres-
ence of singular perturbation. The periodic orbits are tdriest partly because geo-
metric singular perturbation theory could be used to essfalbVhether they persist for
nonzerce in asmoothsystem, but little is known in general about the effect otdis
tinuity and, in particular, of sliding, that are faced in tiesonator model. The question
therefore remains open as to whether the fixed points, gerwhits, and bifurcations
described here are robust phenomena.
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To address the issue of robustness, one could assume thgietiesvise-smooth
model is an approximation to some smooth system, in whictaiceregions of state
space are squashed, or “pinched”, to form switching maasfadin [2] it was shown that
pinching can be used to study nonlinear phenomena suchuasdtibns and canards in
singularly perturbed systems. First, assume that in coatds(3, ©), the resonator’s
dynamics satisfy the continuous system

B = A+ﬁ_1 + a(ﬂ,@),
© = siB2-0 + b(3,e), (19)

wherea andb are continuous and satisiyb ~ 0for © > 1+, anda ~ (A_ — A1),
b~ (A- —Ay)|B|? for © < 1 — &, for some smalk > 0. We then make a nonsmooth
coordinate transformatiofi = © — xsgn(© — 1). When we substitut® — 6, the
zone|® — 1] < k is effectively pinched out of the phase space, and replageté
switching manifoldd = 1, with the regionl /s, < |3|> < 1/s_ formingX,,. Then
(3)-(4) approximate (15) fof® — 1] > «, and the sliding vector field approximates
(15) for|© — 1| < x where|3|* € (1/s+,1/s_). If we simply choose, for example,
a=b=0for®>1+r,anda=(A_ —A;)B,b=(A_ —A) B> for® <1 —&,
with a, b, monotonic on® — 1| < x, we obtain what is known as a regularisation of
(3), see e.g. [14]. The different forms thagndb may take, and their effect on the
dynamics, are not well understood in general.

The superconducting resonator model developed in [1, 11,13PRis intriguing
to study from the point of view of the still young bifurcatigheory of piecewise-
smooth systems. Moreover, it is vital to reliable operatibthe physical device that
the cause of self-sustaining oscillations is identifiedt the parameters for which
they and other attractors exist are found. Indeed, these ther motivating factors
in deriving the mathematical model, namely to explain n@wgderimental behaviour.
The catastrophic sliding bifurcation in Fig. 7 (and sketthwe Fig. 3(iii)) can be
clearly seen in experimental time traces from the resor{ags for example [1]), and
diagrams showing the stability zones from theory and expent were produced in [8]
and [1] respectively. Nevertheless, a precise quantdatomparison between theory
and observations remains a subject for ongoing study.
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