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Abstract

The nonsmooth dynamical model of a superconducting resonator is discussed, based
on previous experimental and analytical studies. The device is a superconducting sen-
sor whose key elements are a sensor probe attached to a conducting ring, around which
flows an electric current. The ring is interrupted by a microbridge of superconduct-
ing material, whose temperature can be altered to sensitively control the device’s con-
ductivity. In certain conditions, novel self-sustaining power oscillations are observed,
and can suddenly disappear. It was previously shown that this disappearance can be
described by a periodic attractor undergoing a catastrophic sliding bifurcation. Here
we reveal the sequence of bifurcations that leads up to this event, beginning with the
change in stability of a fixed point that creates an attractor, and the birth of a saddle-type
periodic orbit by means of a Hopf-like discontinuity-induced bifurcation.

1. Introduction

Sliding is a discontinuity-induced phenomenon that arisesin systems of ordinary
equations that are piecewise-smooth, meaning the equations are smooth everywhere
except on certain hypersurfaces, calledswitching manifolds, where they are discontin-
uous. A solution is said toslidewhen it evolves along a switching manifold. In me-
chanics this describes sticking caused by dry friction, in switched control it describes
modes confined to codimension one control surfaces, among numerous other engineer-
ing and biological applications, see e.g. [3, 5]. In this paper we study the piecewise
smooth model of a superconducting resonator, derived in [1,11, 12, 13] to explain the
appearance of novel self-sustaining oscillations, to showhow an attractor is created,
and the oscillations destroyed, via a sequence of discontinuity-induced bifurcations
whose theory that are novel from both theoretical and experimental perspectives.

In the main part of the paper, Secs. 2 to 4, we elaborate on and extend the study
of the superconducting resonator, focusing on fixed points and bifurcations of the
piecewise-smooth dynamical system rather than the physicsof the device, though in the
closing remarks, Sec. 4, we revisit this and discuss the model’s practical significance.
We find three discontinuity-induced bifurcations that occur in sequence, from the cre-
ation of a periodic orbit of saddle-type (one positive and one negative eigenvalue), to
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its subsequent role in the catastrophic sliding bifurcation that destroys a self-sustaining
thermal oscillation. The sequence of bifurcations is confirmed numerically in the limit
of fast heat transferǫ → 0, where the system becomes piecewise-linear. The persis-
tence of these results for nonzeroǫ, and their significance in the physical device, are
proposed as the subject of further study.

We begin with a brief introduction to piecewise-smooth systems and discontinuity-
induced bifurcations. Consider the system

ẋ = f(x) =

{

f+(x) if h(x) > 0,
f−(x) if h(x) < 0,

(1)

wheref±(x) ∈ Rn andh(x) ∈ R are smooth functions of the statex ∈ Rn, and the
dot denotes derivative with respect to time. The conditionh(x) = 0 implicitly defines
a switching manifold which we labelΣ.
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Figure 1: Dynamics at a switching manifoldΣ: (i) crossing; (ii) stable sliding, where orbits converge onto
the manifold; (iii) unstable sliding, where orbits divergefrom the manifold, each in finite time. The system
consists of a piecewise-smooth vector field which is discontinuous alongΣ (jumps between the valuesf+

andf−), and in (ii)-(iii) this induces a sliding vector fieldfsl on Σ. Pseudoequilibria – fixed points of the
sliding dynamics shown in (ii)-(iii) – are points wheref+ andf− are antiparallel.

The piecewise-smooth systemdx/dt = f(x) can be solved as a differential inclu-
sion, also called a Filippov system [7]. If the vector field points throughΣ, meaning
(∇h·f+)(∇h·f−) > 0, then solutions cross through it as shown in Fig. 1(i). If thevec-
tor field points towards or away fromΣ on both sides, meaning(∇h·f+)(∇h·f−) < 0,
we take a convex combination off+ andf−,

fsl = λf+ + (1 − λ)f− where λ =
∇h · f−

∇h · (f− − f+)
, (2)

called thesliding vector field, with λ defined such thatfsl lies in the tangent space of
Σ. Sliding orbits are solutions oḟx = fsl on Σ whereλ ∈ (0, 1), as illustrated in
Fig. 1(ii)-(iii). The following standard distinction between fixed points off± andfsl

is useful:
Definition. We call a point wheref+ = 0 or f− = 0 anequilibrium, and a point where
fsl = 0 a pseudoequilibrium.

Switching manifolds can cause qualitative changes in a system’s dynamics, termed
discontinuity-induced bifurcations[3]. They include local bifurcations caused when
an equilibrium meets a switching manifold, called aboundary equilibrium bifurca-
tion. They also include global bifurcations caused when an attracting periodic orbit
meets a switching manifold and thereby loses/gains a segment of sliding, called aslid-
ing bifurcation. Recently, a topological classification of sliding bifurcations revealed a
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new class ofcatastrophic sliding bifurcations[9]. In these, instead of losing/gaining a
sliding segment, an attracting periodic orbit is destroyedcatastrophically, without any
significant change in its amplitude or period prior to the bifurcation. (All of these are
more thoroughly reviewed in the articleBifurcations of piecewise smooth flows: per-
spectives, methodologies and open problemsby A. Colombo et al, also in this journal
issue.)

The simplest examples of these three classes of discontinuity-induced bifurcation
are illustrated in Fig. 2: (i) a boundary equilibrium bifurcation, (ii) a sliding bifurca-
tion, and (iii) a catastrophic sliding bifurcation, each described in the figure. In this
paper we will study an application that involves a sequence of three bifurcations, one
in each class, and the particular examples involved are sketched and described in Fig. 3.
The boundary equilibrium bifurcation shown involves a change of stability as an equi-
librium becomes a pseudoequilibrium, and is therefore reminiscent of the well-known
Hopf bifurcation [10], or of the Hopf-like bifurcation in a planar Filippov system de-
rived in [4].

catastrophic 
grazing
sliding

grazing
slidingboundary 

persistence

Σ

(i) (ii) (iii)

Figure 2: Three examples of discontinuity-induced bifurcations. The switching manifoldΣ is made up of
sliding regions (shaded) and crossing regions (unshaded),and the bifurcations take place on the boundary
between them. Each picture shows three images of a phase portrait changing as a parameter varies: (i) an
equilibrium persists when it hitsΣ and becomes a pseudoequilibrium; (ii) a periodic attractorpersists when
it hits Σ and gains a sliding segment; (iii) a periodic attractor is destroyed when it hitsΣ. In (i)-(ii) the
sliding region is stable and in (iii) it is unstable.

(i) (ii) (iii)

switching-sliding catastrophic
grazing-sliding

boundary Hopf

Σ Σ Σ

Figure 3: Three discontinuity-induced bifurcations involving unstable sliding. Each picture shows two im-
ages of a phase portrait changing as a parameter varies: (i) astable focus changes stability as it hitsΣ,
becoming a pseudoequilibrium of saddle-type in an unstablesliding region, and a periodic orbit (also of
saddle-type) is annihilated in the process; (ii) a periodicorbit with a sliding segment develops an arc below
Σ, by what is called aswitching-slidingbifurcation in [3]; (iii) a periodic orbit is destroyed by a catastrophic
grazing-sliding bifurcation (see [9]).

The theory of discontinuity-induced bifurcations in higher dimensions faces many
fundamental difficulties. There are many possible classes of system that can be stud-
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ied, primarily because switching manifolds come in variousforms. Models derived
from applications frequently have nontrivial switching manifold topologies, may in-
volve strong simplifications that make the models highly non-generic, and may provide
simulated or experimental data of great complexity. Here westudy a recent experi-
mentally motivated model, proposed to describe novel self-sustaining thermal oscilla-
tions observed in a superconducting resonator device (see [1] and references therein).
The model contains many elements that are attractive for a geometrical study. Firstly,
it is three dimensional (therefore non-planar, but sufficiently low dimensional to be
tractable). Secondly, it contains not only switching behaviour (between normal and
super conducting temperature regimes), but also involves singular perturbation, in the
form of fast evolution towards surfaces inhabited by slow linear dynamics, and the
slow surfaces intersect the switching manifold. In addition, the model is accompanied
by clear experimental data that shows destruction of the self-sustaining oscillations,
through what was shown in [8] to be a catastrophic sliding bifurcation. The central in-
teresting feature of the superconducting resonator model is that it involves sliding, but
contrary to many well studied systems, the sliding dynamicsimportant to the resonator
is unstable.

At an unstable sliding region (Fig. 1(iii)), orbits everywhere diverge from the switch-
ing manifold. The state of a system cannot evolve onto an unstable sliding region in
forward time, except at its boundary. The interaction of attractors with the boundary of
unstable sliding is central to the existence of catastrophic sliding bifurcations [9].

2. Piecewise-smooth model of a superconducting resonator

The superconducting resonator is an experimental device, designed as a sensor
whose fine sensitivity could be controlled by laser heating of a niobium nitride (NbN)
microbridge [13]. The microbridge sits around the circumference of a conducting ring
attached to a sensor probe. In experiment, however, novel self-sustaining oscillations
are observed [1, 11, 12, 13]. They have a simple physical origin, namely the oscillation
of the microbridge between normal and superconducting states: at a low temperature
the microbridge is superconducting, passing a high currentwhich heats the bridge, un-
til its temperature exceeds the threshold where it ceases tobe superconducting, the
conductance falls, the current therefore decreases and theheating effect drops, so the
bridge temperature falls below the threshold, the bridge becomes superconducting, and
the process is seen to repeat periodically. The result is that periodic oscillations are
observed in the device’s power output for certain experimental parameters. It was ob-
served, however, that these self-sustaining oscillationscould vanish suddenly, without
significant prior change in period or amplitude, after whichthe system would settle to
a stable fixed point in either the normal or superconducting temperature range.

The non-dimensionalized dynamical model proposed for the device [1, 8] can be
expressed in terms of the power in the ring, whose complex amplitude is given byβ,
and the temperatureθ of the microbridge, satisfying

β̇ = Λ(θ)β − i,

ǫθ̇ = s(θ)|β|2 − θ,
(3)
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wherei =
√
−1. The positive constantǫ is small, indicating that heat transfer from

the microbridge to a surrounding coolant is very fast compared to the dynamics of the
power amplitudeβ. The parameterss ∈ R andΛ ∈ C relate the response of the ring
respectively to the driving amplitude and frequency. Theirtemperature dependence can
be expressed as piecewise-smooth constant, jumping at a switching manifoldΣ given
by θ = 1, between normal (θ > 1) and super (θ < 1) conducting modes. Denoting the
modes by+ and−, we let

Λ(θ) =

{

Λ+ if θ > 1,
Λ− if θ < 1,

and s(θ) =

{

s+ if θ > 1,
s− if θ < 1.

(4)

Physical values of the constantsΛ± ands± lie in the rangesRe Λ± < 0 ands+ >
s− > 0 [8].

Three surfaces are illustrated in Fig. 4(i) that play a vitalrole in the dynamics.
These include theθ-nullclines of (3), which are

Σ+ = {(β, θ) : η+(β, θ) = 0, θ > 1} ,
Σ− = {(β, θ) : η−(β, θ) = 0, θ < 1} ,

(5)

where
η±(β, θ) = s±|β|2 − θ. (6)

(Treated as a singular perturbation problem,Σ± are critical manifolds, however the
theory of normally hyperbolic manifolds [6] does not apply near the switching manifold
Σ.) For ǫ ≪ 1 the system (3) splits into fast dynamics, where the largeθ̇ component
pushes the state towardsΣ±, and slow dynamics in a neighbourhood ofΣ± (where
θ̇ = 0), where the system reduces to the linearβ̇ equation. This is illustrated in Fig. 4(i),
with (ii)-(iii) showing different representations that wemake use of in Sect. 4.

θ=0
.θθ (ii)(i)

Σ

Σ

Σsl

Σsl

Σ−

Σ−

Σ+
Σ+

(iii)

top view

Reβ

Reβ
|β|

argβ

Imβ

Imβ

s  +
−1/2

−1/2s  −

Figure 4: Dynamics of the superconducting resonator. A switching manifoldΣ separates normal (aboveΣ)
and super (belowΣ) conducting modes. Orbits flow fast (double arrows) towardsthe slow (single arrows)
critical manifoldsΣ±, and away from the unstable sliding regionΣsl. Three projections are shown: (i) in
coordinates(Reβ, Imβ, θ), (ii) in coordinates(|β|, arg β, θ), (iii) a top view into the complexβ plane.

The third important surface is the region onΣ delimited by its intersection with
Σ±, giving the annular region in Figs. 4 (i) & (iii) and the stripin (ii), defined as

Σsl =
{

(β, θ) : θ = 1, |β|2 ∈ (1/s−, 1/s+)
}

. (7)
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Σsl is a region of unstable sliding, where the vector fields in (3)point away fromΣ
(recall Fig. 1(iii)). The sliding vector field, by (2), is given by

β̇ =
Λ+η−(β, 1) − Λ−η+(β, 1)

η−(β, 1) − η+(β, 1)
β − i on Σsl. (8)

Elsewhere the flow crossesΣ. The three regionsΣsl, Σ+, andΣ−, form a continuous
(but nonsmooth) surface upon whichθ̇ = 0.

3. Equilibria and pseudoequilibria in the model

Given thatθ̇ vanishes only onΣsl or Σ±, we know that any fixed points of the
piecewise-smooth system must be contained within these surfaces, in the form of equi-
libria where (3) vanishes, and pseudoequilibria where (8) vanishes.

Lemma 1. (i) A stable focus exists onΣ+ if and only ifη+(i/Λ+, 1) > 0.
(ii) A stable focus exists onΣ− if and only ifη−(i/Λ−, 1) < 0.

Proof. The system (3)-(4) has zeros at(β, θ) = (βeq
± , θeq

± ) ≡ (i/Λ±, s±/|Λ±|2).
Each solution(βeq

± , θeq
± ) is only valid if it lies on its respective surfaceΣ±, that is: (i)

if θeq
+ > 1, implying η+(i/Λ+, 1) > 0, and (ii) if θeq

− < 1, implying η−(i/Λ−, 1) <
0. Both of these are stable foci, because the Jacobian matrix of (3) at (βeq

± , θeq
± ) has

one negative eigenvalue−1/ǫ, and two complex eigenvalues with negative real parts
ReΛ± < 0. �

The only other fixed points in this system are the pseudoequilibria onΣsl, where
(8) vanishes. For these we have:

Lemma 2. The number of pseudoequilibria, where (8) vanishes, is:

1 if η+(Λ+, 1)η−(Λ−, 1) < 0, (9)

0 if η+(Λ+, 1)η−(Λ−, 1) > j2/|Λ+Λ−|2 > 0, (10)

0 if η+(Λ+, 1)η−(Λ−, 1) > 0, and j/|Λ−|2η−(Λ−, 1) > 0, (11)

2 if
j2

|Λ+Λ−|2
> η+(Λ+, 1)η−(Λ−, 1) > 0 and

j

|Λ−|2η−(Λ−, 1)
< 0, (12)

wherej = 1

2
(s− + s+) − Re

[

Λ+Λ⋆
−

]

.

Proof. Instead of solving for the zeros of (8), it is easier to note from (2) (and as
illustrated in Fig. 1), that a pseudoequilibrium occurs at apoint onΣsl when there
existsµ < 0, such that the upper (+) and lower (−) vector fields in (3)-(4) satisfy

Λ+β − i = µ(Λ−β − i),
s+|β|2 − 1 = µ(s−|β|2 − 1).

(13)

Eliminatingβ from (13) we find

µ =
j ±

√

j2 − |Λ+Λ−|2η+(i/Λ+, 1)η−(i/Λ−, 1)

|Λ−|2η−(i/Λ−, 1)
. (14)

Real negative values ofµ therefore occur as listed in (9)-(12), and each real positive
solution corresponds to a zero of the unstable sliding vector field. �
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Lemma 3. The number of fixed points in the resonator system is either 1 or 3.

Proof. Combining Lemmas 1 and 2 we have the following cases: ifη+(Λ+, 1) > 0 >
η−(Λ−, 1) there exists one pseudoequilibrium onΣsl and one equilibrium on each of
Σ+ andΣ−; if η+(Λ+, 1) < 0 < η−(Λ−, 1) there exists one pseudoequilibrium on
Σsl but there are no equilibria onΣ− or Σ+; if η+(Λ+, 1)η−(Λ−, 1) < 0 there are
either2 or 0 pseudoequilibria onΣsl, and one equilibrium either onΣ+ or Σ− but not
both. In each case the total number of equilibria and pseudoequilibria is 1 or 3. �

Lemma 3 permits the number of fixed points to change as the parametersΛ± or s±
are varied. Since these fixed points must lie onΣsl or Σ±, they can appear/disappear
in only two ways, given by the following two lemmas.

Lemma 4. Pseudoequilibria undergo a saddle-node bifurcation when both µ values
in (14) coincide.

This can be proven from (8). For brevity we remark only that itis implied by Lemma
2: whenj2 = |Λ+Λ−|2η+(Λ+, 1)η−(Λ−, 1), two pseudoequilibria coincide and under
perturbation there exist either0 or 2, and since the sliding vector field is smooth onΣ,
this constitutes a saddle-node bifurcation.

Lemma 5. Equilibria pass continuously betweenΣsl and eitherΣ+ or Σ−, respec-
tively whenη+(i/Λ+, 1) = 0 or η−(i/Λ−, 1) = 0.

Proof. By Lemmas 1-2, whenη+(i/Λ+, 1)η−(i/Λ−, 1) < 0 andη+(i/Λ+, 1) < 0,
the only fixed point in the system is a pseudoequilibrium onΣsl. If η+(i/Λ+, 1)
changes sign withη−(i/Λ−, 1) 6= 0, an equilibrium appears onΣ+, and simultane-
ously the pseudoequilibrium vanishes becauseη+(i/Λ+, 1)η−(i/Λ−, 1) changes sign.
To state that a fixed point has passed fromΣsl to Σ+, it remains to show that it disap-
peared fromΣsl and appeared inΣ+ at the same coordinates. The transition takes place
whenη+(i/Λ+, 1) = 0, which means the equilibrium onΣ+ lies on the intersection of
Σ+ with Σsl, thereforeη+(β, 1) = 0 andβ = i/Λ+. From (8), the sliding vector field
at that point is zero, hence the zeros ofΣsl andΣ+ coincide there. The argument for
fixed points passing fromΣsl to Σ− whenη−(i/Λ−, 1) = 0 is analogous.�

Lemma 5 describes a boundary equilibrium bifurcation. However, the fixed point’s
stability must change when it passes fromΣsl to Σ±, because a focus onΣ± is stable
by Lemma 1, while a pseudoequilibrium onΣsl is repelling at least in the direction nor-
mal toΣsl. Generically, in a smooth dynamical system, when an equilibrium changes
stability as one parameter changes, it does so via a Hopf bifurcation: two eigenvalues
of the equilibrium cross the imaginary axis, and a limit cycle is created or destroyed.
Although Hopf-like boundary equilibrium bifurcations have been studied in planar Fil-
ippov systems, see [4], such results have not yet been extended to higher dimensions.

In the following section we will give numerical verificationof the following:

Conjecture 6. When a fixed point moves fromΣsl to Σ+ or Σ−, a periodic orbit of
saddle-type is created; this boundary equilibrium bifurcation therefore corresponds
qualitatively to a subcritical Hopf bifurcation.

The root of this conjecture lies in the limit of smallǫ (though note that so far we have
made no assumptions on the size ofǫ in Lemmas 1-5). Letǫ = 0 in (3), then in
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θ > 1 orbits converge infinitely fast towardsΣ+, in θ < 1 they converge infinitely fast
towardsΣ−, thusΣ± become switching manifolds upon which stable sliding occurs.

Let us say that a Hopf-like bifurcation occurs if the transition of a fixed point from
Σsl to Σ± involves two of its eigenvalues crossing the imaginary axis(not necessarily
in a continuous fashion), accompanied by the creation of a limit cycle in the neighbour-
hood of the fixed point. The only way a periodic orbit can existin the neighbourhood
of the fixed point is if it passes throughΣsl, implying that it is unstable in one direction,
and also passes throughΣ+ or Σ− (whichever the fixed point moves to), implying that
it is stable in one direction. This implies that the periodicorbit is of saddle type, having
one stable (negative) and one unstable (positive) eigenvalue. In the following section
we confirm that, indeed, a saddle-type periodic orbit existswhen the fixed point is on
Σ+, and that its transition fromΣsl resembles a subcritical Hopf bifurcation.

4. The three bifurcations

Fig. 5 shows the Hopf-like boundary equilibrium bifurcation conjectured at the end
of the previous section. The top row of Fig. 5 shows a sketch inthe coordinate system
depicted in Fig. 4(ii), and the bottom row shows a numerical simulation of (3) with
ǫ = 0, using the top view depicted in Fig. 4(iii). The simulationsconfirm that a Hopf-
like boundary equilibrium bifurcation is indeed observed:a saddle pseudoequilibrium
onΣsl becomes a stable focus equilibrium onΣ+, and develops a saddle-type periodic
orbit; this is as introduced in Fig. 3(i)

(i)

Σsl

Σ−

Σ+ (ii) (iii)

(i) (ii) (iii)

|ß|2Arg ß

sl

sl

sl
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+

−

+
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+

sl

+ +

+
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Σsl∩Σ+

Σsl∩Σ−
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0.6 0.80.4
−0.4

−0.2

0.6 0.8

Figure 5: A Hopf-like bifurcation in the resonator model. Top row shows a sketch, and bottom row shows a
simulation of (3) withǫ = 0. In (i) a saddle-type pseudoequilibrium lies onΣsl. In (ii) the fixed point lies
on the boundary betweenΣsl andΣ+. In (iii) the fixed point becomes a stable focus equilibrium on Σ+,
surrounded by a saddle-type periodic orbit (dashed) with a segment on the stable surfaceΣ+ and unstable
sliding regionΣsl. Orbits are labeled+,−, sl, according to whether they lie onΣ+, Σ− or Σsl (coloured
respectively red, blue, black, in colour version). Parameters ares+ = 3.891, s− = 1.297, Λ− = −0.2+i,
ReΛ+ = −0.5 with: (a) ImΛ+ = 2.2, (b) ImΛ+ = 1.9, (c) ImΛ+ = 1.7.
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Now consider what happens as the periodic orbit in Fig. 5 grows, shown in Fig. 6.
Eventually it may intersect the boundary betweenΣsl andΣ− as in Fig. 6(ii), and in
doing so it can develop a segment onΣ−, Fig. 6(iii). The transition in (ii) is a switching-
sliding bifurcation of a saddle-type periodic orbit, as depicted earlier in Fig. 3(ii).

(i) (iii)(ii)

Σsl

Σ−

Σ+

(i) (ii) (iii)

Reß

Imß

0.4

−0.5

−0.3

−0.1

0.6 0.8 0.4

−0.5

−0.3

−0.1

0.6 0.8 0.4

−0.5

−0.3

−0.1

0.6 0.8

sl
sl

sl

+ +

−

+

sl

+ +

sl sl

+ + + +

− −

Figure 6: A switching-sliding bifurcation of a piecewise-smooth saddle-type periodic orbit in the resonator
model. Top row shows a sketch, and bottom row shows a simulation, continued from Fig. 5. From (i) to (iii)
the periodic orbit (dashed) grows and develops a segment that jumps offΣsl ontoΣ−. Parameter values and
labels are as in Fig. 5, with: (a)ImΛ+ = 1.6, (b) ImΛ+ = 1.58, (c) ImΛ+ = 1.573.

A second, stable, periodic orbit exists in the system; it hasbeen omitted from Figs.
5-6 for clarity, but we now shown it in Fig. 7(i). Unlike the saddle-type periodic orbit
above, implicit formulae for the stable periodic orbit are known, derived in [8]. More-
over, it is known that the stable periodic orbit suddenly vanishes as a parameter is varied
continuously. An explanation for this was provided in [8], with existence conditions,
in terms of the catastrophic grazing-sliding bifurcation,similar to Fig. 3(iii). We will
now see that the saddle-type periodic orbit, born in Fig. 5 and growing through Fig. 6,
is also involved in this bifurcation.

As shown in Fig. 7(i), the saddle periodic orbit now visits all three regionsΣsl,
Σ+, andΣ−, while the stable periodic orbit visits only the stable regionsΣ+ andΣ−.
The stable orbit shrinks and develops a tangency to the boundary of Σsl in Fig. 7(ii).
Meanwhile the saddle orbit grows until at least part of it coincides with the stable
orbit. Interestingly, the two periodic orbits do not fully coincide when the catastrophic
sliding bifurcation takes place in Fig. 7(ii) (as they would, for instance, in a saddle-
node bifurcation of periodic orbits, see e.g. [10]). Under further parameter variation,
Fig. 7(iii), both periodic orbits vanish.
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Figure 7: Catastrophic grazing-sliding bifurcation in thesuperconducting resonator model. Top row shows a
sketch and bottom row shows a simulation, continued from Fig. 6. In (i) a stable periodic orbit (bold curve,
omitted from Figs. 5-6 for clarity) and the smaller saddle-type periodic orbit (dashed curve). In (ii) the two
orbits coalesce by forming a tangency toΣ, at which the forward evolution is nonunique – a solution could
follow the periodic orbit or evolve towards the focus. In (iii) all solutions evolve towards a stable focus.
Parameters are as in Fig. 5 with: (a)ImΛ+ = 1.572, (b) ImΛ+ = 1.57, (c) ImΛ+ = 1.56.

5. Concluding Remarks

In this paper we have calculated the fixed points of temperature and power dynam-
ics in an experimentally motivated model of a superconducting resonator device. The
model involves features of both discontinuity, between normal and super conducting
temperature regimes, and singular perturbation, due to a large heat transfer coefficient
1/ǫ. Note that Lemmas 1-5 apply to nonzeroǫ, and while we provided numerical
evidence supporting Conjecture 6 in the singular limitǫ = 0 of instantaneous heat
transfer, we propose that the Conjecture remains true for nonzeroǫ. One might eas-
ily test Conjecture 6 numerically for nonzeroǫ by smoothing out (or ‘regularizing’)
the discontinuity atΣ. However, in the current absence of a theory to say how the
choice of such smoothing will affect the system, one cannot be certain how closely it
corresponds to the original discontinuous model; further work is needed.

The Hopf-like boundary equilibrium bifurcation found hereis of interest because
little is known about boundary equilibrium bifurcations innon-planar systems (a no-
table exception being fold or persistence criteria given in[3]), particularly in the pres-
ence of singular perturbation. The periodic orbits are of interest partly because geo-
metric singular perturbation theory could be used to establish whether they persist for
nonzeroǫ in a smoothsystem, but little is known in general about the effect of discon-
tinuity and, in particular, of sliding, that are faced in theresonator model. The question
therefore remains open as to whether the fixed points, periodic orbits, and bifurcations
described here are robust phenomena.
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To address the issue of robustness, one could assume that thepiecewise-smooth
model is an approximation to some smooth system, in which certain regions of state
space are squashed, or “pinched”, to form switching manifolds. In [2] it was shown that
pinching can be used to study nonlinear phenomena such as bifurcations and canards in
singularly perturbed systems. First, assume that in coordinates(β, Θ), the resonator’s
dynamics satisfy the continuous system

β̇ = Λ+β − i + a(β, Θ),
ǫ̇Θ = s+|β|2 − Θ + b(β, Θ),

(15)

wherea andb are continuous and satisfya, b ≈ 0 for Θ > 1+κ, anda ≈ (Λ−−Λ+)β,
b ≈ (Λ−−Λ+)|β|2 for Θ < 1−κ, for some smallκ > 0. We then make a nonsmooth
coordinate transformationθ = Θ − κsgn(Θ − 1). When we substituteΘ 7→ θ, the
zone|Θ − 1| < κ is effectively pinched out of the phase space, and replaced by the
switching manifoldθ = 1, with the region1/s+ < |β|2 < 1/s− forming Σsl. Then
(3)-(4) approximate (15) for|Θ − 1| > κ, and the sliding vector field approximates
(15) for |Θ − 1| < κ where|β|2 ∈ (1/s+, 1/s−). If we simply choose, for example,
a = b = 0 for Θ > 1 + κ, anda = (Λ− − Λ+)β, b = (Λ− − Λ+)|β|2 for Θ < 1 − κ,
with a, b, monotonic on|Θ − 1| < κ, we obtain what is known as a regularisation of
(3), see e.g. [14]. The different forms thata andb may take, and their effect on the
dynamics, are not well understood in general.

The superconducting resonator model developed in [1, 11, 12, 13] is intriguing
to study from the point of view of the still young bifurcationtheory of piecewise-
smooth systems. Moreover, it is vital to reliable operationof the physical device that
the cause of self-sustaining oscillations is identified, that the parameters for which
they and other attractors exist are found. Indeed, these were the motivating factors
in deriving the mathematical model, namely to explain novelexperimental behaviour.
The catastrophic sliding bifurcation in Fig. 7 (and sketched in Fig. 3(iii)) can be
clearly seen in experimental time traces from the resonator(see for example [1]), and
diagrams showing the stability zones from theory and experiment were produced in [8]
and [1] respectively. Nevertheless, a precise quantitative comparison between theory
and observations remains a subject for ongoing study.
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