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This paper presents a general analysis and a concrete example of the catastrophic

case of a discontinuity-induced bifurcation in so-called Filippov nonsmooth dynam-

ical systems. Such systems are characterised by discontinuous jumps in the right-

hand-sides of differential equations across a phase space boundary and are often

used as physical models of stick-slip motion and relay control. Sliding bifurcations

of periodic orbits have recently been shown to underlie the onset of complex dy-

namics including chaos. In contrast to previously analysed cases, in this work a

periodic orbit is assumed to graze the boundary of a repelling sliding region, re-

sulting in its abrupt destruction without any pre-cursive change in its stability or

period. Necessary conditions for the occurrence of such catastrophic grazing-sliding

bifurcations are derived. The analysis is illustrated in a piecewise-smooth model of

a stripline resonator, where it can account for the abrupt onset of self-modulating

current fluctuations. The resonator device is based around a ring of NbN containing

a microbridge bottleneck, whose switching between normal and super conducting

states can be modelled as discontinuous, and whose fast temperature versus slow

current fluctuations are modeled by a slow-fast timescale separation in the dynam-

ics. By approximating the slow component as Filippov sliding, explicit conditions
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are derived for catastrophic grazing-sliding bifurcations, which can be traced out as

parameters vary. The results are shown to agree well with simulations of the slow-

fast model and to offer a simple explanation of one of the key features of this novel

experimental device.

I. INTRODUCTION

An increasing number of physical devices in applied science and engineering are modeled

using sets of ordinary differential equations with discontinuous right-hand sides. Examples

include mechanical impacts [1] or stick-slip motion from friction [2], electronic switches [3, 4],

hybrid dynamics in control [5], and genetic networks [6]. Overviews and further references

are available in [7–10].

A particular class of interest is that of so-called Filippov systems [11], where it is typical

for trajectories to become constrained to a discontinuity boundary in phase space, called

sliding, resulting in a loss of uniqueness of solutions. It has been observed that complex

dynamical transitions can occur when so-called sliding bifurcations take place; namely, when

the system trajectory interacts nontrivially with a discontinuity boundary in phase space

where attracting sliding motion is possible. Sliding bifurcations in Filippov systems have

been observed to cause dramatic transitions in the dynamics of several systems of relevance

in applications.

In [8, 12], a heuristic classification of sliding bifurcations was presented where four

fundamental scenarios were outlined: grazing-sliding, crossing-sliding, adding-sliding and

switching-sliding. In all cases, analytical defining conditions were given together with ap-

propriate non-degeneracy conditions to define each of the cases proposed. A summarising

schematic of these four cases is shown in Figure 1. By means of appropriate discontinuity-

mappings, the simplest possible scenarios associated to each of these bifurcation events was

classified, showing that in general periodic orbits undergoing these bifurcations will locally

persist, acquiring an extra segment with sliding motion. The most dramatic scenario is

that associated to the grazing-sliding of a periodic orbit, which was shown analytically to
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correspond to a non-invertible piecewise linear Poincaré map. Under certain condition this

can lead, for example, to the sudden transition from periodic attractors to chaos as shown

in [13] for the case of a nonlinear friction oscillator.

(i)          (ii)

(iii)        (iv)
switching-
sliding

adding-
sliding

grazing-
sliding

crossing-
sliding

FIG. 1: Phase portraits for the four sliding bifurcations in three dimensions. The discontinuity manifold

is represented by a horizontal plane in which the attracting sliding region is shaded.

The four cases in Figure 1 all occur at the boundary of an attracting sliding region –

the discontinuity manifold attracts trajectories from the surrounding phase space, causing

nonuniqueness of solutions in reverse time. In contrast, this paper presents a novel sliding

bifurcation scenario we refer to as catastrophic grazing-sliding, characterized by a trajectory

interacting with the boundary of a repelling sliding region. A repelling sliding region is

unstable in finite time, and consists of sliding solutions that are nonunique in forward time

(illustrated in Figure 2, section IIB).

Catastrophic sliding bifurcations have arisen from attempts to provide a complete clas-

sification of sliding bifurcations [14]; they occur when a nontrivial interaction between a

trajectory and a phase space boundary cause the sudden appearance/disappearance of a

periodic orbit. Nevertheless, as we shall show, interaction with the boundary of a repelling

sliding region leads in many cases to a well defined bifurcation scenario, characterized by a

finite jump in attractor to a new region of phase space without any incipient exponential

instability being detectable. In some sense then, catastrophic sliding bifurcations are the

most abrupt form of “blue sky catastrophe” [15] in that, from the point of view of the orbit

prior to the bifurcation, there is no warning of the impending catastrophe.

The main result of the paper is in section IIB, where we give the analytical defining con-

ditions for a catastrophic grazing-sliding bifurcation to occur. Then we use the theoretical

results to explain transitions recently observed in an experimental superconducting stripline
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resonator [16]. This system was studied extensively in [16–19]. It was observed that param-

eter variations caused the sudden disappearance of certain periodic orbits. Because of its

physical nature, it has become clear that features of the stripline resonator can be modelled

as a piecewise-smooth dynamical system (switching at a fixed temperature) combined with

a slow-fast system (two slow invariant parabolas) [18].

Here we show that the discontinuous nature of the idealized model can be used to explain

the sudden disappearance of periodic orbits by means of a catastrophic grazing-sliding bi-

furcation. In so doing we simplify the model, which consists of a nonlinear piecewise-smooth

vector field and two slow invariant manifolds, to a linear Filippov system where the slow

manifolds are replaced by discontinuity boundaries.

We show that fixed points in the sliding flow occur at the same values of variables and

parameters as in the original system, and, importantly, that periodic orbits graze a discon-

tinuity boundary in both systems also at the same values. This allows us to find a transcen-

dental equation for periodic orbits, from which the exact parameters at which catastrophic

grazing occur can be numerically determined. Numerical simulations are used to validate

the theoretical analysis. Both the numerics and the analysis fit the experimental observa-

tions of [16, 18], confirming the discontinuous nature of the bifurcation scenario causing the

disappearance of the periodic orbit. Moreover, we are able to trace precisely the loci of such

catastrophic bifurcations.

The rest of the paper is organised as follows. In Section II we outline the four familiar

bifurcations of periodic orbits related to sliding, and present our main subject – a catas-

trophic bifurcation – for which we provide a definition and existence conditions. We then

introduce our case study, the superconducting stripline resonator, in Section IIIA. The

model of this is given in Section IIIB, and in equation (8) we derive a dimensionless form

for analytical study. This is simplified to a piecewise-linear system in Section IIIC, from

which we derive periodic orbits and limit cycles in Section IV, including the conditions for

catastrophic bifurcations for the model in Section IVC. We complement this analysis with

numerically computed bifurcation diagrams and simulations in Section V. Some closing re-

marks are given in Section VI, including a comparison of simulations to a smoothed version

of the original slow-fast model.
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II. SLIDING BIFURCATIONS

The qualitative change of a dynamical system caused by the interaction of some invari-

ant set with a discontinuity manifold is called a discontinuity-induced bifurcation [8]. A

discontinuity manifold is a smooth hypersurface where the state of a system or its derivative

jumps. In a Filippov system [11], the dynamics is defined on the manifold by a differential

inclusion (see next section). Two important discontinuity-induced phenomena are boundary-

equilibrium bifurcations, where a stable fixed point of a flow meets a discontinuity manifold,

and grazing bifurcations, where a periodic orbit meets a discontinuity manifold tangentially,

and we say it grazes.

Grazing occurs generically in discontinuous systems. It leads, for example, to robust chaos

with period adding windows in maps [20, 21], and to transitions from periodic to chaotic

attractors in impact oscillators [22, 23]. In a dry-friction system, grazing causes the onset of

sticking [24] whereby a periodic orbit sticks to the switching manifold. When such transitions

occur due to grazing, that is, when periodic orbits lose or gain points of interaction with a

discontinuity boundary that contains sliding, we call them sliding bifurcations.

A. The four attracting sliding bifurcations

The four well-known cases of sliding bifurcations in piecewise-smooth (Filippov) systems

are shown in Figure 1. These importantly take place at the boundary between an attracting

sliding region (where the flows either side of the discontinuity manifold tend towards it) and

a crossing region (through which orbits cross the manifold), with the result that a periodic

orbit typically persists through the bifurcation. The persistence of the periodic orbit can

be proven by the derivation of a return map to an appropriate section through phase space,

two natural choices being the zero-time discontinuity mapping and Poincaré discontinuity

mapping [8, 12].

The bifurcation termed grazing-sliding, in Figure 1(i), is of particular interest, because it

occurs when the periodic orbit of a smooth subsystem grazes at the boundary of attracting

sliding. Hereafter we are concerned with an event suggested by numerical simulations in

[8] and a generic classification scheme in [14], namely that when a periodic orbit grazes a

discontinuity boundary with repelling sliding, the resulting bifurcation is catastrophic.
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B. Catastrophic sliding bifurcations

As catastrophic sliding bifurcations are not well known, we will provide a full definition

of them in this section.

A sliding bifurcation can be analyzed by considering the geometry of phase space in the

neighbourhood of grazing. Let us consider a dynamical system of the form

ẋ =







f1(x), if h(x) > 0,

f2(x) if h(x) < 0,
(1)

comprised of smooth vector fields f1, f2, and a discontinuity boundary defined implicitly as

Σ = {x ∈ R
n : h(x) = 0}, henceforth referred to as a switching manifold. The dynamics on

the manifold is prescribed in the Filippov convention [11] as follows. Let Lf denote the Lie

derivative along the flow of a vector field f , that is, Lf = f · ∇h. Then orbits cross through

Σ if (Lf1
h)(Lf2

h) > 0. Attracting sliding occurs in a region on Σ where Lf1
h < 0 < Lf2

h,

where sliding trajectories evolve along the manifold as solutions of ẋ = F , with

F =
(Lf2

h)f1 − (Lf1
h)f2

(Lf2
−Lf1

)h
(2)

being simply the member of the convex combination of f1 and f2 that is tangent to the

switching manifold (Figure 2). The sliding bifurcations in Figure 1 occur at the boundary

between crossing and attracting sliding regions, where Lf1
h = 0 < Lf2

h or Lf2
h = 0 > Lf1

h.

attracting
sliding

crossing
repelling
sliding

visible
grazing

invisible
grazing

FIG. 2: A Filippov system, depicting the different types of dynamics that occur at a switching manifold:

attracting or repelling sliding (double arrows show sliding vector field), and crossing. At the boundaries

between sliding and crossing, trajectories graze the switching manifold.

A less studied scenario is the repelling sliding that occurs on Σ where Lf2
h < 0 < Lf1

h.

Here we can apply the vector field F , but any infinitesimal perturbation would cause a
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trajectory immediately to depart the neighbourhood of Σ. A consequence of this instability

is that grazing at the boundary of a repelling sliding region will be catastrophic, in the sense

that a periodic orbit may be suddenly destroyed by a small change in a parameter. The

boundary between crossing and repelling sliding satisfies one of the conditions Lf1
h = 0 >

Lf2
h or Lf2

h = 0 < Lf1
h.

Contrast the grazing-sliding bifurcation in Figure 1 with the scenario in Figure 3. Each

pair of trajectories depict the local portrait of a grazing periodic orbit after a small pertur-

bation. In the latter case the trajectory cannot return to the upper region after interacting

with the manifold without exiting the local neighbourhood. As a result, no local return map

can be defined that exists throughout the bifurcation and a periodic orbit will not persist.

h

FIG. 3: A periodic orbit above the switching manifold h = 0 is destroyed by a catastrophic grazing-

sliding bifurcation. The local phase portrait is shown with the sliding region shaded.

Thus we have the following necessary conditions for catastrophic grazing-sliding, at the

bifurcation point:

either Lf1
h = 0 and Lf2

h < 0 < Lf1
(Lf1

h), (3)

or Lf2
h = 0 and Lf1

h > 0 > Lf2
(Lf2

h). (4)

The conditions (3) and (4) respectively imply grazing from above (h > 0) or below (h < 0)

the switching manifold Σ, and the inequalities are nondegeneracy conditions which mean

the following. In (3), Lf1
(Lf1

h) > 0 specifies that grazing orbits above Σ curve quadratically

(because it is nonzero) away (because it is positive) from Σ , while Lf2
h < 0 guarantees

that f2 points away from Σ and does not graze. The conditions (4) similarly mean that

orbits below Σ graze quadratically while f1 points away from Σ. When an orbit curves away

from the manifold we say it is visibly grazing, see Figure 2 (invisible grazing means the orbit

curves towards the manifold). The set of points satisfying (3) or (4) form a boundaries on

Σ between crossing and repelling sliding.
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We turn now to an example of this catastrophic grazing-sliding bifurcation in the model

of a superconducting stripline resonator. In this piecewise-smooth model, an annular strip

of repelling sliding on the switching manifold is surrounded by regions of crossing, providing

two boundaries where catastrophic bifurcations take place. We will see that a periodic orbit

is destroyed through grazing the system evolves towards a pair of stable attractors, which

themselves undergo boundary-equilibrium bifurcations nearby in parameter space.

III. THE RESONATOR MODEL

A. System Description

The physical system of interest consists of a circular ring of niobium nitride (NbN),

typically a few centimetres in circumference with a cross-section on the order of several

square microns, see Figure 4(i-ii) and [16–19]. The ring is immersed in a liquid helium

bath so that it becomes superconducting. Electromagnetic waves are excited in the ring

using a harmonic voltage applied through a feedline, and the response is measured by the

signal reflected at the point of input. The forcing frequency ωp is taken to be near an

electromagnetic mode of the ring, whose first few natural frequencies are on the order of

1-10GHz. A key feature of the system is that it has a small microbridge of very narrow

cross-section that acts like a bottleneck for the current in the ring (Figure 4(ii)). This

microbridge is annularly located so that it sees a large current in the mode of interest, and

thus the impedance of the microbridge dominates that of the entire ring. These devices were

developed so that one could rapidly alter the resonance frequency of the ring by manipulating

the impedance of the microbridge by shining a laser on it [16]. In the course of exploring

the system response, some unexpectedly rich dynamics were observed, as described below.

Typically the system acts as a resonator with linear response dominated by a single mode.

For example, this holds if the driving amplitude is small and/or far from resonance, in which

case the entire ring remains superconducting. Similarly, if the driving input is sufficiently

large, Joule heating prevents the microbridge from ever being superconducting, and the

system again behaves like a linear resonator, albeit with different response characteristics,

due to the different microbridge impedance. In the following, we describe the response of the

resonant mode of interest as B(t)e−iωpt, where the complex variable B captures the slowly
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bine−iωpt

NbN

10μm

(i)                  (ii)               (iii)

B(t)e−iωpt

Tbouteiωpt

γ
1

γ
2

FIG. 4: (i) Image of the resonator device showing the NbN ring, and (ii) optical microscope (inverted

color) image of the microbridge in the ring [provided courtesy of Eran Segev and Eyal Buks]. (iii)

Schematic model of the device showing the driving amplitude bin and frequency ωp, the response

B(t)e−iωpt of the resonator, and the temperature T of the microbridge [16].

varying amplitude and phase of the modal response, and ωp is the forcing frequency. This is

shown schematically in Figure 4(iii). The interesting dynamics occur when the microbridge

switches between normal and super conducting, with different impedance characteristics in

either mode. The other dynamic state in the model is the microbridge temperature T , which

dictates its impedance. If T < TC , where TC is the critical temperature of NbN (on the

order of 10 Kelvin), the impedance is that of the superconducting state, denoted S, whereas

when T > TC the microbridge becomes normal conducting, denoted N, in which case it has

much greater resistance and the ring may have slightly different resonant frequencies.

The key to understanding the rich dynamics observed for this system is to note that the

microbridge temperature T depends on the local average current density in the microbridge,

which is related to the modal amplitude |B| through Joule heating (and dissipation), and

B in turn depends on the impedance in the ring (as well as the excitation parameters),

and thus on T . If the excitation is moderately strong and near resonance, this coupling

leads to a situation in which the current amplitude will grow and heat the microbridge until

it becomes normal conducting, at which point the system becomes more highly damped

(and possibly off resonance), resulting in a reduced amplitude. This then leads to a cooling

of the microbridge, until it once again becomes superconducting. The resulting sustained

oscillation of the system between these states was designated as “self-modulation” in [16],

where a piecewise-smooth (in fact, piecewise linear) model was developed that accurately

captured, via simulations, most of the experimentally observed behaviour; (it should be

noted that noise plays an important role in the behaviour near some transitions, a feature
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not addressed in the present work). The piecewise-smooth model exhibits different linear

behaviours on either side of TC (due to the change in microbridge impedance), and also

exhibits relatively fast dynamics in T when compared to those in B (due to the very low

levels of dissipation and the fact that the system is driven near resonance). The purpose

of the present paper is to show that this simple model for the coupled (B, T ) dynamics

has a periodic orbit that describes the self-modulation, and that it is created/destroyed by

catastrophic grazing bifurcations. These bifurcations occur independent of, but are strongly

influenced by, conditions for the creation and destruction of the fixed points that correspond

to the periodic resonant behaviours that remain entirely in either N or S.

In the next section we present the idealized model of this system derived in [16, 17]. Of

course, the transition between N and S is complicated and not instantaneous, but it does

occur quickly compared to the time scale of the response, and can therefore be conveniently

modeled as an immediate switch between N and S states accross TC ; this is the ultimate

source of the piecewise-smooth nature of the following model.

B. Piecewise-smooth model

The model for the resonator is the dynamical system

Ḃ = [i (ωp − ω0 (T )) − γ1 − γ2 (T )] B − i
√

2γ1b
in

Ṫ = g
[

(T0 − T ) + 2κ~ω0γ2 (T ) |B|2 /H
]

. (5)

The first equation describes the complex amplitude B of a harmonically driven oscillator,

and is essentially linear in character, except for the fact that the natural frequency and

damping depend on the temperature T . These coefficients are piecewise constant and take

on different values depending on whether T is above or below TC . The T dynamics are

driven by linear decay that drives the temperature to the bath temperature T0, described

by the first term, while the second term captures the B-dependent Joule heating in the

microbridge.

Note that g = H/C is a large parameter which implies fast dynamics evolving towards

slow manifolds where Ṫ = 0. Here H is a heat transfer coefficient between the resonator

microbridge with thermal heat capacity C and a coolant with temperature T0. Several

parameters depend on whether the NbN is normal or super conducting: κ measures efficiency



11

of microbridge heating relative to power dissipated and is typically estimated to be near one,

ω0 is the angular resonance frequency, γ1 is the coupling coefficient between the resonator

and feedline, and γ2 is the damping rate of the mode (see Figure 4(iii)). The symbol i is the

imaginary unit
√
−1.

Typical values of the main parameters are shown in Table I. The only physical parameters

that will recur in this paper, for producing a bifurcation diagram in Figure 8, are the driving

frequency ωp, and the driving amplitude bin providing a pump power proportional to |bin|2

(for simplicity we let bin be real without qualitatively changing our results).

TABLE I: Values of the physical parameters of the model in the typical operating range of the resonator

device [16–18].

parameter typical value range

ω0 20 − 30GHz, ω0S < ω0N

γ1/ω0 0.001− 0.25

γ2/ω0 0.002− 0.6, γ2S ≪ γ2N

ωp/ω0 0.98 − 1.02

g/ω0 4 − 8

κ 0 < κ . 1

For analysis it is convenient to transform to dimensionless state variables β = g√
2γ1bin

B

and Θ = T−T0

TC−T0
, such that Θ = 0 is the bath temperature and Θ = 1 is the transition

temperature between N and S modes. We define dimensionless parameters

Λ =
1

g
[i (ωp − ω0) − γ1 − γ2] , σ =

4κ~ω0γ1γ2

g3C(TC − T0)
, (6)

such that Λ is a complex coefficient describing the driven linear oscillator dynamics, and σ

describes the effective Joule heating. Both take on different values for T > TC and T < TC .

Note that large g implies σ ≪ |Λ| ≪ 1. The physical parameter values in Table I imply that

ReΛ < 0 and σN > σS. (7)

We thus obtain a two-parameter system

β̇ = Λ (Θ) β − i

Θ̇ = −Θ + σ (Θ) |β|2 ,
(8)
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where the dot now indicates differentiation with respect to τ = gt. Then σ and Θ are real

whereas Λ and β are complex. The parameters are piecewise-constants that jump at Θ = 1,

specified as

Λ (Θ) =







ΛN if Θ > 1,

ΛS if Θ < 1,
and s (Θ) =







σN if Θ > 1,

σS if Θ < 1.
(9)

The system (8) is therefore piecewise-smooth: smooth in the region Θ > 1 labelled N and

the region Θ < 1 labelled S, separated by a switching manifold defined by Θ = 1.

For σ ≪ |Λ| ≪ 1, each subsystem N and S has slow-fast dynamics. The theory of

normally hyperbolic invariant manifolds [25] applied away from Θ = 1 can be used to show

that a slow invariant manifold exists close to the surfaces where Θ̇ = 0. The slow manifolds

are two-dimensional paraboloids in the (β, Θ) phase space (shown later in Figure 6(i)), which

are given by Θ = σN |β|2 for Θ > 1 and Θ = σS |β|2 for Θ < 1. The fast dynamics of Θ imply

that the system evolves quickly into a neighbourhood
∣

∣Θ − σN,S |β|2
∣

∣ < ǫ of the attractive

invariant manifolds, for some small ǫ > 0.

In the following we approximate the dynamics of (8) with a Filippov model that can be

solved explicitly. We do so by approximating the vector field with its value at the boundaries

of the ǫ-neighbourhood of the slow invariant manifolds, given by
∣

∣Θ − σN,S |β|2
∣

∣ = ǫ, which

means setting Θ̇ = −ǫ sign
[

Θ − σ(Θ) |β|2
]

. The dynamics will not rely critically on the

choice of ǫ, for instance, the algebraic expression for periodic orbits and equilibria will not

depend on ǫ at all.

C. A Filippov resonator model

The preceding arguments suggest the following piecewise-linear system:





β̇

Θ̇



 =





Λ (Θ)β − i

−ǫ sign (h)



 , (10)

written in terms of the complex piecewise-constant

Λ (Θ) =







ΛN if Θ > 1,

ΛS if Θ < 1,
(11)



13

and the switching function

h (β, Θ) =







hN (β, Θ) if Θ > 1,

hS (β, Θ) if Θ < 1,
(12)

where

hr (β, Θ) = Θ − σr |β|2 , (13)

with ǫ a small positive constant. This means that state space is partitioned by three switch-

ing manifolds,

Σ = {(β, Θ) : Θ = 1} , (14)

ΣN = {(β, Θ) : Θ > 1, hN = 0} , (15)

ΣS = {(β, Θ) : Θ < 1, hS = 0} . (16)

Explicitly we have four regions N1, N2, S1, S2, and the dynamical system





β̇

Θ̇



 =



























fN1 if Θ > 1, hN > 0,

fN2 if Θ > 1, hN < 0,

fS1 if Θ < 1, hS > 0,

fS2 if Θ < 1, hS < 0,

(17)

where

fr1 =





Λrβ − i

−ǫ



 and fr2 =





Λrβ − i

+ǫ



 (18)

for r = N, S, as illustrated in Figure 5. The Σ plane contains two crossing regions |β|2 < 1/σN

and |β|2 > 1/σS (where orbits cross it in the negative and positive Θ directions respectively),

and these are separated by an annular region 1/σN ≤ |β|2 ≤ 1/σS of repelling sliding (where

both vector fields are directed away from Σ).

According to the Filippov method, the ‘slow’ dynamics on the parabolas Σr is prescribed

by the sliding vector fields for each region,




β̇

Θ̇



 =







FN if Θ > 1,

FS if Θ < 1,
(19)

where the Fr are given by (see equation (2))

Fr =
(∇hr · fr2) fr1 − (∇hr · fr1) fr2

∇h · (fr2 − fr1)
=





Λrβ − i

σrRe [β∗(Λrβ − i)]



 , (20)
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Θ

0

ΣN

Σ
ΣS

1

fN1
FN

fN2

fS1 FS
fS2

|β|

FIG. 5: Vector fields fN1, fN2, fS1, fS2, apply in regions bounded by the planar switching manifold Σ,

and the parabolic switching manifolds ΣN, ΣS on which the sliding vector fields FN, FS apply.

(note that this is the same as the vector field that would be obtained by taking the limit

g → ∞ in (5) and setting Fr to be the vector field of the slow subsystem, often called the

‘reduced’ problem; because our interest is in using the model for illustrative purposes, we

do not pursue this fact here). The sliding vector fields Fr apply only in the sliding regions

Σsl
r = {(β, Θ) : (∇hr · fr1) (∇hr · fr2) < 0} ; (21)

otherwise orbits cross through the switching manifolds ΣN, ΣS, and Σ, continuously but

nondifferentiably.

On each parabola either side of Σ, the exactly solvable system (19) has the solution

βr (τ) − i

Λr

=

(

βr0 −
i

Λr

)

eΛrτ , (22)

where βr0 = βr (0). We will not need the Θ solution since (22) fully determines trajectories

on Σr. Note that βr (τ) is continuous but nonsmooth because it jumps between r = N and

r = S whenever βr (τ) crosses |βr| = 1/
√

σr (when Θ (τ) crosses Θ = 1 at the intersection of

Σr with Σ), as illustrated in Figure 6(i).

We can depict the system as evolving on two overlapping regions covering the complex

β plane (see Figure 6(ii)): trajectories follow FS inside the circle |β| = 1/
√

σS, and follow

FN outside the circle |β| = 1/
√

σN, switching from one flow to the other when they intersect

the circular boundaries. Given σN > σS (from equation (7)), the two regions overlap on the

annulus 1/
√

σN < |β| < 1/
√

σS where either vector field may be applied depending on the

value of Θ. We will use this representation for simulations in Figure 9.
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Reβ top view

Imβ

Θ(i)           (ii)

ΣS

Σ

ΣN

Reβ

Imβ

σS
−1/2

σN
−1/2

FIG. 6: (Color online) Example of an orbit of the Filippov system. (i) In the 3-dimensional phase

space (Reβ, Imβ,Θ), orbits are attracted to and slide on the switching manifolds ΣN and ΣS, (ii)

projection onto the complex β phase plane, showing intersections of the switching manifolds ΣN,S with

the switching manifold Σ. Fast dynamics are shown with double arrows, sliding orbits with single arrows.

IV. EQUILIBRIA AND LIMIT CYCLES

In this section we give equations of equilibria and necessary conditions for existence of

periodic orbits in the Filippov model described in the previous section.

A. Conditions for equilibria

The sliding vector field (20) has equilibria, i.e. Fr = 0, at

βeq
r =

i

Λr

. (23)

An equilibrium in region N is admissible (lies in the region Θ > 1) if

|ΛN|2 < σN, (24)

and an equilibrium in region S is admissible (lies in the region Θ < 1) if

|ΛS|2 > σS. (25)

These relate the input power and frequency to the system parameters in a manner described

more fully in Section V. Note that (23)-(25) are the same as for the original system (8).

At these equilibria the Jacobian matrix of the sliding vector field has determinant |Λr|2 > 0

and eigenvalues equal to Λr and its complex conjugate. Hence, assuming from equation (7)

that ReΛr < 0, each admissible equilibrium at βeq
r is a stable focus in Σr.
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B. Conditions for periodic orbits

In principle we can find a transcendental expression that must be satisfied by periodic

orbits in the Filippov model. We consider only periodic orbits that visit each region N and

S precisely once per period. First rearrange (22) to express the time τ spent in region r = N

or r = S as

eτ =

∣

∣

∣

∣

∣

βr (τ) − i
Λr

β0 − i
Λr

∣

∣

∣

∣

∣

1
ReΛr

. (26)

Substituting this expression back into (22) we obtain

βr (τ) − i
Λr

β0 − i
Λr

=

∣

∣

∣

∣

∣

βr (τ) − i
Λr

β0 − i
Λr

∣

∣

∣

∣

∣

Λr

ReΛr

. (27)

Thus, a periodic orbit satisfies both of the conditions

βN − i
ΛN

βS − i
ΛN

=

∣

∣

∣

∣

∣

βN − i
ΛN

βS − i
ΛN

∣

∣

∣

∣

∣

ΛN
ReΛN

and
βS − i

ΛS

βN − i
ΛS

=

∣

∣

∣

∣

∣

βS − i
ΛS

βN − i
ΛS

∣

∣

∣

∣

∣

ΛS
ReΛS

. (28)

The lefthand expression gives a necessary condition for a trajectory to slide from β = βS

to β = βN along ΣN; the righthand expression gives a necessary condition for a trajectory

to slide from β = βN to β = βS along ΣS. Since the crossing points βN and βS lie on the

intersections of ΣN and ΣS with Σ, we have also

|βN| =
1√
σN

, |βS| =
1√
σS

. (29)

Equations (28)-(29) are necessary for a periodic orbit. It remains to solve (28)-(29) for the

unknown complex constants βN and βS. We must also demand that the orbit is a solution of

the piecewise-smooth system for all times τ , by verifying that |β(τ)| ≥ 1/
√

σN for the orbit

from βS to βN, and |β(τ)| ≤ 1/
√

σS for the orbit from βN to βS.

A schematic diagram of the flow in phase space is given in Figure 7, with a periodic orbit

depicted inset in 7(i).

C. Conditions for catastrophic grazing-sliding

A grazing-sliding bifurcation takes place when a sliding orbit in ΣN or ΣS grazes the

intersection with Σ, that is, that Θ̇ = 0 when the orbit crosses Θ = 1. The Θ̇ nullcline of

sliding orbits is given by

Imβ = |β|2 ReΛr (30)
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|β|2

R

R

arg β Θ

Θ=1

hS=0

hN=0

(i)

(ii)

Σ

ΣS

ΣN

FIG. 7: (Color online) Geometry of the stripline resonator model. The switching manifold Σ and

slow manifolds ΣN,S are shown. Arrows indicate flow directions in the original system (8), in which

the flow changes radial direction through ΣN,S at the bold curves R, which transect Σ at the condition

(32). Black dots are the equilibria (23). Inset: illustrations of (i) a periodic orbit, and (ii) catastrophic

grazing-sliding bifurcation of a periodic orbit.

shown as the curve R in Figure 7, which crosses Σ when Θ = 1 = σr |β|2. Thus sliding orbits

graze Σ at

βr =
1

σr

(

±
√

σr − (ReΛr)
2 + iReΛr

)

(31)

if and only if the term under the square root is positive. Considering that catastrophic

grazing requires the orbit tangent to Σ to be an admissible solution of (10) – typically called

visible grazing – and assuming that it occurs on the branch of (31) where equilibria can

occur, we find that catastrophic grazing can occur in the region r = N, S at

βgraz
r =

1

σr

(

sign(ImΛr)

√

σr − (ReΛr)
2 + iReΛr

)

(32)

provided that the region r contains an admissible equilibrium (conditions (24) or (25)). A

periodic orbit undergoing catastrophic grazing in region N is illustrated in Figure 7(ii).
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V. NUMERICAL ANALYSIS

Numerical illustrations of this analysis follow. The results were found using a combination

of Mathematica [26] to produce the simulations in Figure 9 and to find periodic solutions

at isolated parameters, and the continuation software AUTO [27] to trace the bifurcation of

that solution as parameters vary.

In Figure 8 we present two-dimensional bifurcation diagrams for the system in the param-

eter space (ωp, |bin|2) for different values of ω0N. Figure 8(iii), in particular, is qualitatively

comparable with experimental results such as in [17]. This is followed by numerical simula-

tions to illustrate the typical dynamics throughout parameter space.

Recalling the importance of the driving amplitude |bin|2 and frequency ωp in equation

(5), which enter the preceding analysis through the quantities ImΛ and σ defined in (6),

it is convenient to plot quantities P = 4~

g3(TC−T0)C
|bin|2 (proportional to pump power) and

w = ωp/g. These are related to the dimensionless parameters by

P = σr/(ω0rγ1γ2r) w = ImΛr + ω0r/g (33)

and give different curves for r = N and S. In Figure 8 we plot P against w, showing the

zones where stable fixed points exist, bounded by the solid red (N) and blue (S) parabolas

given by (24) and (25), previously identified in [16]. Also shown are the bifurcation curves

of catastrophic grazing in the N region (dotted red curve) or S region (dotted blue curve).

These are numerical solutions of the periodic orbit conditions (28)-(29) with the visible

grazing condition (32). (Spurious curves of inadmissible solutions, which are numerous and

easy to find, are of course discarded).

Figure 8(i) is symmetric in a vertical line through the parabolae, displaying the relation

that if an orbit β(τ) is a solution of a system with parameters ΛN, ΛS, σN, σS, then the orbit

− (β(τ))∗ is a solution of a system with parameters Λ∗
N, Λ∗

S, σN, σS, where ∗ denotes the

complex conjugate.

Numerical solutions for the catastrophic grazing bifurcation curves fail when they lie

close to the parabolic curves bounding stability zones. However, further simulations not

shown here confirm that they form closed continuous curves, approaching the parabolae and

contacting them tangentially at isolated points, where ImΛr = 0 and hence Λr =
√

σr. The

curves consist of two smooth branches: catastrophic grazing-sliding bifurcations occur in
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FIG. 8: (Color online) Plot of P ∝ |bin|2 against w = ωp/g as given by (33) for ReΛS = −0.1,

ReΛN = −1, ω0Sγ1γ2S = 1, ω0Nγ1γ2N = 0.1, ω0S/g = 1, where ω0N/g takes values: (i) 1, (ii) 1.1,

(iii) 1.5. N indicates the admissible equilibrium in existence above the red full parabola given by (24),

S indicates the admissible equilibrium existing below the blue full parabola given by (25), elsewhere 0

denotes no equilibria. A periodic orbit exists in the shaded zone bounded by the bifurcation curves of

catastrophic grazing-sliding in N (red/upper dotted curve) or S (blue/lower dotted curve).

N along the upper dotted curve and in S along the lower dotted curve. The curves tend

towards intersection points in the bistable zones, which are codimension two points where a

periodic orbit simultaneously grazes in both the N and S regions.

Figure 9 depicts simulations that illustrate the evolution of the system through parameter
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space, as we follow the dotted curve through points labelled (a)-(e) in Figure 8(ii). Here we

plot phase portraits in the complex β plane. The inner circle is where orbits on ΣN switch

into region S, and the red curves are orbits on ΣN. Similarly, the outer circle is where orbits

on ΣS switch into region N, and the blue curves are orbits on ΣS.

Starting on the dotted line in Figure 8(ii) near P = 0, the system has an equilibrium

in the S region. The vector fields (20) are nowhere tangent to the switching manifold Σ.

Moving up the line, as we pass the value of P level with the apex of the narrower (blue)

parabola, there appears a cubic tangency of the sliding vector field FS to Σ, which splits into

two quadratic tangencies. This happens because the curve R below Σ in Figure 7 expands

to touch Σ and thereafter intersects it twice. No periodic orbit exists and all trajectories

go to the equilibrium as shown in Figure 9(a). At the bifurcation curve a periodic orbit

with finite period appears by a catastrophic bifurcation, shown in Figure 9(b); at grazing

a trajectory may evolve either along the periodic orbit or towards the equilibrium. Passing

through the narrower parabola, equation (25) is violated so the equilibrium in S becomes

inadmissible, as in Figure 9(c).

Moving up the line, as we pass the value of P level with the apex of the wider (red)

parabola, there appears a cubic tangency of the sliding vector field FN to Σ, which splits into

two quadratic tangencies as the curve R appears above Σ in Figure 7 and thereafter intersects

it twice. Then passing from the astable zone (where no equilibria are admissible) through the

wider parabola, equation (24) is satisfied so the equilibrium in N becomes admissible. Very

nearby the limit cycle undergoes the catastrophic grazing-sliding bifurcation by grazing in

region N, shown in Figure 9(d) where, in fact, the grazing point and boundary equilibrium are

too close to resolve. Moving on to the zone above all bifurcation curves, an equilibrium exists

in N and the periodic orbit does not exist. If we pass again through the narrower parabola,

by varying ωp/g, we satisfy equation (25), so the equilibrium in S becomes admissible,

returning to the scenario in Figure 9(a). The point (e) represents the codimension two point

where catastrophic grazing curves intersect. Following our path, a limit cycle appears with

finite amplitude, simultaneously grazing in both regions N and S. From this point a generic

perturbation takes us either into the region inside the bifurcation curves where the periodic

orbit exists, or outside where it vanishes.
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(a)     (b)     (c)

SS

S
N

N

Re β
Im β

σN
−1/2

σS
−1/2

(d)    (e)

S
SN

N

FIG. 9: (Color online) Simulations at the points (a)-(e) in Figure 8(ii), showing the −π
4 < arg β < 0

quadrant of the complex β plane. The circular arcs are the switching boundaries |β|2 = 1/σN and

|β|2 = 1/σS, the orbits belong to N (red) or S (blue) are labeled. Filled circles are admissible equilibria,

empty circles are inadmissible. The cases are: (a) w = 1.22, P = 0.026, showing an equilibrium in

region S; (b) w = 1.22, P = 0.039, showing grazing in S, a periodic orbit appears in a catastrophic

grazing-sliding bifurcation; (c) w = 1.22, P = 0.079, the periodic orbit in the astable zone; (d)

w = 1.22, P = 0.101, showing a periodic orbit homiclinic to the equilibrium of N; (e) w = 1.58,

P = 0.165, showing the codimension two scenario where the bifurcation curves meet in the bistable

zone, implying catastrophic grazing-sliding simultaneously at both switching boundaries.

VI. CONCLUDING REMARKS

We have introduced what is, to our knowledge, the first thorough description of a catas-

trophic case of sliding bifurcation in a piecewise-smooth system. We have given its definition

and the conditions for it to occur.

We have shown that catastrophic grazing-sliding of a periodic orbit occurs in an ex-

perimentally motivated model of a superconducting stripline resonator, where it forms the

mechanism for sudden destruction of oscillatory modes. The simulations and bifurcation
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diagram in Section V qualitatively match experimental transitions observed in [17] as pump

power is increased, although noise will affect the precise dynamics near the boundaries where

fixed points appear/disappear. The mechanism is therefore a viable explanation for the sud-

den collapse from periodicity to stable states observed in the power output of the physical

system. We have not described the behaviour of the model fully, using it only to illustrate

in detail the role of catastrophic grazing-sliding in this context. However, we have shown

the simplicity of the qualitative behaviour revealed by deriving grazing conditions, such as

those leading to Figure 7.

A detailed investigation of the catastrophic grazing-sliding bifurcation in the original

slow-fast model is beyond the scope of this paper, however, the periodic orbit simulated

here corresponds closely to that observed in previous numerical simulations of the slow-fast

model [17]. For completeness we present, in Figure 10, a comparison of Figure 8(iii) to a

numerical solution for a smoothed out system, based on the slow-fast system in equation (8)

with a sigmoidal smoothing of the vector field at the switching manifold Σ. In Figure 10, the

boundary (full curve) of the zone where equilibria occur in S is reproduced precisely in the

smooth model, where it is a curve of folds of equilibria. The dashed bifurcation curve was

found by continuation of a bifurcation that destroys a periodic orbit, and the orbit is close

dynamically to that in the Fillipov system. Several formally different sigmoidal functions

were used and showed no difference in outcome, provided they had a sufficiently steep slope.

The figure shows that near resonance, given by |ωp−ω0|/g ≪ 1 and therefore |ImΛ| ≪ 1, the

bifurcation curves of the smooth system show good agreement with the piecewise-smooth

system. As |ImΛ| increases, the curves slowly diverge from each other, which is expected

because the slow and fast dynamics become less distinct, so the Filippov model becomes

less accurate.

It is worth emphasising that the conditions (3)-(4) for catastrophic grazing-sliding are

generic in Filippov systems. Neither the slow-fast behaviour nor the tri-dimensionality of

the case study are prerequisites for the bifurcation illustrated – indeed from Section IIIC

onward we are effectively studying a one-parameter bifurcation in a planar Filippov system.

The implication is that the bifurcation is typical in piecewise-smooth systems. It is found

at the boundary between crossing and repelling sliding on a switching manifold, and governs

the sudden destruction of periodic orbits that is not preceded by any significant change in

their stability or period.
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FIG. 10: (Color online) A magnification of Figure 8(iii) near resonance, showing the boundary of

the S stability zone (full curve), the catastrophic grazing bifurcation curve (dotted curve). Shown for

comparison is a bifurcation curve where periodic orbits vanish (dashed curve) in a smoothed version of

the slow-fast system in equation (8).
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