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Abstract. A hybrid dynamical system with sliding is derived from a srtioa-dimensional vector field. It
approximates the dynamics of the smooth vector field whoseig® form inside some ‘pinch’ zone can be approx-
imated by the hybrid between a map, that effectively remakiespinch zone from the phase space, and a sliding
vector field, that approximates the removed dynamics. Hy$liding systems are shown to generalise piecewise-
smooth flows with sliding (so-called Filippov systems), imanner that allows the origin of sliding behaviour to be
traced back to smooth dynamical systems. We analyse exautaleillustrate this, revealing how phenomena such
as canards and bifurcations in smooth systems, are relatgiling bifurcations and other discontinuity-induced-
bifurcations in nonsmooth systems. The method providesugdiie explanation for catastrophic behaviour in an
experimental superconductor device.

1. Introduction. The purpose of this paper is to make sense of certain capastrand
nondeterministic behaviours that have recently been wbddn generic dynamical systems
with sliding. Sliding occurs in systems of ordinary diffatel equations that are piecewise-
smooth, that is, smooth over regions of phase space, segdngswitching manifoldsvhere
discontinuities occur. Sliding describes solution tregeies that become constrained to evolve
along the switching manifold.

The prevailing convention for dynamics at a switching meldifvas defined by Filippov
[9], and finds ever more application across engineeringsigeyeconomics and biology (see
for example [4, 3, 10, 14, 15, 17]). Filippov’s definition heaghysical interpretation as the
convex combination of the vector fields either side of a disiomity [9], and is equivalent to
the Utkin method of equivalent control [27].

Consider an ordinary differential equation of the form

= f(x), (1.1)
where the righthand-side is a piecewise-smooth functieergby
_f file) i zeR;,

comprised of smooth vector-valued functiofyiss R", which apply on disjoint open regions
R; CR". On the boundaries between adjacent regidnand2;, where the closureB; and
R; of R; andR; overlap, we assign set-valued functions

1+A,  1-A
Fz‘j—{%fi‘FTfj:—1<)\<l}. (1.3)

The union of the boundarie®; U R; for all 4, j, is the switching manifold. If the sef;;
contains a vector lying in the tangent plane of the switchiranifold, we follow Filippov
[9] in saying that an orbit of (1.13lidesalong the manifold. The set of such points forms a
submanifold which we call the sliding region.

A sliding region is called stable or unstable if orbits areeatted to it respectively in
forwards or backwards time. The boundaries of sliding negiare calledolds (where orbits
in R; or R; are tangent to the manifold, hence they fold towards or awam fit). It is
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. c_r two-fold
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FiG. 1.1.Depiction of piecewise-smooth system showing a two-folglarity inR2. Orbits in the regions;
and R; are respectively solutions af = f; or ¢ = f;. The differential equation is discontinuous on the switghi
manifold where orbits may either cross (unshaded surfacs)iade (shaded surface). Sliding orbits (double arrows)
are shown in stable (right) and unstable (left) sliding mus. These are bounded by curves called folds, which can
cross to form a two-fold singularity.

possible for stable and unstable sliding regions to meetevheair of folds intersect, and
this important singularity is calledtavo-fold singularity (illustrated in figure 1.1). The two-
fold has been the subject of ongoing interest, from the déawm of its normal form vector
field [9], to the study of its asymptotic and structural siigb{25, 11], both inR3, and its
role as a collision of folds ifR? [14].

The intrigue of the two-fold arises because it generatesle@mminism. Forward time
evolution is nonunique from any pointin an unstable slidiegion on; U R;, because each
trajectory has infinitely many orbits departing from it inf& and R; in finite time. In many
situations this behaviour is not of interest because oditg flow away from the unstable
sliding region. At a two-fold, however, the unstable sligliregion adjoins a stable sliding
region, where infinitely many orbits frol}; andR; converge onto each sliding orbit in finite
time. It is possible for trajectories to pass through the-fald from the stable sliding region
and access the unstable sliding region in forward time, abdrbits that converge on the
two-fold are nondeterministic.

The two-fold is also central to a recent classification ofas@mophic class dfliding bi-
furcations These are topological changes to invariant manifoldsdéediby a discontinuity.
Previously known ‘regular’ types of sliding bifurcatiofi][describe how changing a param-
eter causes a periodic orbit to attach to (or detach from)itcisiwg manifold, gaining (or
losing) a segment of sliding. In contrast, in a catastropldting bifurcation, a periodic orbit
will be destroyed suddenly without any precursive changtsistability or period.

Piecewise-smooth vector fields of the form (1.2) are ofteadus approximate smooth
dynamical systems. The question therefore arises as tol@wdandeterministic and catas-
trophic dynamics described above can be understood in titexiamf smooth systems.

A procedure to smooth out discontinuities has been devisebtast partially, and is
known as regularization. To regularize the discontinuitigau R; we introduce a transition
region betweerR; and R;, foliated by surfaces = constant. By fixing = € R; U R; and
varying A between—1 and+-1, we can letf assume unique values taken from the Bgtin
(1.3). The regularized system is topologically equivaterd (smooth) singularly perturbed
system, such that regions of sliding (defined by Filippoy [} the switching manifold are
shown to be homeomaorphic to hyperbolic slow manifolds (aefiby Fenichel [8]) of the
singularly perturbed system [26].

The requirement of hyberbolocity means that, if the slow ifiadoh of the regularization
is not hyperbolic, equivalence between a piecewise-snayatiem and a singularly perturbed
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system cannot be established. Nonhyperbolic points of stawifolds have been the subject
of recentinterest relating to the phenomenon of canardsiqo (see for instance [2, 23, 28]).

The current paper establishes a correspondence betwedioltdscand nonhyberbolic
points of slow manifolds. That is, we show that two-fold sitagities in piecewise-smooth
vector fields approximate the dynamics around nonhyperhpaints of critical manifolds
in singularly perturbed vector fields. To do this we deriveyarid dynamical system that
approximates the singular perturbation. Given a smoottovéeld, and a certaipinchzone
(where the dynamics is rapidly varying in time or phase spage show that its dynamics
can be approximated by a piecewise-smooth system of theadoem in (1.1)-(rhs). The
vector field in the pinch zone is replaced by a set valued vd@td, and we show how
approximating this as a convex set results in Filippov’svemtion (1.3). We prove that fixed
points in the smooth and piecewise-smooth systems aredntdiorrespondence. It remains
an open problem to establish whether there is a topologigalalence between smooth and
nonsmooth systems, though one of continuing interest 2B, 2

The method is motivated by the pinching of a smooth vectod fiel a sphere [21]. In
[22], the topology of hybrid representations of some nonstmeystems was investigated,
though the analysis excluded sliding, focusing on crosdimgamics such as the Zeno phe-
nomenon. In contrast we will concentrate on the appearaihsi@ing and nondeterminism
in hybrid approximations to dynamical systems.

The approximation method is introduced as a hybrid desonjtf systems with sliding
in section 2. In section 3 it is shown that a nonhyperboliapoin a slow manifold irR?
is approximated by the two-fold, using the classic exampth® van der Pol oscillator. We
also show, in a contrasting parameter regime, that the vaRaleoscillator displays a two-
fold singularity called the fused focus [14]. A generic foaithe two-fold is derived from
the generic form of a nonhyberbolic slow manifold&d in section 4, and the catastrophic
sliding bifurcations associated with it are discussed. rleatastrophic sliding bifurcations
were classified in [12], three of which are related to the fold- In section 5 we discuss
the fourth, and study what is, to my knowledge, the first omre of it identified in an
experimental device — the superconducting resonator. "ikematical model of this device
that has proven difficult to understand with either nonsimamtsmooth models alone, and
using heuristic results from section 2, we make qualitapikedictions about its operation.
Some closing remarks are made in section 6.

2. A hybrid dynamical system with giding. In this section we describe a method for
replacing a smooth vector field by a hybrid of two vector fietawl a map. By derive a
particular form for the hybrid, and then show that it can betfer approximated by a convex
solution equivalent to Filippov’s convention for a pieceeismooth system.

Consider a smooth vector fiefd: R — R™ that defines a dynamical system= f(z).
On some neighbourhodd C R™, let there exist a smooth scalar function R — R such
K'(x) # 0forall x € U. Leth have two level sets labeled

Yy ={x eR": h(z) = +0}, (2.2)

for someo > 0, bounding a strigh| < o which we call thepinch zone We shall denote by
h the Lie derivative of along the flow, given by
. d

h =T —h = . h 2.2

i —h(z) = -V (2.2)
We wish now to replace the solutions #f= f in the pinch zone by some rule that: (i)
associates each point ah. with a point onX_, and (ii) replaces the vector field between
them by a suitable approximation.



F1G. 2.1. A hybrid system with sliding. (i) In a smooth vector figldve add a pinch zone, bounded by-
which are joined by chordge (), on which the set-valued vector fieki(¢) is shown at a sliding poin{; and a
crossing point¢,. Sliding is determined by the positioning of a tangencyaaef, = 0 (S in Theorem 2.1), on
which we take the sliding vectdts. A fixed point in the pinch zone is also shown. (ii) Hybrid systvhere: ;. and
>._ pinch down to a switching manifold. The tangency t& bounds sliding (shading) and crossing (unshaded) on
2.

Locally in ¢, we can define a surjective map from the pinch zdne)| < o, to a
switching manifold> ¢ R”~!. Geometrically, we connect each point € ¥_ to a point
x4+ € Y4, by a smooth chord inside the pinch zone such that no two shiatdrsect. Let
pe(A) define the chord such that(—1) = 2 andp¢(+1) = x4, where¢ € X. Two such
chords are illustrated in figure 2.1. The vector field ah X is then the set

B ={f(pe(N) : =L <A <1} (2.3)

We do not need this whole set to prescribe dynamicEorfror simplicity we assume that,
at any¢, the setF'(¢) contains at most one vector tangent to a level sét @fhich we call a
sliding vectorand denote as

Fs(€) = {F(peV) : hipe() =0, A€ (-1 1)} 24)

For this to be possible we must have that, for a gigethe chordp¢()) is never tangent to
the hypersurfacé = 0. This means that must satisfy

0# L) = 22N 97 () - 9n (e ). 2.5)

If F(¢) contains a sliding vectoF;s (), then we describg as asliding point, otherwise it is
acrossingpoint (Figs. 2.2(a-b)). Over any open region of sliding gejrthe sliding vectors
constitute am — 1 dimensional vector field, and thus a dynamical systet gjiven by

£ =Fs(9). (2.6)

A hybrid dynamical system is defined as the concatenatioalafiens of equation (2.6)
on X, with solutions ofi = f in the regionsi(z) > o andh(z) < —o. figure 2.2 illustrates
typical dynamics in the smooth system with a pinch zone, arnka hybrid system as defined
above. The following theorem discusses how tangenciestpitich zone, and fixed points
inside the pinch zone, appear in the hybrid system.

THEOREM 2.1. (i) The boundary between crossing and sliding lies whie tangent
to X4 or X_. (ii) Zeros of the vector fielg' inside the pinch zone correspond to zeros of the
sliding vector fieldFs(&).



Proof. (i) Let S denote the hypersurface on whigh= 0. ThensS is the set of points
wheref is tangent to a level set @f. A sliding pointé € X exists when there exists, €
(=1, 1) such thati(pe (), )) = 0, meaning thas lies inside the pinch zone, otherwisés a
crossing point and lies outside the pinch zone singe.| > 1. Assuming that and f are
smooth, the boundary between crossing and sliding is wledeparts the pinch zone at a
pointz = pe(\) where|A| = 1, meaning that(p¢(\)) = 0 for |\| = 1. Sinceh = f - h and
h(pe(£1)) = +o, thenf is tangent to one of the level seis= +o, which are the surfaces
.. (ii) A zero of f inside the pinch zone means thd:(\)) = 0 for someX € (—1,1),
thereforeh = f-h = 0 atz = pe(A), so¢ is a sliding point where the sliding vector field is
Fs(€) = f(pe(N)) =0. O

At a sliding region, by time reversal we obtain orbits thahei flow towards, or away
from, the pinch zone. We describe this as stable (figure p.@8(ainstable sliding, defined as:

DEFINITION 2.2. The sliding vector fields (¢) is stablef i(pg(+1)) > 0 > h(pe(—1)),
andunstabléf A (pe(—1)) > 0 > h(pe(+1)).

At a tangency, depending on whether the vector field curves/dmm or towards the
pinch zone, we obtain visible (figure 2.2(d)) or invisiblagancies, defined as:

DEFINITION 2.3. If an orbit lying outside the pinch zone is tangent to the ltamy
we say the tangency igsible, if it lies inside the pinch zone we say itiisvisible. In the
corresponding Fillipov system it is common to call such ay&rcy &old.

s
(i0) L// l (i.d)

stable sliding crossing visible tangency sliding equilirbium

FI1G. 2.2.Some corresponding dynamics in (i) smooth and (ii) hybradesys, obtained by pinching (see figure
2.1). The cases illustrated are: (a) sliding, (b) crossifg), a sliding equilibrium, (d) a tangency (or fold). The
sliding depicted is stable, which reversing the directiétime changes to unstable.

A sliding point,& € X, corresponds to a chofghs(\) : A € (—1,1)}, on which the two
orbits of & = f through the endpoints: (£1), flow either both outward or both inward with
respect to the pinch zone, and connect to a sliding orbit.i crossing point corresponds
to a chord on which the orbit gf at one endpoint flows into the pinch zone, and at the other
flows outward, so that orbits cross through the region viaglsipoint on>.

The codimension one surfadedefined in the proof to Theorem 2.1, is the set of points
whereh, = 0. Intersection ofS with ¥ creates a fold (tangency, Def. 2.3) on codimension
two surfaces irt;, which partitionY: into regions of sliding or crossing. The domain of sliding
is the set of points

xe{Sn{z:|h(x)] <o}}.

We conclude this section by deriving Filippov’s conventama natural approximation
to hybrid sliding. Equation (2.6) requires knowledge of éxact form of the vector field
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inside the pinch zone, but considerfifis known only approximately outside the pinch zone
and unknown inside it. We can approximate thelS&t) for a point¢ € X, (recalling that it
contains the values of(x) along the chord: = p¢(\)), by interpolating between the values

of f at the endpointg: (£1), which givesF'(§) ~ F'(§), where

- 1+ A 1-A
FO = {2 o)+ S e s -1 <a<1f @)
This is precisely the convex combination of the vectbrél) = f(ps(+1)) used by Filippov
[9] to define sliding. A sliding vector, which lies on the sagéS, is a member o that
satisfiesF' - Vh = 0. Assuming thatVh(pe(+1)) =~ Vh(pe(—1), this occurs ai = A,

where

(f-+fy)-Vh

M=)

and thus the sliding vector field is

e (f--Vh)fy = (f+- Vh)f—’ (2.8)

(f-—=f+)-Vh

which is Fillipov’s sliding vector field. Letting. (€) = h(pe(+1)), we can write this as

m oy h(©F+ (&) —hi (©F-(€)
BO=T 9T o9

The derivation of a Filippov system here can be thought of esnerse to the method
of regularization [26]. There, a piecewise-smooth vectdfivith f = f, onh > 0 and
f = foonh < 0is smoothened out by inserting a strip between the two hpatss, so
effectively f = f. onh > o andf = fy onh < —o, then introducing a vector field. on
|h| < o that interpolates between the two,

- 1+ Ah(x)/o)

FU(I) 5 1- )\(h’('r)/a')

2

fot f- (@), (2.10)
where now\ = A(Vh - z/€) is a monotonic function satisfyiny(s) is equal to+1 if s > 1,

to —1if s < —1. In[] it is shown that the surfac§, described above, is homeomorphic to
the slow manifold of a singular perturbation problem withediparametet. This, however,
applies only ifS is hyperbolic. Points where this is violated are generitifimsingularly per-
turbed systems and in nonsmooth systems. We discuss wisatdhe, and their importance
to both dynamical regimes, in the following sections.

3. The two-fold singularity in R2. Before considering the generic two-fold singular-
ity in section 4, which requires three dimensions, let ussagr a classic planar system in
which they arise, namely the van der Pol oscillator. This et@d an oscillator with non-
linear damping separates into fast and slow timescaleseitiirtfit as the damping stiffness
parameter approaches infinity. We will also show that whaiplkas in the limit of small
damping.

Consider the well studied Lienard form of the van der Polltzdor,

(5)-(vr)
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wherea ande are positive constants (negativaives the same system with, y) replaced
by (_Ia _y))

As is well known [[[GuckHolmes??], the dynamical systemljZas a fixed point at
(Teqs Yeq) = (a, 3a*® — a) which is stable ifla| > 1. If [a| < 1 the fixed point is unstable
and enclosed by a stable periodic orbit. A Hopf bifurcatiakets place whea = 1 (and also
a = —1), thatis, as the fixed point passes through the ‘kieg’ yu) = (1, —%) of the curve

yz%x?’—x.

® ), y= B (ii) Y, y=

lal>1 lal<1

FiG. 3.1.The van der Pol oscillator in the Lienard plane for a moderaglue ofk.

3.1. ¢ < 1,thecanard, and thevisible-invisibletwo-fold. In the stiff damping regime
given bye < 1, instead of a Hopf bifurcation we obtain the well studiedar@phenomenon
[2, 7]. We describe this here using a hybrid sliding appration as defined in section 2.

Inthe limite = 0 the system (3.1) separates into subsystems with two différeescales.
If we sete = 0, then on the curveg — %x?’ -+ = = 0 we can write down a dynamical system
with §y = a — x. This one-dimensionalow subsystem has an equilibriumat= a which
is repulsive ifa < 1 and repulsive itz > 1, but is undefined at the turning points= +1.

If we rescale time by — ¢/ we obtain thefastsubsystem, for whicly = 0, and the curve
Yy — %x3 + 2 = 0 is a family of equilibria which are attracting on the branchese|z| > 1,
and repulsive on the central branch whre< 1.

Let us therefore define the functidiiz,y) = v — §x3 + x, and define a pinch zone
|h| < e around thet = 0 nulicline h = 0. The small value ot makes the curvé = 0
strongly attracting fofz| > 1 and repelling forz| < 1, figure 3.Zi.a). It also compresses
the Hopf bifurcation into a cascade of orbits near 1, two of which are shown in figure
3.2(i.b), resulting in a periodicelaxation oscillationshown in figure 3.@.c). In the hybrid
system the cubic curve is a switching manifold with stabigirsy) for || > 1 and unstable
sliding for |z| < 1, figure 3.Zii.a). The cascade is compressed into the instant 1,
figure 3.Zii.b), and represented by the existence of an infinite number adglierorbits that
contain canard segments — defined as solutions that passtfeostable to unstable branches
of sliding on the switching manifold?] — leaving behind the relaxation oscillation in figure
3.2(ii.c).

The bifurcation diagram is shown in figure 3.2(iii); note thertical gradient at the non-
smooth Hopf bifurcation that corresponds to a canard eiqrios

The hybrid system can be derived by taking a pinch zone giyefhb< o for some
o > 0. Recall from section 2 that we then choose a mdpom one of the pinch zone’s
boundariesh| = Fo to the other, satisfying (2.5). For this we can choose sintipdylines
given byp, (y) = (z, 2% —x + Xe) for =1 < X < 1.
If we then define a new coordinae= y — osgn [h(x,y)], we can express the vector
7



(i.a) (ib) (i.c) (iii) canard explosion
— > ~
i@ \® ©
2/3 EEEE—
\(_/

(ii.c) O|————f ===

(ii.a) (ii.b) EE—
N —
M % -2/3 I
B 1 a

FiIG. 3.2. Canard explosion in a van der Pol oscillator: (i) smooth systwith a pinch zone arouné| < e,
(i) hybrid (or Filippov) system, (iii) bifurcation diagmna. For (a)a > 1, (b)a =~ 1, (¢)a < 1. In (i.b) two periodic
orbits called canards “with head” (larger) and “without hei (smaller) are shown for different values afclose
to unity. In (ii.b), an infinite number of periodic orbits odst whena = 1.

fieldin (3.1) as

(5)-(522)

for g — %x3 + x # 0, where+1 is the sign ofy — %x?’ + x. Then we have a Filippov system
comprised of the two vector fields (3.2) either side of thetelwing manifoldh(x, 5) = 0.
Using (2.8) we find that the sliding vector field on the mardfia given by

(%):(1/(12‘1)), it T (1—a?) —(a—a)* >0, (3.3)

Y a—T €

The sliding vector field has an equilibriumat= «, and is bounded by the folds g;(l —
2%)? — (a — 2)* < 0. The folds can be seen in the magnification around the goint2)
shown in figure 3.3(i), and are labeléd». T} labels the lower vector field’s visible tangency
(recall definition 2.3) to the switching manifold, afigllabels the upper vector field’s invisible
tangency.

There are two region%é(l —2%)? — (a — x)? < 0 where orbits cross the switching
manifold, and these lie around the manifold’s turning peiaf1, —%). In figure 3.3(ii) the
crossing region is shown as a dotted curve.

Examining figure 3.3(ii) it is then easy to understand howdhanging position of the
fold points creates the local conditions that permit a gcorbit to exist. The smooth system
is shown in figure 3.3(i). Note the bifurcation of the= 0 nulicline S in the smooth system,
which corresponds to visible and invisible folds passincheather in the hybrid system.

Figure 3.4 shows a more general depiction of the bifurcattian has taken place as
passed through = 1. This shows the locus of the folds crossing transversallfjptm a
two-fold singularity.

Thus we have a qualitative description of a canard explosioterms of a bifurcation
in a piecewise-smooth system. The family of canard cyclaesrttake up a canard explosion
are compressed from an exponentially small range of thenpetexa = 1, into the instant
a = 1. Itis possible to make the analysis more precise, and redb& different parameter
values for which we have the canards with head and without hrefigure 3.2 (i.b) or (ii.b).
We do this by making a change of coordinates that lifts the$aaut of the pinch zone into
the upper vector field.



Fi1G. 3.3. Close-up of the knee of the curkie= 0 during the canard explosion, for (a)<1, (b)a ~ 1, (c)
a>1. (i) in the smooth system, the equilibrium moves from theleti unstable branch of the pinch zone (going
from (i.a) to (i.c)), and the large periodic orbit (bold) shks, then is destroyed in a Hopf bifurcation. Note that
theS curveh = 0 (dashed) bifurcates. (ii) the canard explosion in the Fibp system, which takes place as folds
Ty andT> (where the vector field is tangent to the manifold) changeand, and the sliding equilibrium changes
sliding region. When they coincide in (b), sliding orbits)gaass from the stable to unstable sliding region (canards),
and they belongs to infinitely many periodic orbits.

h line of

»~ equilibria
crossing

a
unstable <N | el V. /,
sliding S ......... ..%

v siable
i slidin,
crossing % Y g

F1G. 3.4. Catastrophic bifurcation at a visible-invisible two-fold\ periodic orbit is shown leaving the sta-
ble sliding region of the switching manifold via a visiblddfo The dashed line denotes some return mechanism,
regardless of which, the periodic orbit will be destroyedvayyinga so that the orbit passes through a two-fold.

The key to this is the form of the = 0 nullcline S. From (3.1) withh = y — %x?’ +z,
this is given bya — x + (1 — 2?)h/e = 0, hence

S={(z,y) : M(X,y)=¢€lx—a)/(1-2°)}. (3.4)

At the bifurcation, whem = 1, this takes the fornd(z,y) : h(z,y) = —¢/(1 + )}, which
we denoteSy. As observed in [2], the largest canard without head is treewhich slides
along the full length of the unstable sliding region (caleethaximalcanard), and this one
can be approximated h§, whilst in the pinch zone. We therefore change coordinates to
center on the curvéy, by definingz = h(z,y) + €¢/(1 4+ =) and studying dynamics in the
(z, z) plane.

In the (x, z) system fore < 1 there exists a normally hyperbolic slow manifold in a
neighbourhood of the line = 0. We introduce a new pinch regids| < o’ for somes’ > 0

3.2. Themaximal canard and thevisible two-fold. It was observed in [2], that during
a canard explosion we can identifyn@aaximal canardhat separates the canards with head
from those with head, . As the parametechanges, the maximal canards is the periodic
orbit that separates the in the van der Pol oscillator tha&mhe bifurcation occurs at= 1,
the canard trajectory that appears lies exactly along tiieairsurfaceS given byh = 0.
Evaluatingh = § + (1 — 2?) = a — x 4+ kh(1 — 2?), we solve to findh = hs :=
9



(a — x)/k(x? — 1), which ata = 1 is

1

h:ho = —m

(3.5)

Following [][Benoit] we can magnify the vector field arourttettrajectoryh = hg by intro-
ducing a coordinate) = (h(z,y) + ho(x))!*/*. The square bracket in the exponent denotes
the operation defined ag?! = |u|Psgn(u).

z k(w[k] + ho(x)) (3.6)
= wlH ([wh + ho(2)] [(1 - 2?) — kh3(2)] + (a —2)/k). '
By considering the limitt — oo we see that this has a slow manifold in the neighbourhood
of the linew = 0. Following the general procedure above we therefore defach zone
|w| < o for somes > 0. The surfaceS wherew = 0 is given by ...

with a repelling focus oi& wherew = (—ho(x))[l/k]. We derive the hybrid approxi-
mation by introducing a new coordinate= w — osgn(w). We obtain (hopefully something
like)

t=x+v,0=v—x, v>0 t=-1,0=v, v<0. +ordo1/kw] (3.7)

(i.b) (i.c)

Tip

9

FiG. 3.5. The hybrid sliding system for figure 3.5, showing: (a) a peigoorbit entering the pinch zone
(compare with figuré@?(i-ii.b)), (b) the canard orbit, and bifurcation af, (c) no periodic orbits. A Filippov system
and the catastrophic sliding bifurcation at a visible twald. (a) o« < —1, a stable periodic orbit (bold) and unstable
focus. (b)a = —1, the two visible folds coincide, infinitely many periodidits exist with canard segments. (c)
« > —1, no periodic orbits exist. As in previous sectiofsis the tangency set, here given $y= 0.

then describe this bifurcation, which is:

The following sliding bifurcation has been classified orggently [12]. It predicts that
a periodic orbit can be destroyed by a catastrophic slidigdation at a visible two-fold,
figure??(vi), as depicted in figure 3.6.

It cannot be found in the typical slow-fast system of the fgem, ) = (f, g), because
the trajectories bend the wrong way. And yet, surprisingfjoes turn up in the van der Pol
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FI1G. 3.6.Catastrophic bifurcation at a visible two-fold.

system under magnification, to allow the transition betwegmards with and without head.
Here we present this briefly.

Here we give an explicit example of the bifurcation and, gshe hybrid sliding formal-
ism, we make sense of it as the approximation of a smoothmeenlisystem.

Consider a Filippov system

T _ f (xvy) if y>07
(y ) ‘{ F(ey) W y<o. } (3:8)
where

rea=(4070) e rew=(,0, )0 69

r—a

for 8 > 0. figure 3.5 shows the basic dynamics, consisting of a switchianifold aty = 0,
to which there are two visible tangencies: of the upper vt at

Tr+ = -1,
and the lower vector field at
T = Q.

Between the tangencies is a crossing region, with stald@nglito the right of it and
unstable sliding to the left. The sliding vector field given b

Br—1)(1+4+2—a)

= falz) = 1+2rx—a

(L,o) if y=0, (z—ar4)(x —2zr-) <0. (3.10)

There is an unstable focus @teq, yeq) = (8 — 1,8+ 1)/(1 + 3%). Fora < —1, the unique
orbit leaving the tangency poirt:;-, 0) wraps around the focus and returns to the stable
sliding region, reconnecting to itself via a sliding orltitus forming a stable periodic orbit,
shown in figure 3.&). (This can be easily verified by computing the explicit smlng for

y > 0,y < 0, andy = 0 separately. Other invariant sets exist, but remain farideithe
neighbourhood of the stable periodic orbit of interest iffixed < 1).

The two tangencies coincide when= —1, figure 3.8b), so that a canard orbit exists,
recalling that a canard in a Filippov system is a traject@gging between stable and unstable
sliding regions. The canard orbit is part of an infinite numtifeperiodic orbits in the region
y > 0. Fora > —1 no periodic orbits exist, destroyed by the catastrophéirgl bifurcation
at a visible two-fold.
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The system suffers from having a nonunique solutian-at—1. We now show, however,
by interpreting the Filippov system (3.8) as a hybrid slgdgystem in the manner of section
2, that the degeneracy of periodic orbits represents a daxlosion that arises somewhat
differently to those of the van der Pol system (secfi@n

We have added thg = 0 critical surfaces comprising to figure 3.5 (shown dashed).
We assume that these are part of a hybrid sliding systenvatkfiom a smooth vector field
inwhich S is a smooth curve. If we choose the pinch functig(\) (see section 2) to consist
simply of vertical chords, that is(\; z) = (z, Ao), thenS can take only the forms shown
in figure ??. This follows from the assumption th&tonly passes through the pinch zone in
a sliding region, and tha$ does not cross a vertical chord more than once (conditid))(2.
The important result is that, similar to the bifurcationpessible for the canard explosion in
figure 3.3, the critical curvé must undergo a bifurcation to get from figu?e(a) to ??(c).

The simplest smooth flow completing figuP@ and containing a stable periodic orbit is
that in figure??(a). It is impossible to construct a stable periodic orbit withité period in
figure ??(c). In (b), a bifurcation of the surfac§ takes place at = —1, and it is possible
for a canard orbit to exist. The transition frd@) to (b) can be made by a canard explosion —
a cascade of periodic orbits with rapidly increasing amgEgt (note that the cascade must be
increasing to infinity, rather than converging on the fixethpas in sectior??, because the
focus does not undergo a change in its stability.

Of course, this cascade solution is not unique, we could @wamf any number of
different solutions for the flow inside the pinch zone thatechahe conditions at its boundary,
however we are not concerned with the detailed dynamicdertsie pinch zone, so long as
the qualitative effect it has on the global dynamics is cstesit with figure 3.8. It makes
sense, therefore, to consider the simplest solution plessib

We can now construct a smooth system that exhibits this dgste@nomenon. Consider
the following regularisation of (3.8),

( i )4_ 14—§(ky)

1 — ¢(ky)

f+(Iay)+ 2

f-(z,9) (3.11)
whereg is a smooth function that switches rapidly fram= —1 to ¢ = +1 as the argument
ky changes sign. Such sigmoidal functions are common in modisisstems with switching,
such as neuron activation and control theory.

figure?? shows a simulation of the system for different values afound the value-1,
made in Mathematica [29] withh = tanh andk = 4. In each frame, two initial conditions
are chosen, one in the top righthand corner and one near ths,fand where their orbits
converge to a periodic solution a limit cycle is shown in bold

An unstable focus exists above the pinch zone, and for smalighg it is surrounded
by a stable periodic orbit if, < —1, figure??(a), part of which lies inside the pinch zone
(y =~ 0). Up to within —10=7 of a = —1, figure ??(b), Mathematica is able to compute
orbits and show that the periodic orbit persists, growingidly in amplitude as: increases,
constituting a canard explosion. Closedte- —1 the solutions cannot be computed robustly
in the pinch zone. This indeed is why we use a nonsmooth appation, and it leads to the
orbits shown in figur@?(c), where different initial conditions lead unpredictablysmutions
that evolve into either thg > 0 ory < 0 regions. Forw > —1 and sufficiently far from
a = —1 that orbits can be calculated robustly, fig@d) shows that no finite periodic orbit
exists. This behaviour is consistent with the hybrid slidinterpretation, figur&?, of the
catastrophic bifurcation in the Filippov system figure 3.5.

3.3. k <« 1, thefused focusand theinvisible two-fold. The contrasting case éf< 1
in equation (3.1) yields a pinch zone that is a vertical staipd again always contains the
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focus. The periodic orbit lies entirely within the pinch zofor /o < o, figure 3.7i.a-b),
and has two arcs outside it otherwise, figurgixy. The figure shows a magnification on the
right knee of the tangency cuné& given in this case by the cubic nullcline= §x3 —x.
The pinch zone is given by:| = |« — a| < o, and an appropriate thicknessis= k.

A Filippov system is derived by defining a new coordinate « — a — osgn [h], and it
is convenient to introduce new coordinates,

u= 7 (z—a—osgnlh])

v=o(y— %a?’ +a(l —o?)) (3.12)
to obtain the vector fields outside of the switching manifadd
1:1 _ ( v+eou+ (eu— B)sgnlu] + O [k?u?] (3.13)
0] —sgnfu] + O [ku]

in terms of parameter$ = 0% — (1 — a?), g = k(1 — a® — 0?), € = —2a0.

(ib)

(i.a) | o) i) ©
N %ﬁg \\@/ \@ S ®

(ii.a) % (ii.b) (ii.c) Wv
@ ¢ 0O

FiG. 3.7. The fused focus type of nonsmooth Hopf bifurcation: (i) lybystem, (ii) Filippov system, (iii)

bifurcation diagram withi (u, v) = % — 1w+ %6)2 — |ul.

nonsmooth Hopf

There are two invisible folds at = +4, with sliding between them on the switching
manifoldu = 0. The sliding vector field is"s = —v/3 and has a fixed point at = 0,
which is stable fors > 0, figure 3.7ii.a), and unstable fof < 0, figure 3.7ii.c); this has
previously been called a ‘fused focus’ [14]. At = 0, figure 3.7ii.b), the two invisible
tangencies exchange ordering, which changes the statifilibye sliding fixed point, creating
a Hopf-like bifurcation. Because this is the only fixed pamthe system we can neglect
terms of orderku in the equation forw (this does not change the sliding vector field), but
they must be kept in thé equation, without which the phase portrait is symmetricalbloe
switching manifoldu = 0 (and will therefore be a degenerate centre when 0).

Solutions of (3.13) satisfy (as can be proven directly byssitittion into (3.13)),

ul = (e (35 ) + 1 - = OPFwD)
= Juo] = 5 (v + uoco + sgnlul (uoe — ))? + O[3 (3.14)

whereer = ¢y & € with 4+ denotingsgn[u], anduy is a real parameter. The second line is
a Taylor expansion to third order in the bracketed term v + upeg + sgnfu](upe — ).
The solutions are families of parabolic arcs as shown in §@ur (ii). Each arc intersects the
switching manifold twice at points = v; andv = v, which are roots of equation (3.14),
given by

vy = —ugeo £ (B — uge) + (=1)"/2[uol, (3.15)
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wherev," andwv,; are solutions for the. > 0 andu < 0 systems respectively. A periodic
orbit is formed when both of the conditiong = v, andv; = v, are satisfied, which has
only one solutionjug| = upo = [/€o. This means that a single periodic orbit exists and has
equation

l(v + EE)Q (3.16)
2 €0

_B
uf = —
€o

obtained by putting.y = sgn[u]upo into equation (3.14). Thus the periodic orbits exists
for 8 > 0 (eg is positive by definition), constituting the nonsmooth Hopfircation shown

in figure 3.7. The bifurcation diagram is shown in (iii); theesof the periodic orbit in the
v-direction scales ag/3, similar to a smooth Hopf bifurcation for a cycle of radiy®, while

in theu-direction (parallel ta2) it scales linearly withs.

4. The two-fold singularity in R3. In 3D we prove an observation of M. Desroches,
that Filippov vector fields at a two-fold resemble reducectoefields of sing pert problem
at a nonhyperbolic point of a slow manifold...

Derive properly. So start from generic non-hyperbolic poiirslow manifold

T ay + bz
(1 = c (4.1)
Z/k x— 327

L

and|h| < o. Introducet = = — osgn(h(z, 2)s),
T ay + bz
y | = c (4.3)
2 kosgn(i — $2%) 4+ O [& — $27]

and taking sliding vector field's onh = ay + bz — zkh = 0 we have

stz(gg)(z) (4.5)

l;z ay + bz — kzosgn(h) )
(y)_( ¢ )+O[h} (4.6)
z kosgn(h)

From here we have 3 different types of canard. We also havesdhfeatastrophic,
pictured below (found in extending a classification of stechsliding bifurcations). This
was revealed recently in a superconductor recently. Thetiqurearises, can can we use the
hybrid interpretation to solve nonsmooth systems intealgi(that is using our intuition of
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visible two-fold invisible two-fold
>, @

A L 2 N

visible-invisible visible-invisible
two-fold two-fo

J 9 9 Y

FIG. 4.1. The sliding vector field topologies at the two-folds. Shgdiegions are shaded. There are two
topologies at a visible two-fold (i)-(ii) where, 3 < 0, two at an invisible two-fold (iii)-(iv) wherer, 3 < 0, and
four at a visible-invisible two-fold (v)-(Vviii).

. singular
catastrophic visible bivisible robust
grazing- - - canard ~ canard : bivisible
sliding (") canar (i) ?ar ) canard

FIG. 4.2.The 4 catastrophic sliding bifurcations: a small changensfdat causes a jump of outset. (ii)-(iv) are
reminiscer&t:;?nards in slow-fast systems.

grazing-

sliding (D crossing- (iii)

switching- i
sliding (v

sliding

adding-
sliding

FIG. 4.3.The 4 sliding bifurcations: orbits transform continuoustygain or lose segments of stable sliding.

smooth systems) without explicitly regularising to anattiable smooth system? We try this
next on the same.

The eight generic sliding bifurcations, (i)-(iv) the regusliding bifurcation [4], (v)-(viii)
the catastrophic sliding bifurcations [12]. In (vi)-(Vi& canard trajectory crosses from stable
to unstable sliding via the point where two folds intersddgversing time changes stability
of sliding (shaded) without altering the phase portrait.s&3a(i),(ii),(v) occur at a visible
fold (Fig ?72(i)), (iii) occurs at an invisible fold (Fig?(ii)), (iv) occurs at a visible cusp (Fig
?272(iii)), and (vi)-(viii) occur at a two-fold.
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5. Catastrophic diding bifurcation in a superconducting resonator. We now con-
sider a practical and rather more complicated problem,eetdimensional system that con-
tains both singular perturbation and Filippov dynamicsiclwhtherefore cannot be solved by
either of those two formalisms alone.

The superconducting resonator is an experimental devigg ffesigned as a sensor
whose sensitivity could be controlled by laser heating ofabinm nitride (NbN) micro-
bridge. The microbridge sits around the circumference obrdacting ring attached to
a sensor probe. In experiment, however, novel self-sustadscillations were observed
[1, 20, 19, 18] with a simple physical origin, namely the #ation of the microbridge
between normal and superconducting states. At a low teryserthe microbridge is su-
perconducting, passing a high current which heats the &yidgtil its temperature exceeds
the threshold where it ceases to be superconducting, thentuherefore decreases and the
heating effect drops, so the bridge temperature falls bétevthreshold, the bridge becomes
superconducting, and the process is seen to repeat petigdic

As a result, self-sustaining periodic oscillations aressbsd in the device’s power output
for certain experimental parameters. It was observed, heryvthat these oscillations could
vanish suddenly, without prior change in period or ampktuafter which the system would
settle to a stable fixed point in either the normal or supettooting temperature range.

The dynamical model proposed for the device [1, 10] can beessed in terms of the
power in the ring, which has complex amplitudeand the temperatureof the microbridge,
satisfying

B = AB—i

0 — —go+ s (®-1)

The parameters € R andA € C are piecewise-constants relating the response of theaing t
the driving amplitude and frequency respectively, and we sa

C(Ax 0 8>, C(sw if 6> 1,
A_{AS it <1  2and S—{ss if o<1, (52)

satisfyingRe A < 0, andsy > sg > 0 (corresponding to physical values [10]). Thus we
have a piecewise-smooth system ab®ut 1, with normal (V) and super §) conducting
modes, which we will denote by subscripts- NV, S. The constang describes the efficiency
of heat transfer with the microbridge, and has a large pesitalueg >> s/|A|?, as a result of
which the system separates into ‘slow’ dynamics, in themsogirhood of the surfaces where
0 = 0 (parabolagf = s|B|?), and ‘fast’ dynamics towards these surfaces. This istited

in figure 5.1(i).

The theory of normally hyperbolic manifolds for singulapgrturbed systems cannot
be applied around the switching manif@dld= 1, because the vector field is discontinuous.
The theory of Filippov systems has so far made little pragnesiescribing the bifurcations
of equilibria for flows in more than two dimensions, thougtpontantly, general results for
periodic orbits do exist in the form afiscontinuity mappinggo].

In [10], a Filippov model was derived from equation (5.1) lppeoximating the slow
parabolag) = 0 as switching manifolds in a manner consistent with sectiose2 figure
5.1(i). The resulting piecewise-linear model containsablst periodic orbit, which is de-
stroyed in a catastrophic grazing-sliding bifurcationufig?(v), consistent with experimen-
tal observations. Here we use the hybrid sliding formutataderive both a more complete
bifurcation sequence for the nonsmooth system, and thétafiiad dynamics they represent
in a fully smooth, nonlinear model. This provides the bifitions that should be sought in
numerical analysis of a regularisation of the system, fanggle to use continuation analysis
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F1G. 5.1. Dynamics of the superconducting resonator. (i) Switchiramifiold > at & = 1 between normal
and super conducting modes. The slow stable surfabess which become switching manifolds in the Filippov
approximation. (ii) The hybrid sliding system, where pizdmes replace the switching manifolds.

packages such as AUTO [6]. figure 5.1(ii) shows the threetpmunes of the hybrid sliding
system.

figure 5.2 shows two sliding bifurcations. (i) shows the statgphic grazing-sliding bi-
furcation from figure??(v), proposed in [10] to destroy a stable periodic orbit in tHgpov
system. (ii) shows the switching-sliding bifurcation, adigure??(iii), for an unstable pe-
riodic orbit, which we will now propose also plays a part ie texperimental observations.

(@)

F1G. 5.2.(i) Catastrophic grazing-sliding bifurcation of a stablenodic orbit. (ii) Switching-sliding bifurca-
tion of an unstable periodic orbit. The sliding regions (dké) are unstable. The dotted paths represent an arbitrary
return mechanism.

We begin by identifying any fixed points in the hybrid slidisggstem. From the results of
section 2, we know that it is sufficient to consider a hybridteyn approximating (5.1), and
possessing the same fixed points. The hybrid system hasdgians over which the vector
field is smooth, separated by three switching manifolds

Sn ={(8,0) : hn(8,60) = =0 + sn|B*/g = 0}
Ss = {(8,0) : hs(8,0) = —0 + ss|6* /g = 0} (53)
Y={(8,0):0=1}
Regarding the vector field outside these surfaces, we have
LeEMMA 5.1. There are no fixed points = § = 0 outside the surfaces, Yy, Xg.

Proof. Outside the surfaces, Xy, X g, the # component of the vector field & =
hr(8,0), but by the definition ok v s, (5.3), this never vanishes outsitlg; or X 5. 0
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Following section 2, consider a stijp,.| < o, then a suitable choice for the thickness of
the pinch zone is = 1/g. Now approximate the vector field as

(5)~ () 60

takingr = N for§ > 1 andr = S for § < 1. OnXy andXs the sliding vector field (2.8)
can be specified simply by taking

B=AB—i where h, = 0. (5.5)

LEMMA 5.2. (i) A stable focus exists any if and only ith(7irN, 1) > 0.
(i) A stable focus exists oA if and only ifh5(7irs, 1) <0.

Proof From (5.5), a fixed poins = 0 of the sliding vector field or,, occurs where
B = 3% = i/A,.. OnX, we haveh,(3,0) = 0, and thereforéd®? = s,./(g|A.|?). The
solution(¢%, #¢?) is admissible only if it lies ort,, that is, 33 € y if and only if 65/ >
1, equivalent tohn (i/An,1) > 0, and3g’ € Xg if and only if 657 < 1, equivalent to
hs(i/Ag,1) < 0. Both of these are stable foci because the multiplieRef in (5.5) is
ReA, < 0.0

The annuluy /sy < |B|> < g/ss on X is a region of unstable sliding. The linear
approximation (5.4) is not accurate enough to capture ctiyréixed points onX, and we
must return to (5.1) to find the sliding vector field there, gthirom (2.8) is

(@)_< s — T (5, 1) ﬁ‘1> to=1, L <lpP<L  (56)
0 SN Ss

For our purposes, it is enough to remark that a fixed pointhbyefinition of a sliding vector
field, occurs at a point where the vector fields above and b&lare antiparallel. From this
we have:

LEMMA 5.3. The number of zeros of the unstable sliding vector fieldl as

1 if hx(An,1)hs(As, 1) < (5.7)
0 if hN(AN,l)hs(As, )>j2/|ANA5| > 0, (58)
0 if hn(An,1)hs(As,1) >0, and j/|As|*hs(Ag,1) > 0, (5.9)
2 if j2/|[AnAs|* > hy(An,1)hs(As,1) >0 and j/|As|*hs(As, 1) < 0, (5.10)

wherej = Si;’gﬂ — Re[ANAZ]. . . | -
Proof. The upper V) and lower §) vector fields are antiparallel on if there exists

A\ < 0 such that
AnB—i AgpB—1i
— A . 5.11
( g+ snlAP? ) < g+ s ) (-11)

From the first component, for any valid solution dthere is a unique zero @ = i(A —
1)/(AMs — An). Eliminating 3 from the simultaneous equations (5.11) gives

i s (g bs(
A= . (5.12)
[As[*hs(
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Real positive solutions of (5.12) occur in the numbers gibgr(5.7)-(5.10), and each real
positive solution corresponds to a zero of the unstabléngjidector field. O

LEMMA 5.4.The number of fixed points in the system is either 1 or 3.

Proof. By Lemma 5.3, there is a single fixed pointBwhenhy (An, 1)hs(Ag, 1) < 0.
Then eithehy(An,1) > 0 > hg(Ag,1), in which case by Lemma 5.2 there are two other
fixed points, one on each &fy andXg, or A (An,1) < 0 < hg(Ag, 1), in which case by
Lemma 5.2 there are no fixed points Bg or X ; hence there are eith8ror 1 fixed points.
There are eithe? or 0 fixed points ont whenhy(An,1)hs(As, 1) < 0, thenhy(An, 1)
andhg(Ag, 1) have the same sign, in which case by Lemma 5.2 there is onefoe point
on eitherXs or X ; hence there are eith8ifixed points. Finally by Lemma 5.1 there are no
fixed points outside of, ¥y, X g, so the result follows

Equilibria can only appear/disappear in the sliding regiontwo ways, given by the
following two lemmas:

LEMMA 5.5. A saddle-node bifurcation takes place Brwhenhy (Ay, 1)hg(Ag, 1) =
7% /|ANAs].

Proof. If we vary the parameters or s such thatj? — [AxAs|?hn(An, 1)hs(Ag, 1)
changes sign then, by Lemma 5.3, the number of fixed pointe@nnstable sliding vector
field onX jumps betwee and2. Since the sliding vector field is smooth inside its domain
g/sn < |B|* < g/ss on¥, this constitutes a saddle-node bifurcation [IB].

LEMMA 5.6. Equilibria pass continuously betwe&hand either: y or X g, respectively
WhenhN(ﬁ, 1)=0o0r hs(erS, 1) =0.

Proof. Let hn(i/An,1)hs(i/As,1) < 0 andhyn(i/An,1) < 0, then the only fixed
point in the system is ob. As hy (i/Ay, 1) changes sign, a fixed point appearsXg by
Lemma 5.2, and assuming generically thg{i/Ag,1) # 0, thenhy (i/An, 1)hs(i/Ag, 1)
changes sign, so by Lemma 5.3 the fixed pointbmanishes. To state that a fixed point
has passed fromt to Xy, it remains to show that the fixed point disappeared fdorand
appeared irE y at the same coordinates. The transition takes place WR€iyAx,1) = 0,
which means the fixed point iy lies on the boundary with the unstable sliding region on
¥, thereforehy(8,1) = 0 and§ = i/Ay. From (5.6), the unstable sliding vector field at
that pointis3 = 0, hence the fixed points of andX 5 coincide at transition. The argument
for fixed points passing frorkl to ¥ whenhg(i/Ags, 1) = 0 is analogous

We must then ask whether it makes sense for a fixed point toffgames: to X or Xg,
since sliding is unstable on but stable or¥.y andXs. In the absence of any theorems of
nonsmooth systems to answer this question, the resolutithretdisparity is the following.

We propose to relate the fixed points to each other by assuthatgthe nonsmooth
model (5.1)-(5.2) is an approximation to a hybrid slidingteyn as in section 2. Then, by
Theorem 2.1, each fixed point in the Lemmas above corresgoraizero of some smooth
three dimensional vector field. If the smooth system is gentve number of fixed points
must either be conserved, or annihilate in pairs via sadde bifurcations [13]; note that
no such result has been proven for three dimensional Filiggetems. By considering the
total number of fixed points in the stable sliding regionsgp andX g, and in the unstable
sliding region on>, we have:

PROPOSITIONS.7. The transition of a fixed point between switching manifatdssmma
5.6, takes place via a Hopf bifurcation.

Proof. We give only a heuristic argument for this proposition, ethive will verify by
simulation. A sliding fixed point has eigenvalugs, e2, e3}, one of which is infinite due
to the infinite (in)stability of the switching manifold it irabits. Without loss of generality
lete; — +oo0. Assuming the nonsmooth system is a hybrid sliding appration to some
smooth vector field, this corresponds to a fixed point in theatimsystem with eigenvalues
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{el, ), es} where|Re(e})| > 1. If the fixed point lies or:y or Xg, then all three eigen-
values have negative real parts, whileXnat least one of the eigenvalues has a positive real
part,e; — oo. This implies that at least one eigenvalue crosses the maagaxis, which
by the Andronov-Hopf theorem [13] generically implies thia¢ fixed point in the smooth
system undergoes a Hopf bifurcatiol.

As in section 3.2, this is not the only possible solution,ibist the simplest, and we can
ask what it implies about the system. A Hopf bifurcation segjg that, close to the transition,
a periodic orbit exists in the neighbourhood of the fixed poifhis is only possible if the
orbit passes throughi, implying that it is unstable in one direction. It must alssp through
the regionX 5 or s (whichever the fixed point moves to), implying that it is $&alm one
direction. Therefore the periodic orbit is of saddle typ®] d is easy to verify that this means
it exists when the fixed point is oRy or Xg, and that the Hopf bifurcation is therefore
subcritical.

figure 5.3 shows a possible form for such a discontinuitytoeti Hopf bifurcation, in
which a saddle fixed point oR becomes a stable focus ahy, and develops a saddle-type
periodic orbit.

F1G. 5.3. A nonsmooth Hopf bifurcation is the resonator model. (i) ddepoint of unstable sliding lies on
3. (i) the saddlepoint at the boundary betwegrand X . (iii) the fixed point becomes a stable focus of sliding on
3, surrounded by a saddle-type periodic orbit.

figure 5.4 shows a numerical simulation of (5.1), confirmingttsuch a bifurcation is
indeed observed in the nonsmooth system.

2Ny (i) (iii)
SN .
-0.2
04k 04k i
0.8

FIG. 5.4. Simulation of the system (5.1) shown in the@lane. Orbits are labeledV, S, 0 corresponding to
whether they lie o 7, X g or 3. Parameters are,, = 3.891¢g, sg = 1.297g, Ags = —0.24+1i,Axy = —0.5+1ia
with: (@) a = 2.2, showing a saddle oixg, (b) a = 1.9, showing a fixed point on the boundary, (c)= 1.7,
showing a stable saddle @y and a periodic orbit with an unstable segment®R and stable segment dn.

Now consider what happens as the periodic orbit in figure Eo@/g. Eventually it may
intersect the boundary betwegnandX s as in figure 5.5(ii), and in doing so it can develop
a segment org, figure 5.5(iii). This is the switching-sliding bifurcaticof a saddle-type
periodic orbit, Fif. 5.2(ii), where the return mechanisivdlves traversing stable and unstable

20



sliding switching manifolds. figure 5.6 confirms that thicors in the simulation aBnA
varies.

(@)

F1G. 5.5. The switching-sliding bifurcation of a piecewise-smoatdie-type periodic orbit. From (i) to (iii)
the periodic orbit grows and develops a segment jumpin&.déf stable sliding ors.

(1)
0.1 °" s
N ‘l
Imf| /o
~0.34 ‘0‘
4 06 08 0.4

Ref

FiIG. 5.6. Simulation continued from figure 5.4 whekey = —0.5 + iz with: (&) x = 1.6, (b) x = 1.58, (C)
x = 1.573. The periodic orbit gains a segment &y via a switching-sliding bifurcation.

Simulations reveal a second, stable periodic orbit in tistesy, which has been omitted
from figures 5.3-5.5 for clarity, but we now shown in figure .5The experiments that mo-
tivated this model [20], and previous analysis on the nortmmodel [10], reveal a stable
periodic orbit that suddenly vanishes from the system aganpeter is varied continuously.
An explanation for this was provided for this in the nonsnimowtodel [10], with existence
conditions, in terms of the catastrophic grazing-slidiifgrgation, figure 5.2(i). It was not
explained how the catastrophic nature of the disappeaiate®e understood, however, and
we can now provide the explanation.

The saddle periodic orbit in figure 5.5(iii) or figure 5.7(isis all three sliding regions
on Y, ¥y, andXg, while the stable periodic orbit visits only the stable e onX  and
Y, shown in figure 5.7(i). The stable orbit shrinks and develpangency to the boundary
between: andX 5, while the saddle orbit grows, its segmentirshrinking to zero until it
jumps off 2 from the tangency point. At this instant, figure 5.7(ii), teéo periodic orbits
coincide, and under further parameter variation to figuréib.they vanish via a saddle-node
bifurcation of periodic orbits. The simulation confirmirtgd is shown in figure 5.8.

In this instance, then, the catastrophic sliding bifumathas an interpretation as a
saddle-node bifurcation, involving a periodic orbit thastdirections of infinite stability and
instability that alternate over its period.

Note that in the nonsmooth system, it is not clear that we ear to the periodic orbits
as saddle type or stable, and the saddle-node bifurcatismabf periodic orbits has not been
defined. Nor is there a clear means to fill these holes in theryheoncerning vector fields
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F1G. 5.7. Saddle-node bifurcation of periodic orbits in the resoma{® a stable periodic orbit surrounds a
saddle periodic orbit. (ii) the two orbits coalesce by fongia tangency ta:, at which the forward evolution is
nonunique — a solution could follow the periodic orbit oddiinto the focus. (iii) all solutions slide towards a stable

focus.
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F1G. 5.8. Simulation continued from figure 5.6 whekey = —0.5 + iz with: () z = 1.572, (b) z = 1.57,
(c) z = 1.56. An orbit with stable and unstable segments coalesces véthlde periodic orbit (omitted from Figs.
5.4-5.6 for clarity), and vanish via catastrophic grazisliding.

which are discontinuous. However, by interpreting thisteshybrid sliding approximation

of a smooth system, we have recourse to well defined concaptsywe have shown that
these can be used consistently to derive a plausible mesrhdor experimental observations,
which we have verified above by simulation.

This is one possible mechanism by which a stable periodiit oduld be destroyed.
Another possibility is that it forms a homoclinic connectim a nodal point on the crossing
region ofX. This can be investigated in a similar manner, using theibydiding formalism
to understand how bifurcations in the nonsmooth systemedaged to well-known bifurca-
tions in smooth systems. As yet the argument for this scefispurely topological, and the
parameters at which it may occur have not been identified.

6. Concluding Remarks. The geometrical analysis in secti@® provides a means to
understand how bifurcations in a smooth dynamical modelteeio those in a nonsmooth
approximation of it. These results therefore allow a stuidy ®ystem’s simplified nonsmooth
model, forming a basis for simulations, numerical conttiarg and singular perturbation
anaylsis on the smooth system.

We observed in sectio®? that a bifurcation in a smooth system and its corresponding
hybrid system are separated in parameter space by a disddapeading o, the size of
the pinch zone. In , a nonsmooth analogue of the Hopf bifiondakes place whens, = o
provided thaty < 402. In figure?? we see that a nonsmooth analogue of the Hopf bifurcation
also takes place along the curvg = —o + /a for zx < o, and alonga € (0,40?%)
for xy = o (section??). The effect of the pinch zone is particularly clear in thegsilar
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perturbation problem in section 3.3, where a fixed pointdesiin the middle of the pinch
zone (corresponding tes, = 0). Then a Hopf bifurcation takes place at the parameter value

a = 1 in the smooth system, butat= /1 — %02 ~1-— %02. A more general result on the

size of perturbation caused by pinching would clearly bentériest, and will require a more
general theory of the classes of functions and maps thatitegdefine a pinch zone and its
mapping.

Sections??-?? show that critical points in nonsmooth vector fields can lasgified by
combining different forms of pinching with the singularityeory of smooth vector fields. It
suggests also that every bifurcation of a smooth vector fiakla direct counterpart in nons-
mooth systems, though the consequences are very diff@ieamtdynamics varies qualitatively
depending on whether a bifurcation takes place within thelpzone, and these differences
are described by discontinuity induced bifurcations: @&id orbits enter the pinch zone by
means of sliding bifurcations (secti@?), whose classification was completed in [12], fixed
points either cross the pinch zone or become sliding fixedtpdsectior??), and changes of
stability lead to, for instance, nosmooth Hopf bifurcaideection 3.3 an@?). The sliding
bifurcations give a simple means to identify such compleéxav@ur as canards (sectiGf).
Further study is required into the implications of invatiamanifolds entering a pinch zone,
and its effect on asymptotic stability and chaos.

During drafting this paper it has been noticed by M. Desractimat the canard phe-
nomenon in section 3.2 appeared some years hence in thedtgdpards, in the guise of
nonstandard analysis. The detailed role of tatastrophic sliding bifurcation at a two-fold
is the subject of ongoing study.

We have presented the Filippov convention as a geometppabaimation to dynamical
systems containing rapid variations of scale. The conve{@s&) may be used in other ways,
for example we can relax the condition (2.5), replace thbradi vector field with flux through
the pinch zone, or choose the sliding vector field fréift) stochastically. Although the
Filippov convention is shown to be one possible choice oftaydliding model, the wealth of
literature on Filippov systems (see, for example [4, 15pvsit to be nonetheless a powerful
analytical tool that we aim to sharpen with our more genearalysis.

We have not discussed discontinuities at ‘corners’ explidiut in principal a pinch zone
can be defined that has more complicated topology, such #irbe intersecting slabs in the
model of the superconducting resonator in section 5.

A smooth system, and a hybrid system derived from it (as itiGe@), are semi-
equivalent by definition. By this we mean that every orbit loé smooth system can be
mapped to an orbit of the hybrid system, though noninvsrtiBased on this, we propose
that a useful definition of structural stability of nonsmsystems might be the following.
Define two nonsmooth vector fields to be topologically edigint(or semi-equivalent) if they
can be derived, using equivalent pinch functions, from tmoath vector fields that are them-
selves topologically equivalent. Then we define a nonsmuwetitor field to be structurally
(semi-) stable if it is semi-equivalent to a structurallgtde smooth vector field. A rigorous
definition requires us to define an equivalence between ginattions, which remains to be
done. It also requires results on the stability of a vectdd fi@ired with a function, which
was partially pre-empted by Teixeira [24].
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