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Abstract

The propagation of light along singular directions in anisotropic media teems with

rich asymptotic phenomena that are poorly understood. We study the refraction and

diffraction of light beams through crystals exhibiting biaxial birefringence, optical activity,

and dichroism. The optical properties and length of the crystal are related to the beam’s

width, wavenumber, and alignment, by just three parameters defined by the effect of the

crystal on a paraxial plane wave.

Singular axes are crystal directions in which the refractive indices are degenerate.

In transparent biaxial crystals they are a pair of optic axes corresponding to conical

intersections of the propagating wave surface. This gives rise to the well understood

phenomenon of conical diffraction. Our interest here is in dichroic and optically active

crystals. Dichroism splits each optic axis into pairs or rings of singular axes, branch

points of the complex wave surface. Optical activity destroys the optic axis degeneracy

but creates a ring of wave surface inflection points. We study the unknown effect of

these degeneracy structures on the diffracted light field, predicting striking focusing and

interference phenomena. Focusing is understood by the coalescence of real geometric rays,

while geometric interference is included by endowing rays with phase to constitute complex

rays. Optical activity creates a rotationally symmetric cusped caustic surface threaded by

an axial focal line, which should be easy to observe experimentally. Dichroism washes out

focusing effects and the field is dominated by exponential gradients crossing anti-Stokes

surfaces.

A duality is predicted between dichroism and beam alignment for gaussian beams:

both are described by a single parameter controlling transition between conical and double

refraction. For transparent crystals we predict simple optical angular momentum effects

accompanied by a torque on the crystal. We also report new observations with a biaxial

crystal that test the established theory of conical diffraction.
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let every man here take his fancy;

only whatever light be, I suppose it consists of rays

differing from one another in contingent circumstances,

as bigness, form or vigour.”

Isaac Newton on the nature of light, Royal Society, 1675
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Chapter 1

Introduction

“This phenomenon was exceedingly striking.

It looked like a small ring of gold viewed upon a dark background;

and the sudden and almost magical change of the appearance,

from two luminous points to a perfect luminous ring,

contributed not a little to enhance the interest.”

Lloyd’s description of internal conical refraction (Lloyd 1837)

In 1832 William Rowan Hamilton predicted an observable singularity within Fresnel’s

theory of double refraction. In one stroke, the field of singular optics was born and a

sensation began that would take 173 years to run its course. Despite its prompt confirma-

tion by experiment and the beautiful mathematical simplicity of Hamilton’s theory, the

phenomenon was long hindered by controversy and misconception. Victorian mathematics

contained only the initial sparks of the asymptotic techniques which would be needed to

achieve a full understanding.

When light is incident along the optic axis of a biaxial crystal, the surface of a refracted

wave as described by Fresnel develops a conoidal cusp or diabolical point, and a single

ray refracts into an infinity of rays forming a hollow cone. This is the mathematical

phenomenon of conical refraction. Over the years further questions have been raised as

to how other natural properties of crystals, such as optical activity and absorption, would

alter the phenomenon, and attempts to understand these have also met with little success.

For such a simple and fundamental phenomenon, conical refraction has retained re-
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2 Introduction

markably strong ties to advances both in mathematical and experimental physics. The

theory has proven to be a playground in which to explore, test, and pose new questions

of the evolving field of asymptotics. Numerical simulations continue to test the power

of computational simulation. Experimentally, new technologies in lasers and synthetic

crystals have made it possible to begin viewing, with unprecedented accuracy, the refrac-

tion and diffraction phenomena predicted by theory. Throughout, the defining principle

of conical refraction appears to be that it exists in the middleground between physical

limits: the short wavelength limit of geometrical optics embraced by Hamilton, and the

long wavelength limit of diffraction optics embraced by Huygens. It is this straddling of

theories that places neither in a position to fully explain the phenomenon, and it is this

obstacle that has characterised the struggle to tame Hamilton’s diabolical legacy.

Conical refraction is of profound historical significance to mathematical physics as well

as singular optics. It appears to have been the earliest example in history of a mathemati-

cal construction making a prediction that preceded experimental observation, particularly

one so counterintuitive. (The nearest precedent came in 1816 when Augustin Fresnel

presented his diffraction theory to the French Academy of Sciences, prompting Poisson’s

objection that it would predict a bright spot at the centre of the shadow of a circular

screen, upon which Dominique Arago verified its existence experimentally. However, Gi-

acamo Maraldi and Joseph-Nicolas Delisle had pre-empted this discovery by a century).

Humphrey Lloyd’s 1833 experimental confirmation of conical refraction was the first hard

evidence favouring Fresnel’s wave theory of light over the corpuscular point of view, and

the origin of singular optics.

Hamilton’s original theory represents the first substantial use of phase space in physics,

and marks the first discovery of a conical (or diabolical) intersection. Such conical inter-

sections have arisen abundantly since, as fundamental degeneracies central to processes as

diverse as quantum mechanics, chemical dynamics, geophysics, and photo-biochemistry.

Commonly they manifest as degeneracies in potential energy surfaces, for example in the

Jahn-Teller effect (Herzberg & Longuet-Higgins 1963, Applegate et al. 2003), in the Born-

Oppenheimer adiabatic theory applied to nuclear motion (Mead & Truhlar 1979, Juanes-

Marcos et al. 2005, Clary 2005, Halász et al. 2007) where they provide a pathway for

radiationless decay between electronic states of atoms, in seismic shear waves propa-

gating through the Earth modelled as a slow varying anisotropic medium (Rümpker &

Thompson 1994, Rümpker & Kendall 2002), in determining DNA stability with respect
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to UV radiation (Schultz 2004), and in the photo-biochemical processes of vision (Hahn

& Stock 2001, Andruniow et al. 2004, Kukura & etc 2007), to barely scratch the surface.

Gradual advances in the theory of conical refraction have awaited the coming of age

of integral phase methods (Heading 1962), primarily their interpretation through physi-

cal asymptotics (Keller 1961, Berry & Mount 1972). Recently the theory has led to the

discovery of new and seemingly paradoxical mathematics, whereby asymptotic phenom-

ena are dominated by subdominant exponential contributions within diffraction integrals

(Berry 2004a). This effect is characteristic of the defiance of conical refraction towards

limiting behaviour in physics, and we will meet it in detail later.

The evolution of conical diffraction, that is conical refraction and the wave effects cen-

tral to it, is well suited to presentation in a historical setting. However, the techniques

brought in to tackle the problem over the years have varied greatly. Instead I will reformu-

late the theory. For example, our starting point will be to find Fresnel’s wave surface from

Maxwell’s equations, though these were unknown in Fresnel’s lifetime and barely within

Hamilton’s. Instead their insights were derived by pure geometrical reasoning. We will

show that such geometric induction still has a role to play throughout the optical theory.

The interplay of rays and waves underlying even the basic phenomenon will make its

own importance known. We will see the necessity of geometrical optics in discovering focal

effects and absorption gradients. Then we shall see how (to use a phrase coined by Kinber

in Kravtsov (1968)), ‘sewing the wave flesh on the classical bones’ leads eventually to a

full understanding of the physics behind conical diffraction. Thus we marry two disparate

limits: the basic ray theory of geometrical optics derived from Hamilton’s principle, and

the exact diffraction theory derived, appropriately, by a Hamiltonian formulation. The

simplification of paraxiality will be paramount. This reduces the number of parameters

that specify the incident beam and refracting crystal from twenty-three to just four. The

theory will include polarisation effects and we discuss these where important, though our

main concern will be the intensity structure revealed by unpolarised incident light beams.

A rigorous derivation of crystal optics based on Maxwell’s equations will be made in

chapter 2. This is rendered soluble by the powerful approximation of paraxiality, leading

to a Hamiltonian description of plane wave propagation in a crystal possessing biaxial

birefringence, optical activity, and anisotropic absorption. The physical asymptotics re-

quired to understand the paraxial theory are outlined and interpreted through geometrical

optics. In chapter 3 we consider a vital intuitive object, Fresnel’s wave surface, and its



4 Introduction

counterpart in our Hamiltonian theory. The main original contribution of these chapters

is the extension of their content to absorbing crystals, and the relating of the diffraction

theory to geometrical optics. Chapter 4 reveals the rich phenomena of conical diffraction

by applying the preceding theory, beginning with a reformulation of the theory of conical

diffraction in biaxial crystals including a few minor new results. Subsequently we discover

new phenomena that arise from optical activity and dichroism, uncover the optical angu-

lar momentum and torque associated with conical diffraction, and report an experimental

verification of the biaxial theory. In an appendix we extend the theory to crystals of

arbitrary geometry.

First let me present the foundations of conical diffraction, beginning with the scientific

setting in which the phenomenon was conceived. Then, although historically theory has

remained ahead of experiment, I shall review the latter first. The aim is to present the

basic phenomenon in a nontechnical way and to motivate the theory which is the main

subject of this thesis. This background serves as a literature review and will not be a

prerequisite for the foregoing chapters, since we shall reformulate the theory in a unified

and coherent manner.

1.1 Historical Context

Conical refraction enters at the peak of historical interest in the nature of light, amidst

a climax in the contest between undulatory and corpuscular theories, entwined in the

earliest roots of wave asymptotics and singular optics.

The modern theory of light has its origins in Christian Huygens’ 1677 wave theory, with

which he explained the observation of double refraction (bifurcation of rays) in crystals

such as Iceland spar (calcite) and quartz. But this failed to explain David Brewster’s

1813 discovery of biaxiality in the mineral topaz, whereby double refraction disappears

along two optic axis directions in the crystal. This profound observation was the first step

towards Hamilton’s discovery of conical diffraction. Huygens’ theory also did not explain

diffraction and did not account for polarisation, seeming to need two different luminous

media to produce double refraction. This failure favoured the corpuscular theories backed

by the intellectual might of Pierre-Simon Laplace and Isaac Newton. Newton posited

an explanation for polarisation in which rays have ‘sides’ (though his exact predisposal

towards the corpuscular view is summed up by his quotation in the matter fronting this
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thesis). Sensing defeat of the wave theory, double refraction was chosen as the subject of

a prize competition by the French Academy of Sciences in 1808. Etione-Louis Malus was

the victor following his discovery of polarisation by reflection, and his winning theory was

questionably interpreted as unpholding the corpuscular philosophy.

Augustin Fresnel reversed this triumph in 1816 by presenting his transverse wave the-

ory, developing on principles established by Thomas Young (transverse waves) and Huy-

gens (wavefront propagation). In a few short years he discovered the wave theories of

refraction and diffraction, and gained the Academy prize for Diffraction in 1818. Details

of this fascinating period in history are in Whittaker (1951).

Hamilton’s formulation of geometrical optics married the wave theory of Fresnel with

the ray method of Newton. Describing light rays as the normals to level surfaces of some

characteristic function, the theory was first published in 1828 (Hamilton 1828). In it he

also discussed light caustics, which will arise later in our predictions for chiral conical

diffraction. In his first supplement Hamilton extended his method to diffraction, but the

most refined and general form is given in the extensive 3rd supplement (Hamilton 1837),

where lies the theoretical prediction of conical refraction. This phenomenon, considered

“in the highest degree novel and remarkable” (Lloyd 1837), was a consequence of four

degeneracies in Fresnel’s wave surface.

In a biaxial medium Fresnel’s wave surface has two sheets associated with two (ordinary

and extraordinary) rays of double refraction. A pair of distorted ellipsoids, the surfaces

intersect at four points that lie along Brewster’s optic axes. This was known to Fresnel and

Airy, and had been studied extensively by James MacCullagh who unsuccessfully tried to

claim that the physical effect was implicit in his work “when optically interpreted” (Graves

1882). But the connection between the precise geometry and the physical phenomena

resulting were conceived of only by Hamilton (Graves 1882, O’Hara 1982). Along the

optic axes, the wave surfaces are conical in shape, their apexes touching to form a diabolo.

Rays normal to the surface would then be infinite in number, and form a narrow cone.

The experimental verification of this theoretical triumph is not historically viewed as

the final condemnation of the corpuscular theory in favour of the transverse wave theory.

That honour goes to more extensive experiments devised by Françios Arago (colours of

thin plates 1831) and George Airy (speed of light in air and water, carried out by Foucault

and Fizeau 1850), testing the constructions of Huygens and Fresnel to a high degree of

precision. The discovery did much to increase scientific confidence in the theory, but is
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typically regarded as verifying only a single feature of the wave surface. Stokes (1863), not

fully appreciating the subtlety of Hamilton’s work, stated that “the phenomenon is not

competent to decide between several theories leading to Fresnel’s construction as a near

approximation” because, to some approximation, the geometry exploited by Hamilton

“must be a property of the wave surface resulting from any reasonable theory”. But

according to Potter (1841), “many waverers were confirmed in their belief by so singular

a coincidence of theory and experiment”, and indeed Lloyd, who worked closely with

Hamilton and furnished those important first experimental discoveries, “had a harvest of

reputation from them, such as is seldom reaped in the field of science.”

Later in life Hamilton, in correspondence with Guthrie Tait, reformulated his theory

of conical refraction in terms of his quaternions (Wilkins 2005). Gibbs would not develop

the vector algebra descending from quaternions for another twenty years.

The asymptotic methods now used to understand conical diffraction can be traced back

to the study of Bessel’s equation by Carlini in 1817 mentioned by Watson (1944). Profound

contributions to the burgeoning field of integral asymptotics were made by Stokes, who in

his study of Bessel functions confessed in correspondence to his future wife that “I tried

till I almost made myself ill” until, at 3 o’clock in the morning, “I at last mastered it”

(Stokes 1907). Although the Victorian importance of asymptotics in rendering integrals

calculable is less significant in the computer age, it has become clear that only through

asymptotics can the wave and ray phenomena of conical diffraction be understood. A

detailed history of phase integral asymptotics can be found in Heading (1962).

Experiments in conical diffraction have been revolutionised by the advent of the laser,

and in return conical diffraction has provoked interest in focusing and transforming laser

beam modes. With technological advances in the manufacture of novel synthetic crystals,

conical diffraction may prove to be of further interest. Recent years have also seen an

explosion of experimentation in the optics of microspheres, minimal energy surfaces formed

in the phase transitions that produce aerosols, colloids, and photonic crystals (Fève et al.

1994, Kofler & Arnold 2006). In light of this we include in Appendix B the extension

of the theory to spherical crystals and arbitrarily curved interfaces. Discoveries reported

here of simple angular momentum effects within conical diffraction, and a resulting torque

on the crystal, have sparked interest in the phenomenon applied to optical trapping and

manipulation (optical “tweezers”), currently undergoing preliminary study by a group at

Trinity College, Dublin (Ireland).
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1.2 History of the Phenomenon

There are two varieties of conical refraction predicted by Hamilton: internal conical refrac-

tion occurs when a ray strikes a crystal along its optic axis direction, refracts into a hollow

cone inside the crystal, and refracts at the exit face into a hollow cylinder; external conical

refraction occurs when a ray of light passes through a crystal internally along its optic

axis, then refracts into a hollow cone at the exit face. The distinction is in the direction of

incident rays, and that the cone appears inside the crystal in the former, outside it in the

latter. We will review first the 173 years of experimental investigations into Hamilton’s

prediction, summarised in table 1.1.

reference crystal n1, n2, n3 Ao l/mm w/µm ρ0

Lloyd(1837) aragonite 1.533,1.686,1.691 0.96 12 ≤200 ≥1.0

Potter(1841) aragonite 1.533,1.686,1.691 0.96 12.7 12.7 16.7

Raman et al(1941) naphthalene 1.525,1.722,1.945 6.9 2 0.5 500

Schell et al(1978a) aragonite 1.530,1.680,1.695 1.0 9.5 21.8 7.8

Mikhail. et al(1979) sulfur not provided 3.5 30 17 56

Fève et al(1994) aragonite 1.764,1.773,1.864 0.92 2.56 53.0 1210

section 4.6(2006) MDT 2.02, 2.06, 2.11 1.0 25 7.1 60

Table 1.1: Historical summary of conical diffraction experiment parameters,

including principal refractive indices n1, n2, n3, cone angle A, crystal length l,

beam width w, and the image-to-object ratio ρ0 encompassing all six.

Lloyd had verified Hamilton’s prediction of conical refraction by December 1832, over-

coming poor quality specimens of macled (polycrystalline) arragonite with a “fine speci-

men” obtained from Dollond, London. Lloyd possessed a profound understanding of the

phenomenon, mentioning to Hamilton in a letter of December 18, 1832 (Graves 1882) that

one should expect his prediction to be affected by some perturbation due to diffraction. He

did not subsequently take this up, perhaps because he was unable to resolve such effects

in his experiments, the most detailed description of which is given in Lloyd (1837). Figure

1.1(a) taken from this paper shows why: the thickness of the bright ring is such that it

appears almost as a filled disc, because Hamilton’s cone, of which the ring is a section,

has barely reached a great enough radius to exceed the incident beam width. Nevertheless
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Figure 1.1: Lloyd’s discovery of conical refraction: the transition from conical (a) to double

(e) refraction, viewed through aragonite with a pinhole on the entrance face, illuminated by a

distant lamp, reproduced from Lloyd (1837).

the transition, from conical refraction when the Lloyd’s beam is aligned with his crystal’s

optic axis, to double refraction as the crystal is tilted off axis, can be clearly seen. The

bright arches would eventually become the circular spots of double refraction under fur-

ther misalignment. Lloyd describes this process in reverse in the quotation introducing

this chapter.

Lloyd discovered that the polarisation in the external cone is linear and rotates only

half a turn in a circuit of the axis (he then proved this theoretically, in analogy to the

same effect for the internal cone already predicted by Hamilton). Lloyd’s measured cone

angle (see table 1.1) differed from Hamilton’s prediction by only five minutes of arc. The

conical refraction pattern of a nonchiral transparent crystal can be characterised by just

one dimensionless parameter, the ratio ρ0 of the cone radius at the exit face to the incident

beam width. Lloyd’s experiment utilised various pinholes that he did not specify, but the

largest, used by ingeneous method to determine the cone angle, was 0.016 inch (to 1-500th

inch) in diameter, giving a measured ratio ρ0 = 0.98 compared to Hamilton’s theoretical

ρ0 = 1.02. This small ratio explains the poor resolution of figure 1.1(a), barely sufficient to

verify the existence of the singularity predicted by Hamilton, but little improvable using

the technology – oil lamps, sunlight, and handmade pinholes – of the time.

A wonderfully detailed account of an internal conical refraction experiment carried out

on aragonite was given by Potter (1841), achieving a much better cone radius to beam

width ratio of ρ0 = 16.7 and vastly extending Lloyd’s basic observations. A century before

the effects would be rediscovered and explained, Potter noticed the importance of the focal

image plane at a distance 1/n2 from the crystal exit face, where the most focused ring
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image of the light source appears. In moving away from this plane he observed that there

were two rings, not one. The outer spreads and fades with increasing distance from the

focal plane as if it were a diverging cone, the inner converges onto a spot as if it were a

converging cone with the bright spot in the farfield as its apex. Such a transformation is

depicted in figure 1.2. Potter also emphasised, long before it was appreciated, the impor-

tance of imaging lenses enabling the virtual image inside the crystal to be realised. His

invitation to controversy that his “results are certainly not in accordance with the theoret-

ical investigations of Sir William Hamilton” appear to have been overlooked throughout

the history of conical refraction, as have his observations, except for a reference in Melmore

(1942). Unfortunately his theoretical understanding, and his polemic condemnation of the

work of Hamilton and Lloyd due to it, was flawed. In 175 years of literature on conical

refraction this work stands out for its probing depth of inquiry, both in far exceeding any

other experiments to be conducted for another century, and in scrutinising the problems

in the theory, of prime importance at a time when doubts over Fresnel’s wave theory were

to linger for many years after.

incident 
beam

Hamilton’s 
ray

Figure 1.2: Conical diffraction of a pencil of rays along the optic axis of a biaxial crystal: the

range of ray directions give rise to a pair of ray cones (bold) which encompass the dark cone

(dashed) of Hamilton’s mathematical conical refraction, and their refraction at the exit face.

With Potter’s experiments overlooked, the first major revision of the phenomenon is

attributed to Poggendorff (1839), and a single statement in a one page article that “diese

beiden Bilder sich zu einem hellen Ringe vereinigen, der ein kohlschwarzes Scheibchen

einschliefst” (‘the two [double refraction] images merge into a bright ring that encompasses

a coal-black sliver’). This stimulated further experiments by Haidinger (1855), confirming

that the bright ring of conical refraction was in fact a pair of concentric bright rings with

a dark ring between. A simulation of this is shown in figure 1.3, including the polarisation

pattern observed by Lloyd.
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Figure 1.3: The conical refraction lunes: a pair of bright rings encompassing Poggendorff’s

“coal black sliver”. The polarisation pattern in the rings is shown, overlaying a typical theo-

retical intensity image obtained either: with a vertically polarised incident beam, or with an

unpolarised incident beam viewing the refracted rings through a vertical polariser.

According to Poggendorff the experiments seem to have obtained the reputation of

being hard to carry out, at least ‘on the continent’. Indeed little detailed experimentation

was reported as having been done, despite a few references to cursory examinations by

Voigt in theoretical papers around 1905 (1905a, 1906, 1905b, 1905c) and an article by

Raman (1921); Raman described an “arrangement for demonstrating conical refraction

usually found in laboratories”, and noted that the observed field beyond the crystal was

not yet well described, let alone understood.

This was corrected by Raman et al. (1941, 1942) using purpose-grown crystals of

naphthalene. With a cone angle more than ten times greater than aragonite, naphthalene

is much more suited to observing conical refraction. Although napthalene sublimes at

room temperature, images were obtained which remained unsurpassed throughout the

century. These showed the conical refraction pattern evolving from focused rings to a

farfield axial focal spot. They concluded incorrectly from their observations that there

is only a single ring in the focal plane because they could not resolve the dark ring, a

consequence of their extremely large ring-radius to beam-width ratio shown in table 1.1.

A detailed comparative study of theory and experiment was carried out by Schell &
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Bloembergen (1978a), who were hampered by reverting to aragonite, but aided by lasers

with a 30 micrometer beam width (see table 1.1). They obtained very good agreement

with theory, but limited their investigation to the exit face. They also provided the first,

and to our knowledge only, detailed images of the phenomenon in the presence of optical

activity (Schell & Bloembergen 1978b). They again did not go beyond the exit face but

photographed a polarisation pattern resembling a coffee swirl. This pattern occurs with a

linearly polarised incident beam and was first described by Voigt (1905b), but has evaded

any detailed understanding. Photographic images obtained from Schell & Bloembergen

(1978b) are shown in figure 1.4 for later comparison to our theory.

Limited nonchiral images were obtained more recently by Perkal’skis & Mikhailichenko

(1979) with sulfur. Far more striking is an experiment described by Fève et al. (1994)

with a spherical crystal of KTP, where curvature modifies the evolution of the pattern

but does not fundamentally alter the phenomenon. This approach offers a useful method

for studying conical diffraction and is deserving of the further discussion in appendix B.

Recent advances in the technologies of lasers and synthetic crystals also make possible a

more detailed study of the original phenomenon, given here in section 4.6.

(a) (b)

Figure 1.4: Photographs of chiral conical diffraction in α-iodic acid crystals with a gaussian

incident beam: (a) crystal length 1.4mm, beam width 60µm, and beam vertically polarised;

(b) crystal length 2.5mm, beam width 30µm, and beam horizontally polarised. Reproduced

from (Schell & Bloembergen (1978b) fig.5B and fig.6A) with permission of the publisher.
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We now turn to the theoretical development of conical diffraction. Hamilton’s most

extensive, refined, and characteristically loquacious account of his approach to geometrical

optics was published in his 3rd Supplement to an Essay on the Theory of Systems of Rays

(Hamilton 1837). In this he introduced his method of characteristics, showing that light

rays are paths of minimal optical path length. This is now known as Hamilton’s principle,

on which we base the geometric theory in section 2.7. When applying his method to double

refraction, Hamilton rederived Fresnel’s equations for the two-sheeted surface formed by

a wave front propagating from a point within a biaxial medium. By a detailed study of

the surface he discovered four singular points, lying along two crystal directions called the

optic axes, at which the two sheets of the wave surface intersect at a point. Importantly

he showed that, close to the intersection, each of the sheets is conical in shape, so that

the degeneracy is often referred to as a conical or diabolical intersection, or “conoidal

cusp” by Hamilton and his contemporaries. Rays of light are given, in accordance with

Hamilton’s principle and the constructions of Huygens and Fresnel, by the normals to the

wave surface, and so in general there are two such normals in any given direction. At the

conical point, however, there are an infinite number of normals forming the surface of a

cone. This is the phenomenon of internal conical refraction: a light ray incident upon a

biaxial crystal in the direction of an optic axis will be refracted into a cone of rays. This

cone is refracted into a hollow cylinder at the exit face, and should be observed as a bright

ring of light beyond the crystal.

Hamilton also found a circle of contact surrounding each conical point, where the

surface could be laid “as a plum can be laid down on a table so as to touch and rest on

the table in a whole circle of contact” (Graves 1882). This gives rise to external conical

refraction, whereby a ray in the crystal aligned with the optic axis refracts out of the crystal

into a diverging cone. We will be concerned mainly with internal conical refraction. The

two are subtly connected by geometry familiar to Hamilton, though he seemed to overlook

the physical relation. This would not be understood by Raman for another 110 years.

The history of conical refraction contains many such curious oversights: Fresnel was

aware of the optic axes but missed the conical point; MacCullagh studied the conical

intersection but missed its physical significance; Hamilton studied the conoidal cusps and

tangent circles and the physical phenomena they produced but missed their interrelation;

Hamilton and Lloyd neglected the differences between a physical light beam and an ideal

ray, though Hamilton gave it thought, expressing in a letter dated January 1st 1833
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(Graves 1882) that he had “predicted the facts of conical refraction, but I suspect that

the exact laws of it depend on things as yet unknown”.

Conical refraction is a rich haven of singularities. Not until 1905 did Waldemar Voigt

(1905a) realise an interesting paradox: the infinity of rays refracted in the cone is nulled

by the zero intensity of Hamilton’s ideal axial ray, so Hamilton’s cone should be dark, not

bright. This prompted him to call the phenomenon “sogenannte konische refraktion”, sig-

nifying that Hamilton’s ideal conical refraction does not exist. Instead, double refraction

in the neighbourhood of the conical point gives rise to pair of concentric cones, separated

by a dark cone where Hamilton’s bright one should be. This is in keeping with Potter’s

overlooked observations depicted in figure 1.2, and the corresponding wave surface con-

struction shown in figure 1.5. Voigt’s description is qualitative, though following Hamilton

he gave equations for ray directions, a practice that would be followed by many future

authors. Voigt noted that the intensity of light, propagated through a crystal in a given

direction, is proportional to the area element of the wave surface from which light rays

originate. Since the area of the conical point is zero, the intensity of light coming from it

is zero. But any beam of light contains a range of wavevector directions, a statement of

practicality in Voigt’s time that would later become embodied in the Uncertainty Principle.

Voigt was also the first to extensively discuss conical refraction in optically active

crystals, noting firstly that optical activity removed the conical point degeneracy (Voigt

1905c) and therefore conical refraction was destroyed. Elaborating on this later, Voigt

(1905b) noted that the exact geometry of the surface still led to a brightening in the

optical axis direction. In a detailed investigation of the wave surface he showed that the

optic
axis

Figure 1.5: The diabolical point: the mathematical picture corresponding to figure 1.2, show-

ing the diabolical intersection of the biaxial wave surface, Hamilton’s cone of normals (dashed),

and the cones of rays refracted from around the conical point described by Voigt (bold).
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normals formed a caustic, though neither he nor future authors seem to have concluded the

striking physical phenomenon that would result. He also discussed the effect of pleochroism

(Voigt 1902, Voigt 1907), identifying two further directions in the neighbourhood of each

optic axis, the singular axes, where light would be completely circularly polarised. Later

Pancharatnam (1955a) considered absorption in the vicinity of the optic axis, superposing

the effects of birefringence and dichroism, though not in the conical regime.

The connection between internal and external conical refraction was first correctly

appreciated by Raman et al. (1941, 1942). They described the importance of focusing and

the changing light pattern away from the crystal. The most focused image of the conical

refraction pattern appears in the focal image plane inside the crystal. They correctly

described that by moving away from the focal plane one explores directions on the wave

surface (figure 1.5) away from the conical point. As the two sheets of the wave surface

separate, the rings – one from each sheet – separate and diffuse. The extraordinary sheet

has a turnover where a tangent plane touches the sheet in Hamilton’s contact circle,

and where ray normals are focused along the axis. As this direction is approached, the

inner ring focuses into an axial spot and dominates the intensity. This level of geometric

description is very powerful in describing the phenomenon of conical diffraction.

A quantitative understanding requires many levels of geometrical optics and diffraction

theory, the development of which has proved troublesome over the last 60 years. Attempts

to quantify the theory continued with calculations of the Poynting vectors of wave bundles

in the crystal (Portigal & Burstein 1969, Portigal & Burstein 1972), an approach which

had been successful in the study of acoustic conical refraction (McSkimin & Bond 1966).

These, and other attempts expressing the electric field as an angular spectrum of plane

waves (Lalor 1972), with improvement and a stationary phase approximation by Schell &

Bloembergen (1978a), Uhlmann (1982), and for nonlinear crystals Shih & Bloembergen

(1969), contained analytical formulae too complicated to yield a much greater understand-

ing of the phenomenon than had already been achieved. But these marked a resurgence in

interest that was rewarded by the triumphant diffraction theory of Belskii & Khapalyuk

(1978), where simple circularly symmetric diffraction integrals were first written down.

Though the underlying theory has evolved and improved, the resulting integrals for biax-

ial crystals remain the same. Their success showed that a paraxial diffraction theory could

capture the long familiar polarisation structure. They gave the first simple expressions for

conical diffraction of light from an illuminated pinhole for thin slabs in terms of Legendre
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functions. At the time a lack of experimental data prevented verification of their theory.

Little progress was subsequently made though interest remained, largely in using con-

ical refraction for transforming the growing array of beam modes made available by laser

technology (Belafhal 2000, Stepanov 2002), as well as for laser beam focusing (Warnick

& Arnold 1997), and exploiting the dispersive stability of conically diffracted beams

(Brodskii et al. 1969, Brodskii et al. 1972, McGloin & Dholakia 2005). Recent interest has

also centered around inhomogeneous media, where diabolicity is a localised phenomenon

(Naida 1979). Conical refraction was also used by De Smet (1993) to demonstrate the

efficacy of the 4 × 4 matrix approach to optics.

The next major breakthrough came in the form of numerical computations by Warnick

& Arnold (1997). Seemingly unaware of the Belskii-Khapalyuk theory, they represented

the electric field by a dynamical Green’s function (Moskvin et al. 1993), and were able

to uncover structure beyond that seen by Schell & Bloembergen (1978a). They simulated

the spread of the bright rings away from the crystal to discover secondary oscillations on

the inner ring. They also drew attention to the fact that oscillations had been seen in

the chiral images of Schell & Bloembergen (1978b), the theory for which was unknown,

remarking on whether the two interference phenomena were related (we will see they bear

no relation). Belsky & Stepanov (1999) extended the theory to gaussian beams, and pre-

sented numerical calculations in the thin slab regime similar to Lloyd’s experiments where

the rings are barely resolvable. They did not consider thick enough slabs to correspond

to experiments with good resolution, a distinction embodied in the cardinal ring-to-beam

ratio ρ0. Therefore they were unable to see the well developed conical diffraction rings or

Warnick and Arnold’s secondary oscillations.

The importance of diffraction in the phenomenon was emphasised by Dreger (1999),

though with a theory too complicated to see the effects. Belsky & Stepanov (2002) ex-

tended the Belskii-Khapalyuk diffraction theory to optically active crystals. They verified

the polarisation pattern observed by Schell & Bloembergen (1978b) and described as long

ago as Voigt (1905b), though without a good qualitative understanding of the origin of

the structure.

Berry & Dennis (2003) studied the polarisation singularities associated with conical

and singular points in direction space within the crystal. They described three key types

of degeneracy: (i) in a nonchiral transparent crystal there are the optic axes, marking

conical points of the wave surface, which in the presence of dichroism split into a pair of
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singular axes, branch points of the complexified wave surface which approach as chirality

is added, eventually annihilating when optical activity dominates; (ii) there are C points

in direction space where plane wave eigenstates are circularly polarised, on the optic or

singular axes in absence of optical activity, which obey a ‘haunting theorem’ as optical

activity is introduced, remaining fixed in the location of the departed singular axes; and

(iii) there are L lines where polarisation is linear, separating space into regions of right

and left handed circular polarisation.

The stage for this thesis was set by Berry (2004b), with a Hamiltonian reformulation of

the Belskii-Kapalyuk theory. Through an asymptotic study of the diffraction integrals for

general incident beams, the first detailed explanation of the conical diffraction phenomenon

was achieved, both qualitative and quantitative. The current state of affairs was thus raised

to a sophisticated level of understanding, and all aspects of the biaxial phenomenon thus

far observed were explained. It was in this paper that Berry introduced the ratio ρ0 that

characterises the phenomenon. This thesis complements and extends that work.

We will take an approach contrary to historical development, giving first the exact

Hamiltonian wave formalism, followed by its interpretation in the geometrical optics limit

as a simplest approximation. Then we ‘sew the wave flesh on the classical bones’. This

is the methodology of asymptotics since Keller (1961): interpreting the exact solution by

building up from its dominant asymptotic behaviour and then adding on diffraction piece

by piece, thus extracting the full physical phenomenon from an intractable wave theory.

In this manner we extend the theory to study conical diffraction in optically active and

anisotropically absorbing media. As it stood prior to the present thesis, little was known

about how chirality would effect the phenomenon of conical diffraction, and nothing was

known regarding dichroism.



Chapter 2

Paraxial Optics and Asymptotics

“The design of physical science is ..

to learn the language and interpret the oracles of the Universe.”

William Rowan Hamilton, Lecture on Astronomy, 1831

In this chapter we review the theory of the optical properties of nonmagnetic crystals

(Born & Wolf 1959, Landau et al. 1984). Derived from Maxwell’s equations for anisotropic

media in section 2.1, we consider the effects of the refraction, absorption, and optical (phase

and polarisation) rotation of light. For collimated beams of light, the simplifying principle

of paraxiality in section 2.2 is essential to understanding optical phenomena. In section

2.3 we will develop a plane wave Hamiltonian theory for light beams propagating close to

the optic axis of a crystal (Berry 2004b). The central result is a diffraction integral for the

image light field known to Belskii & Khapalyuk (1978) for biaxial crystals and extended by

Belsky & Stepanov (2002) to chiral crystals, here generalised to include dichroism, analysis

of which requires complex transformations derived in section 2.4. In sections 2.5 and 2.6 we

discuss the general asymptotic theory used to understand the physics behind the integral,

not included in previous publication of the theory, and in section 2.7 we relate the wave

theory in the asymptotic limit to Hamilton’s geometrical optics. Finally in section 2.8 we

will remark on the physical, but unobservable, light field inside the crystal, filling the final

chasm between conical diffraction theories pre- and post- Belskii & Khapalyuk.

17
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2.1 Optics of Anisotropic Crystals

The optical properties of a nonmagnetic crystal are specified by constitutive relations

between the complex-valued electric (E) and electric displacement (D) vector fields, and

between the complex-valued magnetic (H) and magnetic induction (B) vector fields, in

terms of a dielectric tensor (N ) which specifies the crystal:

E =
1

ǫ0
N .D, B = µ0H. (2.1.1)

We will be concerned with the three simplest optical properties a crystal may possess:

birefringence, chirality, and dichroism; these are defined by decomposing the dielectric

tensor into real and imaginary N = ReN + iImN , and symmetric and antisymmetric

N = N sym + N ant, parts.

The real symmetric part of N describes birefringence of the crystal,

ReNij = ReNji =
1

n2
ij

, (2.1.2)

where indices run from one to three. The three eigenvalues, which we label 1/n2
j , define

three principal refractive indices

n1 < n2 < n3, (2.1.3)

and the matrix is diagonalised by choosing coordinate directions along the principal axes,

which we label the {1, 2, 3} axes. The parameters

α ≡ 1

n2
1

− 1

n2
2

, β ≡ 1

n2
2

− 1

n2
3

, (2.1.4)

are small for weak anisotropy, and nonzero for crystals of orthorhombic or lower symmetry,

where ReN sym has three distinct eigenvalues. We will not be interested in uniaxial crystals,

for which α or β vanishes, or isotropic crystals, for which both vanish.

The hermitian antisymmetric part of N gives rise to optical activity in the crystal,

characterised by an optical activity vector, g =
{

g1, g2, g3
}

, as

N .D = N sym.D + ig × D (2.1.5)

=
(

N sym + N ant
)

.D, (2.1.6)

where

Nij = −Nji = −iǫijkg
k, (2.1.7)



2.1 Optics of Anisotropic Crystals 19

summing over the index k. The Levi-Civita symbol ǫijk is zero for repeated indices, +1

if the indices are a cyclic permutation of {123}, and −1 otherwise. The components of g

can be written in terms of a rank 2 optical activity tensor G as

g = G.v, (2.1.8)

where v may be either an external magnetic field, causing optical rotation by the Faraday

effect (Landau et al. 1984), or the wavevector itself, implying chirality of the crystal

structure. A crystal is chiral or enantiomorphous when it may exist in either of two mirror

symmetric forms, this chirality of the lattice or molecular structure then causing optical

rotation. This form of natural optical activity may actually arise in crystals which are

nonchiral but are non-centrosymmetrical. For a detailed study of these crystal classes see

Nye (1985). In either case the optical effect is equivalent, and we shall refer to it simply

as chirality. It is common (Landau et al. 1984) to relate E to D in terms of the inverse

tensor to N , considering the dual relation to (2.1.5) for E, in which case it is typical to

refer to gyrotropy instead of optical activity.

A nonhermitian part of N implies absorption. This is in general anisotropic, described

by absorption indices mij satisfying

ImNij = ImNji =
1

m2
ij

. (2.1.9)

These are responsible for linear dichroism, for which it will be useful to define anisotropy

parameters

α̃ ≡ 1

m2
11

− 1

m2
22

, β̃ ≡ 1

m2
22

− 1

m2
33

. (2.1.10)

We will consider weak anisotropic absorption, for which these anisotropy parameters and

the off-diagonal dielectric matrix elements 1/m2
ij are small. For biaxial crystals of or-

thorhombic symmetry, the principal axes of the birefringent ReN sym and dichroic ImN sym

parts coincide, but we will not limit ourselves to this class. We require only that the

eigenvalues of ReN sym and ImN sym are distinct, which is true in general. We will assume

that N has no real antisymmetric part, which would constitute circular dichroism, and

introduces no fundamental degeneracy not already contained within the more general ef-

fects of linear dichroism and chirality; I shall comment on this where relevant. The crystal

classes are summarised in table 2.1.
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symmetry class axiality indicatrix

cubic isotropic sphere principal axes of

trigonal/tetragonal/hexagonal uniaxial spheroid birefringence and absorption

orthorhombic tensors coincide

monoclinic biaxial ellipsoid principal axes of

triclinic ReN sym and ImN sym distinct

Table 2.1: Symmetries of non-centrosymmetric crystals, summarising some key optical prop-

erties. The indicatrix is also known as the index ellipsoid.

For plane waves with frequency σ and wavevector k = kk̂ (i.e. a wave of the form

ei(k·r−σt)), Maxwell’s source-free curl equations take the form

σB = k× E, σD = H × k, (2.1.11)

which, using the constitutive relations (2.1.1) in a crystal direction with refractive index

n = σ/ck, can be written as

1

n2
D = −k̂× k̂× (N .D). (2.1.12)

This expresses D as the part of E transverse to the wavevector, and therefore simplifies

in rotated coordinates where the wavevector lies along some 3′-axis. Then D3′ = 0 so

henceforth D is a 2-vector, and (2.1.12) becomes the eigenequation

1

n2
D = M.D, (2.1.13)

The 2 × 2 operator matrix M can be expressed generally in terms of complex numbers

fj = Fj + iGj as

M =





f0 + f1 f2 − if3

f2 + if3 f0 − f1





= (F0I + F · Σ) + i (G0I + G · Σ) , (2.1.14)

where I is the 2 × 2 identity matrix, and the matrix 3-vector Σ consists of the Pauli

matrices

Σ = {σ3, σ1, σ2} =











1 0

0 −1



 ,





0 1

1 0



 ,





0 −i

i 0











. (2.1.15)
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This naturally separates out the different degeneracy structures of M, contained in the

3-vectors

F = {F1, F2, F3} and G = {G1, G2, G3}, (2.1.16)

which respectively describe the hermitian and nonhermitian parts of M. The exact ex-

pression for the coefficients is obtained by lengthy but straightforward algebra, and though

we will not need to make use of the full result we give it here for completeness. We will

express it in terms of the wavevector k = k
{

k̂1, k̂2, k̂3

}

in the principal axis frame, but it

can also be written simply in polar coordinates, or in an elegant stereographic representa-

tion given by Berry & Dennis (2003). More important is the generic degeneracy structure

of M (places where its two eigenvalues are equal), which is well understood (Berry 2004c)

for general F and G.

A plane wave incident upon the crystal refracts into a pair of waves with refractive

indices n±, which form the eigenvalues of M in (2.1.14),

1

n2
±

= f0 ± 〈f〉 (2.1.17)

= F0 + iG0 ±
√

F · F − G · G + 2iF ·G

where, here and hereafter, we define the length of any vector by

f ≡ 〈f〉 ≡
√

f · f . (2.1.18)

(Note that we distinguish the length f = 〈f〉 which may be complex, from the magnitude

|f | =
√

f∗ · f which is real, ∗ denoting the complex conjugate.)

The real scalar F0 and 2-vector {F1, F2} specify birefringence,

F0 = −1
2β
(

1 − k̂2
3

)

+ 1
2α

k̂2
3 k̂

2
1 + k̂2

2

1 − k̂2
3

+
1

n2
2

F1 = −1
2β
(

1 − k̂2
3

)

+ 1
2α

k̂2
3 k̂

2
1 − k̂2

2

1 − k̂2
3

F2 = −α
k̂1k̂2k̂3

1 − k̂2
3

, (2.1.19)

in terms of the anisotropy parameters defined in (2.1.4). This real symmetric part of M
has a degeneracy of codimension two, a point at the origin of the parameter space {F1, F2},
which has only two real wavevector solutions,

k2 = 0, |k1/k3| =
√

α/β ≡ tan θOA. (2.1.20)
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These are the optic axes, lying in the plane of the principal 1-3 axes making an angle θOA

with the 3-axis. We will refer to these directions as the optic axes even in the general case

(F1 6= 0 6= F2) when they no longer constitute a degeneracy.

The optic axis degeneracy corresponds to a conical point of the eigenvalue surface

where its two sheets, n±, are connected by a conical intersection. The eigenvalue surface

is directly related to the wave surface of Fresnel to be described in chapter 3 and shown

in Figure 2.1, generated by a wavevector in a transparent nonchiral crystal whose length

k0n is given by the eigenvalues (2.1.17) of M.

n2

n1

n1

n3
n3

n2

k1
c
σ

k3
c
σ

A

O

k2
c
σ

k

ky

kz

kx

Figure 2.1: Fresnel’s (biaxial) wave surface, and coordinates rotated about the 2-direction so

that z lies along the optic axis OA. Wavevectors k are considered paraxially, that is with small

displacement {kx, ky} from the optic axis. The full surface is obtained by reflection.

In the presence of chirality M is hermitian but complex, containing

F3 = g1k̂1 + g2k̂2 + g3k̂3, (2.1.21)

in terms of the optical activity vector of (2.1.5). The degeneracy is then of codimension

three, a point at the origin of the parameter space {F1, F2, F3}, which will not be visited

by the eigenvalue/wave surface for F3 6= 0.

In the presence of absorption M is nonhermitian, and G can be considered as a vector

in the parameter space of F. The degeneracies are of codimension two, forming a circular

ring of radius G in the plane perpendicular to Ĝ, corresponding to a ring of branch points
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in the eigenvalue surface. The scalar G0 specifies a uniform absorption coefficient which

will not be of interest to us, and linear dichroism involves only the 2-vector {G1, G2}.
These are given in terms of the coefficients (2.1.9) & (2.1.10) by

G0 = −1
2 β̃
(

1 − k̂2
3

)

+ 1
2 α̃

k̂2
3 k̂

2
1 + k̂2

2

1 − k̂2
3

−
(

k̂2k̂3

m2
23

+
k̂1k̂3

m2
13

+
k̂1k̂2

m2
12

)

− 1

m2
22

G1 = −1
2 β̃
(

1 − k̂2
3

)

+ 1
2 α̃

k̂2
3 k̂

2
1 − k̂2

2

1 − k̂2
3

−
(

k̂2k̂3

m2
23

+
k̂1k̂3

m2
13

− k̂1k̂2

m2
12

1 + k̂2
3

1 − k̂2
3

)

G2 = −α̃
k̂1k̂2k̂3

1 − k̂2
3

+

(

k̂3

m2
12

k̂2
1 − k̂2

2

1 − k̂2
3

+
k̂2

m2
13

− k̂1

m2
23

)

. (2.1.22)

The degeneracy ring intersects the nonchiral (F3 = 0) parameter plane {F1, F2} at a pair

of branch points. Each optic axis is thus split into a pair of directions called singular axes

(Voigt 1902). Chirality is added by increasing F3, whereby the two branch points (singular

axes) approach with a separation
√

G2 − F 2
3 , and annihilate at F3 = G, so there is no

degeneracy in the chirality dominated regime F3 > G.

The only remaining part of M is a real antisymmetric (and therefore nonhermitian)

term which specifies circular dichroism. If {G1, G2} = 0 then the degeneracy ring lies in the

{F1, F2} parameter plane, and the optic axis spreads into a ring of singular axis directions,

corresponding to a ring of branch points in the wave surface where its Riemann surfaces

meet. This case leads to no fundamental aspects of the theory not already included in

linear dichroism and optical activity, and can be incorporated into the theory by making

the chirality parameter F3 complex.

The behaviour of these degeneracies will be more readily apparent when studied on

the paraxial wave surface in chapter 3.

2.2 Principles of Paraxial Light Propagation

Suppose we rotate the principal axes about the 2-direction to axes {x, y, z}, so that z lies

along an optic axis (see figure 2.1). Let the wavevector in the new cooordinates be

k = {kx, ky , kz} ≡ {kk⊥, kz} . (2.2.1)

Supposing that this lies close to an optic axis we expand on the k⊥ unit circle in terms of

the small (k⊥ ≪ 1) transverse part k⊥ =
{

k̂x, k̂y

}

, whereby

k1 ≈ k
(

sin θOA + k̂x cos θOA

)

, k2 ≈ kk̂y, k3 ≈ k
(

cos θOA − k̂x sin θOA

)

. (2.2.2)
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The crystal wavenumber k combines the vacuum wavenumber k0 and refractive index n,

k = nk0. (2.2.3)

Expanding (2.1.14) to leading order in the transverse wavevector k⊥, including the lowest

order perturbations introduced by the crystal parameters, gives the paraxial refraction

matrix

1
2M ≈ 1

n2
2

[(

1
2 − Ak̂x

)

I − {A (k⊥ − i∆) ,Γ} · Σ
]

, (2.2.4)

and, from its eigenvalues 1/n2, the refractive indices

n± ≈ n2

[

1 + Ak̂x ±
√

A2 (k⊥ − i∆)2 + Γ2

]

. (2.2.5)

This is the parabolic approximation. Formally, the multi-variable expansion is in terms

of small kx/k and ky/k, and in terms of small (weak) crystal parameters α, β, α̃, β̃,

m−1
ij , Gij, by means of convex hull construction in index space (a method due to Newton,

where each term in a Taylor expansion inhabits a point whose coordinates are its powers

in each expansion parameter, forming a polyhedron or “convex hull”, and all coefficients

not at a vertex of the polyhedron can be discarded to leading order), whereby n2
2F0 ≈

1 − 2Ak̂x, n2
2F1 ≈ 2A

(

i∆x − k̂x

)

, n2
2F2 ≈ 2A

(

i∆y − k̂y

)

, introducing parameters A, Γ,

∆, which naturally split the refraction matrix M into real symmetric (biaxial), hermitian

antisymmetric (chiral), and nonhermitian (dichroic) parts.

Paraxiality thus reduces threefold the twelve parameters (3 [ReN sym] + 3
[

ImN ant
]

+

6 [ImN sym]) specifying the crystal as follows. Biaxiality is specified by the geometric mean

of the refractive indices differences

A ≡ n2
2

2

√

αβ, (2.2.6)

which we will see is the half-angle of Hamilton’s conical refraction cone, obtained along the

optic axis direction k⊥ = 0 where (2.2.5) is degenerate, n+ = n−. Dichroism is specified

by the 2-vector

∆ =
n2

2

2A

{√
β/m2

12 −
√

α/m2
23√

α + β
,
ᾱβ − αβ̄ − 2

√
αβ/m2

31

2 (α + β)

}

, (2.2.7)

splitting the degeneracies of n± into the singular axes k⊥ = ∆, obtained from the optic

axes by a deflection ±∆, in pairs with angular splitting 2∆. (This includes off-diagonal
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absorption indices from the dielectric matrix omitted by Berry & Jeffrey (2006b), general-

ising for the angular deflection of the singular axes which occurs for crystals of lower than

orthorhombic symmetry.) Optical activity is specified by an optical rotary power

Γ =
n2

2

2

G11α + G33β + 2G31
√

αβ

α + β
(2.2.8)

=
n2

2

2
[(G33 + G11) + (G33 − G11) cos 2θOA + G13 sin 2θOA] (2.2.9)

for a chiral crystal, and

Γ =
n2

2

2

(G11α + G13β)H1 + (G12α + G23β) H2 + (G13α + G33β)H3

α + β
(2.2.10)

for the Faraday effect with an external magnetic field H = {H1,H2,H3}. The singular

axis degeneracies of n± then lie at k⊥ = ±e3 × ∆
√

1 − (Γ/A∆)2, existing only in the

dichroism dominated regime |A∆| ≥ |Γ|, with e3 lying along the propagation direction.

Each of these parameters is small. Typical values of the angle A are 0.93◦ for aragonite,

1.25◦ for the mono-double-tungstate KYb (WO4)2, and, exhibiting very strong conical

refraction, 7.0◦ for naphthalene. Typical values of the optical rotary power Γ in radians

per centimetre are 3.39π for quartz (Kaye & Laby 1973), 12.9π for α-iodic acid (Schell &

Bloembergen 1978b), both of which are naturally optically active, and 1.38π for terbium

gallium garnate in a 1Tesla magnetic field (Kaye & Laby 1973). There seem to be no

tabulated values of anisotropic absorption indices. However, to neglect k⊥ dependent (1st

order correction) absorption terms as being smaller than ∆, we require ∆ << A.

Finally, we can now write the two wave eigenstates that propagate in the crystal as

D ∝ eik·r = eik(k⊥·r⊥+k̂zz)

≈ e
i
“

kk⊥·r⊥+zk0

h

n±(k⊥)−1
2n2k2

⊥

i”

. (2.2.11)

A geometric interpretation of the crystal parameters is thus evident from the phase in

(2.2.11) with (2.2.5). Consider first the square root in (2.2.5) with ∆ = Γ = 0. The

refractive index takes the same value everywhere on a circle swept out by a unit wavevector

transverse to the optic axis, k = {k⊥, 0}, the locus of which sweeps out a cone with half-

angle A as z increases through the crystal. The shift +Ak̂x in (2.2.5) is a skew of this cone

so that the optic axis lies in its surface as a generator. This is the phenomenon of conical

refraction as it applies to plane waves. The optic axis direction k⊥ = 0 is degenerate in

the sense that the two refractive indices and eigenpolarisations (eigenvectors of M) are

equal there.



26 Paraxial Optics and Asymptotics

The angle A is also the phase difference introduced by birefringence between two

eigenwaves after propagating a distance z through the crystal. Γ is the rate at which

chirality changes the phase of an eigenwave propagating along the optic axis, and ∆ is

the rate of absorption of an eigenwave propagating along the optic axis. We will describe

these effects in a more general and powerful way to motivate each section in chapter 4, but

the derivation above is required to relate rigorously the phenomena of conical diffraction

to the dielectric tensor.

2.3 Hamiltonian Formulation

The refraction matrix (2.2.4) and indices (2.2.5) determine the paraxial propagation of a

plane wave (2.2.11) as a function of the transverse part of the wavevector. The paraxial

theory takes its simplest form expressed in dimensionless variables, scaling out the width

w and vacuum wavenumber k0 of a monochromatic incident beam, and the length l of the

crystal.

Let us define a transverse position vector measured in units of the beam width,

ρ ≡ {x + Az, y} /w. (2.3.1)

The shift of origin Azex takes account of the skew of the refracted cone introduced by

the Ak̂x term in (2.2.4). Figure 2.2 illustrates the relation between the beam, the crystal,

incident beam 
source/focus

k0w
2ζ

ρ0w

ρw

z

l/n2focal image plane

2A

Figure 2.2: The parameters of paraxial conical refraction, showing the dimensionless coordi-

nates: ζ, propagation distance measured in units of the diffraction length k0w
2 from the focal

image plane; and ρ, radial position measured in units of the beam width w from the centre

of the conical refraction cylinder, whose radius in these units is ρ0. The skew of the refracted

cone is shown: the optic axis is a generator of the cone.
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and the dimensionless coordinates. The corresponding transverse wavevector, measured

in units of 1/w, is defined by

κ ≡ wkk⊥. (2.3.2)

We now wish to consider a time-independent light beam directed onto a crystal along

its optic axis, describing the beam by its electric displacement field D = Dd; we will

shortly express the spatial dependence of this on dimensionless cylindrical coordinates.

This vector comprises the square root of the light intensity D = |D|, and a polarisation

vector d which specifies the orientation of the complex field. Distance from the beam

source is measured by the coordinate z, and the incident beam will be specified in the

plane z = 0 by a vector D0 (ρ) = D0 (ρ)d0.

A time-independent incident beam with polarisation d0 can then be written as a su-

perposition of plane waves with transverse fourier profile a (κ),

D0 (ρ) =
1

2π

∫ ∫

dκeiκ·ρa (κ)d0. (2.3.3)

We will develop the theory for a general beam as far as possible, but in special cases will

consider gaussian beams

D0 (ρ) = e−ρ2/2, a (κ) = e−κ2/2 (2.3.4)

common in lasers, and the beam of light diffracted from a coherently illuminated pinhole

D0 (ρ) = T [1 − ρ] , a (κ) = J1 (κ) /κ, (2.3.5)

where J1 is a Bessel function, and henceforth T [·] is the unit-step function

T [x] ≡







0, x < 0

1, x ≥ 0







. (2.3.6)

For a circularly symmetric beam directed along the optic axis the integral simplifies to

D0 (ρ) = D0 (ρ)d0 =

∞
∫

0

dκκJ0 (ρκ) a (κ)d0 (2.3.7)

in terms of the Bessel function J0. In some cases we may make use of the fourier transform

a (κ) =

∞
∫

0

dρρD0 (ρ) J0 (κρ) . (2.3.8)
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We will also consider beams with a small misalignment angle κ0/k0w off the optic axis in

a direction κ̂0, for which the transverse profile is simply a (κ − κ0).

We specify the crystal in terms of scaled optical parameters:

ρ0 ≡ Al

w
, δ ≡ kw∆, γ ≡ kw

Γ

A
, (2.3.9)

where ρ0 is the radius of the conical refraction cone at the exit face of the crystal (figure

2.2), 2δ is the separation of the singular axes in transverse direction space, and ρ0γ is the

total optical rotation. We group these into a 3-vector specifying a transparent crystal,

V (κ) ≡ ρ0 {κ, γ} , (2.3.10)

and incorporate dichroism by means of the complexifying transformation

V (κ) → V (κ − iδ) . (2.3.11)

The plane waves (2.2.11) are evolving eigenstates of the Hamiltonian

H (κ) =







1
2n2κ

2I, outside crystal

1
2κ2I + kwA {κ − iδ, γ} ·Σ, inside crystal







. (2.3.12)

That is, the electric displacement vector D describing plane waves satisfies the equation

ikw2∂D/∂z = HD. Evolution ‘time’ z is the propagation distance measured from the

beam source (this may be the beam focus and need not lie outside the crystal). The total

evolution through the crystal can be described by a 2×2 matrix F , found by integrating

the Hamiltonian along the optical path, and defined as

F (κ,ρ, ζ) = −κ · ρ I +
1

kw2

z
∫

0

dzH (κ) (2.3.13)

=
(

−κ · ρ + 1
2ζκ2

)

I + V (κ − iδ) ·Σ. (2.3.14)

The dimensionless propagation distance,

ζ ≡
z − l

(

1 − 1
n2

)

k0w2
, (2.3.15)

is measured from the most focused image of the source, in the focal image plane at a

distance of l (1 − 1/n2) from the exit face, in units of the diffraction length k0w
2 (called

the Rayleigh length for a gaussian beam). The refracted beam is then the superposition of
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plane waves a (κ)d0, whose diffraction through the crystal is described by the evolution

operator e−iF , embodied in a propagator integral

D (ρ, ζ) =
1

2π

∫ ∫

dκe−iF(κ,ρ,ζ)a (κ)d0. (2.3.16)

Evaluating the matrix exponential gives

e−iF(κ,ρ,ζ) = e
i
“

κ·ρ−1
2 ζκ2

” [

I cos V (κ − iδ)−i
V (κ − iδ) · Σ

V (κ − iδ)
sin V (κ − iδ)

]

, (2.3.17)

or more concisely,

e−iF(κ,ρ,ζ) = e−iΦ+(κ,ρ,ζ)K+ (κ) + e−iΦ−(κ,ρ,ζ)K− (κ) , (2.3.18)

where the exponents

Φ± (κ,ρ, ζ) = −κ · ρ + 1
2ζκ2 ± V (κ − iδ) (2.3.19)

are both the eigenvalues of F and the optical path lengths of the refracted waves. In terms

of 2 × 2 matrices

K± (κ) ≡ 1
2

[

I ± V (κ − iδ) ·Σ
V (κ − iδ)

]

, (2.3.20)

we can simply write

F = Φ+K+ + Φ−K−. (2.3.21)

In the absence of dichroism the traceless evolution matrix F is hermitian and the

evolution operator e−iF is unitary. Both are symmetric in the absence of chirality. We

have neglected here the greatest effect of dichroism, a constant absorption which appears

in F as a trace, which is required to make the crystal absorbing overall but is of no

consequence in our theory. We have also neglected a phase constant ein2k0z implied by

(2.2.11) which has no effect on the light intensity. The intensity of the refracted wave field

beyond the crystal and, by continuation, of the image field inside the crystal, is then given

by the square magnitude of the wave field,

I (ρ, ζ) = D (ρ, ζ)∗ · D (ρ, ζ) . (2.3.22)

The eigenvectors of F and e−iF are the plane wave eigenpolarisations

d± (κ) = λ± (κ)d↑ (κ) ± iλ∓ (κ)d↓ (κ) , (2.3.23)
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in terms of an ellipticity function

λ± (κ) ≡

√

1 ± κ√
κ2+γ2

2
, (2.3.24)

and orthonormal linear polarisations

d↑ (κ) =





cos 1
2φκ

sin 1
2φκ



 , d↓ (κ) =





− sin 1
2φκ

cos 1
2φκ



 , (2.3.25)

in polar coordinates κ = κ {cos φκ, sin φκ}. For a transparent nonchiral crystal, d± reduce

to the linear polarisations d↑↓, whose orientation rotates half a turn as κ makes a complete

circuit of the optic axis. This geometric phase is associated with the presence of a 1
2 -index

polarisation singularity along the degeneracy direction (Berry & Dennis 2003). Chirality

makes the eigenpolarisations elliptical in general, and circular along the (nondegenerate)

optic axis. As eigenvectors of a hermitian matrix they are orthonormal, remaining orthog-

onal as κ approaches the optic axis. Dichroism is introduced by substituting κ → κ − iδ

as in (2.3.11), in which case the eigenpolarisations are generally elliptical, nonorthogo-

nal (d∗
+ · d− 6= 0 although d+ · d− = 0), and are normalised only in length (2.1.18) not

magnitude (d∗
± · d± 6= 1).

The polarisation of a wave d = {dx, dy} can be characterised by a complex number

ω =
dx − idy

dx + idy
, (2.3.26)

containing the state’s eccentricity |ω| and orientation 1
2 arg ω, or by stereographic projec-

tion of ω onto the unit sphere to a point Ω (φ, θ), where ω = eiφ tan 1
2θ. Figure 2.3 shows

this Poincaré sphere representation.

Linear polarisations, which we will define as vectors

dlin
χ ≡





cos χ

sin χ



 , (2.3.27)

lie on the equator of the Poincaré sphere |ω| = 1, and circular polarisations, which we will

define as

dcirc
± ≡ 1√

2





1

±i



 , (2.3.28)

lie at the poles ω± = 0,∞. Orthogonal polarisations are antipodal on the sphere, that is

ω+ω∗
− = −1. (2.3.29)
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The polarisations of refracted plane waves propagating in the crystal are then simply

ω± (κ) =
γ ±

√

κ2 + γ2

κ
e−iφκ =

λ± ± λ∓
λ± ∓ λ∓

e−iφκ. (2.3.30)

For a transparent nonchiral crystal these are orthogonal linear polarisations with orienta-

tion angles φκ/2 and φκ/2 + π/2. Dichroism is introduced via κ → κ − iδ, resulting in

elliptically polarised nonorthogonal eigenstates ω± = ±e−iφ
κ̃ where φκ̃ is complex. The

chiral eigenpolarisations are also generally elliptical. In all cases, singularity (ω± = 0,∞)

along the degeneracy axes (optic or singular axes) implies circular eigenpolarisation (C

point). (The case of circular dichroism is exceptional, obtained by letting γ be imaginary

whence ω = ie−iφκ, in which case the ring of degeneracy axes is an L (linear polarisation)

line separating right and left handed elliptically polarised regions.)

Right  circular

Vertical

Horizontal

Left circular

Re ω

Im ω

ω

Ω

−1/Ω∗

φ

θ

Figure 2.3: The Poincaré Sphere and stereographic projection from the complex plane: polar-

isation states are characterised by their eccentricity 1
2θ and orientation 1

2φ, represented by a

point ω in the complex plane or its stereographic projection onto a point Ω (φ, θ) on the unit

sphere, such that ω = eiφ tan 1
2θ.
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2.4 Complex Ray Directions: So Where Should We Point

The Beam?

Note that the transparent crystal vector V (κ) appears in (2.3.17) either as the function

of a scalar V (κ), or as the rotation matrix V (κ) · Σ, both of which are symmetric un-

der rotation of κ. The key obstruction to evaluating the propagator integral (2.3.16) in

the presence of dichroism δ is the breaking of this rotational symmetry introduced by

complexification (2.3.11). This suggests that the symmetry can be restored by defining a

complex wavevector with an imaginary shift of origin,

κ̃ ≡ κ − iδ. (2.4.1)

By defining a corresponding position vector

ρ̃ ≡ ρ′ − iµ (2.4.2)

in terms of an ‘accumulated dichroism’ vector µ, and a shift ρ′ which is trivial here, but

we will soon generalise,

ρ′ = ρ, µ = ζδ, (2.4.3)

we can write the evolution matrix as

F (κ,ρ, ζ) =
{(

−κ̃ · ρ̃ + 1
2ζκ̃2

)

I + V (κ̃) · Σ
}

−
(

iδ · ρ + 1
2ζδ2

)

I,

= F (κ̃, ρ̃, ζ) + F0 (ρ, ζ) , (2.4.4)

F0 (ρ, ζ) = F (iδ,ρ, ζ) .

This separates out the κ̃ dependent evolutionary terms into a matrix F (κ̃, ρ̃, ζ) which is

rotationally symmetric in κ̃, so we can work entirely in terms of the function (2.3.14). From

F0 we have an uninteresting ζ-dependent phase shift, and a uni-directional exponential

damping e−δ·ρ, which is a ramp modulating the wave amplitude. We can then express

the propagator integral in a form where all circular asymmetry is contained in the incident

beam profile,

D (ρ̃, ζ) =
e−iF0(ρ,ζ)

2π

∫ ∫

dκ̃e−iF(κ̃,ρ̃,ζ)a (κ̃ + iδ)d0. (2.4.5)

Gaussian beams present a surprising further simplification. Consider the integrand of

the propagator integral for a gaussian beam (2.3.4), whose profile is a quadratic exponen-
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tial, allowing us to incorporate it into the optical path length:

e−iF(κ,ρ,ζ)a (κ) = e
i
h

κ·ρ−1
2 ζκ2−V(κ)·Σ

i

e−
1
2κ2

= e
i
h

κ·ρ−1
2 ζ̃κ2−V(κ)·Σ

i

, (2.4.6)

by complexifying the propagation distance and setting the beam profile to unity,

ζ → ζ̃ ≡ ζ − i, a (κ) → 1. (2.4.7)

This corresponds to an imaginary shift of origin along the ζ direction originally due to

Deschamps (1971), which physically replaces the beam by a bundle of complex rays issuing

from a point source at an imaginary coordinate ζ = −i. The surprise comes when we now

consider that, for absorbing or chiral crystals, no single well-defined degeneracy direction

exists, and we ask the question: “so where should we point the beam?”

The κ = 0 direction corresponds to a wavevector direction which we can dub the

‘departed optic axis’ defined by (2.1.20). To be general we should consider aligning the

beam at an angle κ0/k0w away from this axis, along some particular direction, defining

a transverse deflection vector κ0, and introducing the misaligned beam profile a (κ − κ0).

When we do so, we must redefine (2.4.3) as

ρ′ = ρ − δ, µ = ζδ + κ0, (2.4.8)

whereby the propagator integrand simplifies to

e−iF(κ,ρ,ζ)a (κ − κ0) = e
i
h

κ·ρ−1
2 ζκ2−V(κ−iδ)·Σ

i

e−
1
2 (κ−κ0)

2

= e
i
h

κ̃·ρ̃−1
2 ζ̃κ̃2−V(κ̃)·Σ

i

−δ·ρ−1
2κ2

0+
1
2 iζ̃δ2+iδ·κ0

≡ e−i[F(κ̃,ρ̃,ζ̃)+F0(ρ,ζ̃)]. (2.4.9)

Thus to obtain the dichroic propagator integral from the simpler transparent integral, we

need only make the transformation

F (κ,ρ, ζ) → F
(

κ̃, ρ̃, ζ̃
)

+ F0

(

ρ, ζ̃
)

(2.4.10)

F0

(

ρ, ζ̃
)

= F
(

iδ,ρ − iκ0, ζ̃
)

− 1
2 iκ2

0I.

The evolution terms have again been separated out into the rotationally symmetric func-

tion F
(

κ̃, ρ̃, ζ̃
)

, wherein the dichroism of the crystal and the misalignment of the beam

are combined into a single vector µ.
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This is a surprising result: the nonhermiticity δ of the dielectric matrix (2.1.9) and

the symmetry breaking of the beam shift κ0 are equivalent in effect. This means that for

any dichroic crystal we can choose a beam direction, for any given propagation distance,

to counteract (or conversely to simulate) the effects of dichroism.

Of course there remains a constant damping from F0 which distinguishes the two

effects. Either cause a uniform exponential damping quadratic in the dichroism or mis-

alignment parameter, as well as the exponential ramp particular to dichroism, but these

are overall constants which are not of interest to us. For gaussian beams we thus obtain

a propagator integral separable into radial and azimuthal parts,

D
(

ρ̃, ζ̃
)

=
e−iF0(ρ̃,ζ̃)

2π

∫ ∫

dκ̃e−iF(κ̃,ρ̃,ζ̃)d0. (2.4.11)

The optical path length complexifies in a manner analogous to the evolution matrix.

Considering a plane wave a (κ) e−iΦ(κ,ρ,ζ) we derive the transformation

Φ (κ,ρ, ζ) = −κ̃ · ρ̃ + 1
2ζκ̃2 ± V (κ̃) − iδ · ρ − 1

2ζδ2

= Φ (κ̃, ρ̃, ζ) + Φ0 (ρ, ζ) (2.4.12)

Φ0 (ρ, ζ) = Φ (iδ,ρ, ζ) .

For a gaussian beam misaligned with the optic axis, considering the integrand of the

propagator integral gives similarly

e−iΦ(κ,ρ,ζ)a (κ − κ0) = e
i
h

κ·ρ−1
2 ζκ2∓V (κ−iδ)

i

e−
1
2 (κ−κ0)2

= e
i
h

κ̃·ρ̃−1
2 ζ̃κ̃2∓V (κ̃)

i

−δ·ρ−1
2κ2

0+
1
2 iζ̃δ2+iδ·κ0

≡ e−i[Φ(κ̃,ρ̃,ζ̃)+Φ0(ρ,ζ̃)], (2.4.13)

so the phase in the presence of dichroism or misalignment is obtained from the transparent

phase by the transformation

Φ± (κ,ρ, ζ) → Φ±
(

κ̃, ρ̃, ζ̃
)

+ Φ0

(

ρ, ζ̃
)

(2.4.14)

Φ0

(

ρ, ζ̃
)

= Φ
(

iδ,ρ − iκ0, ζ̃
)

− 1
2 iκ2

0.

Henceforth we need only emphasize the wavevector dependence of the evolution matrix

F and optical path length Φ, with dependence on the complexified wavevector implying

fully complexified variables, that is

F (κ̃) ≡ F (κ̃, ρ̃, ζ) , Φ (κ̃) ≡ Φ (κ̃, ρ̃, ζ) . (2.4.15)
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2.5 Eigenwave Representation

How are we to extract any physics from these complexified (or rather, simplified!) in-

tegrals? By complexifying (2.3.18), the propagator integral can be expressed generally

as

D (ρ̃, ζ) =
e−iΦ0

2π

∑

±

∫ ∫

dκ̃e−iΦ±(κ̃)K± (κ) a (κ)d0. (2.5.1)

This describes a superposition of plane waves which have refracted through the crystal.

It contains scalar information in their amplitude a eImΦ± and phase e−iReΦ± , and vector

information in their polarisation K±d0. The scalar can be understood asymptotically and

linked back to geometrical optics, which we consider in the next two sections. First we

will make the polarisation structure of the field explicit.

We can exploit the rotational symmetry of K± by considering the product V (κ̃) ·Σ =

ρ0 {κ̃, γ} · Σ. Ignoring the third component, we can write

κ̃ · Σ =
(κ̃ · ρ̃) ρ̃ ·Σ + (κ̃ × ρ̃) × ρ̃ ·Σ

ρ̃2
. (2.5.2)

The cross term is an odd function of angle in κ̃ and therefore vanishes in the azimuthal

part of the integral. This vanishing is exact for transparent crystals with a circularly

symmetric incident beam. It is also exact for gaussian beams in absorbing crystals since

we set a → 1. For general beams in absorbing crystals the circular symmetry is broken by

a (κ) = a (κ̃ + iδ), but for slow varying beams this constitutes only a small perturbation,

so we continue to neglect the cross term.

Thus substituting κ̃ ·Σ → (κ̃ · ρ̃) ρ̃ ·Σ/ρ̃2 into the propagator integral, we get

D (ρ̃, ζ) =
e−iΦ0

2

(

I +

{

ρ̃

ρ̃ρ0γ

∂2

∂ρ̃∂γ
,

i∂

ρ0∂γ

}

· Σ
)

∑

±
b± (ρ̃, ζ)d0, (2.5.3)

extracting two scalar diffraction integrals

b± (ρ̃, ζ) =
1

2π

∫ ∫

dκ̃e−iΦ±(κ̃)a (κ) , (2.5.4)

associated with the ‘±’ eigenpolarisations of the diffracted field.

To derive the field’s eigenpolarisations we can make another decomposition (obvious

from (2.5.3)) of D into three scalar diffraction integrals:

D (ρ̃, ζ) = e−iF0

[

B0 (ρ̃, ζ)I +

{

ρ̃

ρ̃
B1 (ρ̃, ζ) , B2 (ρ̃, ζ)

}

·Σ
]

.d0, (2.5.5)
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where

B0 (ρ̃, ζ) ≡ 1

2π

∫ ∫

dκ̃a (κ) e
i
“

−1
2 ζκ̃2+κ̃·ρ̃

”

cos V (κ̃)

B1 (ρ̃, ζ) ≡ 1

ρ0γ

∂2

∂ρ̃∂γ
B0 (ρ̃, ζ)

B2 (ρ̃, ζ) ≡ i

ρ0

∂

∂γ
B0 (ρ̃, ζ) . (2.5.6)

In the forthcoming asymptotics we need only study B0, which contains the sum over the

two polarisations

B0 =
b+ + b−

2
, (2.5.7)

and then derive the asymptotics of B1,2 by differentiation.

The eigenvectors of the matrix [..] in (2.5.5) are the eigenpolarisations of the diffracted

light field:

d± (ρ̃, ζ) = Λ± (ρ̃, ζ)d↑ (ρ̃) ± iΛ∓ (ρ̃, ζ)d↓ (ρ̃) (2.5.8)

Λ± (ρ̃, ζ) ≡ 1√
2

√

1 ± B1 (ρ̃, ζ)
√

B2
1 (ρ̃, ζ) + B2

2 (ρ̃, ζ)
, (2.5.9)

which simplify to circular polarisations, dcirc
± , along the axis ρ̃ = 0, and to d↑↓ (ρ̃) defined

by (2.3.25) in the absence of chirality, for which B2 = 0. The associated eigenvalues are

A± = B0 ±
√

B2
1 + B2

2 (2.5.10)

By defining 2 × 2 matrices

D± = 1
2

(

I ± 1
√

B2
1 + B2

2

{

ρ̃

ρ̃
B1, B2

}

·Σ
)

, (2.5.11)

which satisfy

D±d± = d±, D±d∓ = 0, (2.5.12)

we can write

eiF0D = (A+D+ + A−D−) .d0 (2.5.13)

= A+ (d+ · d0)d+ + A− (d− · d0)d−. (2.5.14)

This representation splits the propagator integral D into two scalar waves A± which are

the eigenvalues of the diffracted field. For transparent crystals they are associated with

orthogonal polarisations: the linear d↑↓ (ρ) states in a biaxial crystal, and the elliptical
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d± (ρ) states with chirality. Being orthogonal the two sets of waves A+d+ and A−d− do

not interfere, so the two diffraction integrals A± give rise to independent phenomena.

In the absence of chirality A± = b±, that is, the simple integrals b± are themselves the

eigenwaves of the diffracted field. In the presence of chirality the eigenwaves A± involve

complicated square roots of integrals, but the simpler integrals b± still represent waves in

the different ‘±’ eigenpolarisations.

With absorption the eigenpolarisations are no longer orthogonal (and are generally

elliptical). We shall see that the b± states still represent a meaningful separation, serving

as the natural continuation of the orthogonal states from a transparent crystal, and special

phenomena arise from interference between b+ and b−.

For a gaussian incident beam, the diffraction integrals can be expressed as functions of

a single variable. An obvious approach is to transform to variables in which the quadratic

phase term −1
2 iζ̃κ2 has a gaussian form −1

2s2 so the integral is fast converging, but a

fatal side-effect is to make the oscillations of the integral faster and exponentially greater

in magnitude, unsuitable for numerical methods. Instead we will use a form suitable for

asymptotic analysis, obtained under the following scalings:

σ = κ̃

√

ζ̃, g = γ

√

ζ̃

r = ρ̃/

√

ζ̃ r0 = ρ0/

√

ζ̃, (2.5.15)

yielding integral functions of a single variable defined by

Cm





ρ̃
√

ζ̃



 = ζ̃Bm

(

ρ̃, ζ̃
)

, (2.5.16)

which obey the same differential relations as (2.5.6),

C1 (r) =
1

ig
C2 (r) =

1

r0g

∂2

∂r∂g
C0 (r) . (2.5.17)

An analogous scaling can be applied, of course, to A± and b±.

2.6 Asymptotics of the Geometrical Optics Limit . . .

We will show here how the optical path length enters into the propagator integral as a

governing phase. We wish to consider the behaviour of the propagator integral in the

asymptotic limit of large wavenumber k. This is the geometrical optics limit, where the
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exact diffraction of waves can be approximated as the geometrical refraction of waves

described by rays. Our approach will be the method of stationary phase, described in

many texts (good accounts are in Heading (1962), Dingle (1973), Wong (1989), Fröman

& Fröman (1965) with a more basic account in Born & Wolf (1959)). We will introduce

the method here in a form physically entwined with the present problem.

Although the wavenumber has been scaled out in our analysis, recall that the optical

path length Φ = −k · r is proportional to k. The heart of the propagator integral is the

wave derived in the previous section,

b± (ρ̃, ζ) ≡ 1

2π

∫ ∫

dκ̃a (κ̃ + iδ) e−iΦ±(κ̃). (2.6.1)

Assuming that the beam profile a (κ) is not an exponentially fast varying function, we

say it is slowly varying. In the geometrical optics limit the exponential dominates the

behaviour of the integrand, which can therefore be characterised by the phase contours

ReΦ = constant, and amplitude contours ImΦ = constant, of the exponential. We will

generally consider either the cartesian double integral, say over dκ̃ = dκ̃xdκ̃y, or when

the azimuthal integral can be done exactly we are left with a radial integral over dκ̃. We

study the contours of Φ by continuing into the complex planes of κ̃x and κ̃y, or κ̃.

It is best, both numerically and analytically, to integrate along lines of stationary phase

so the integrand does not oscillate. This is the principle of stationary phase. Because Φ

satisfies the Cauchy-Riemann equations, phase contours are also lines of steepest descent

along which the integrand is decreasing fastest. Moreover this variation is exponential, so

we can neglect the exponentially small contributions where an integration path tails off

to infinity, approximating the integral only in the neighbourhood of: (i), endpoints – the

finite endpoints of the integrand if they exist, which may not be small enough to ignore;

and (ii), saddlepoints – where two phase contours cross so the integrand passes through

either a maximum or a minimum.

Saddlepoints κ̃n of the phase Φ satisfy

∇κ̃Φ (κ̃n) = 0, n = 1...N, (2.6.2)

where N is the order of the polynomial expression for κ̃ obtained from ∇κ̃Φ (κ̃). It is

necessary to include up to second order terms in a Taylor expansion of the exponent, but

for the slowly varying beam profile prefactor only the zeroth order term is needed, giving
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a contribution near each saddlepoint of

bn (ρ̃, ζ) ≡ a (κ̃n + iδ) e−iΦ(κ̃n)

2π

∫ ∫

dκ̃e−
1
2 i(κ̃−κ̃n)·((κ̃−κ̃n)·∇κ̃)∇κ̃

Φ(κ̃n). (2.6.3)

There exists a unique smooth deformation of the real integration path, such that it lies

entirely along phase contours and the integral converges; the integral is then given by

summing over any saddlepoints traversed by this contour,

b (ρ̃, ζ) ≈
∑

n

bn (ρ̃, ζ) . (2.6.4)

The deceptively simple phrase ‘entirely along’ used here requires precise definition. Smooth

means that no breaks are made in the path during deformation, requiring that it does not

cross any poles (singularities) or branch points, and more importantly that its endpoints

remain fixed. This means typically that the deformed path will have to lie along more than

one phase contour, and the phrase entirely along implies that the connections between two

contours (which do not lie along contours) can be neglected from the integration. Thus

the connections must occur only where the function is infinitesimally small: where phase

contours tail off to infinity in the direction of steepest descent. The phase contours of an

analytic function are infinite lines, that is they do not terminate anywhere in the complex

plane and do not form closed loops, so they always asymptote to infinity either in a

direction of steepest ascent or descent. This applies also to functions which are analytic

in any region not containing a pole or a branch point, so when chirality is included,

deformation may take place across the two Riemann sheets introduced by a square root

in Φ, so long as branch points are not crossed. After neglecting these connections we say

the deformed path lies entirely along phase contours.

The procedure to identify this unique contour is to identify the N saddlepoints, to

project paths from them along the directions of steepest descent, and to connect pairs

of paths only where they approach asymptotically. The path which thus forms a smooth

deformation of the original contour is unique and convergent, and any paths not forming

a part of it are discarded from the integral.

The endpoint of the integral may present a maximum along the integration contour.

We will encounter this in the propagator integral when evaluated in polar coordinates, at

the endpoint κ̃ = 0 of the radial integral. Labeling this point n = 0, its contribution to

the integral is given by

b0 (ρ̃, ζ) ≡ a (iδ) e−iΦ(0)

∫

dκ̃e−iκ̃Φ′(0), (2.6.5)
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that is, a wave scattered from the phase space direction κ̃ = 0.

The integrals arising from endpoint and saddlepoint contributions are typically inte-

grable analytically, and rather simple, but require careful considerations of phase which

we will encounter in specific cases later. In particular there are three degeneracies that

dominate the general behavior of the saddlepoints, and they are responsible for geometric

interference and focusing. Let us now consider these.

If the second derivative of the phase vanishes then its expansion in (2.6.3) must be

taken to third order, taking the generic form of an Airy integral. This condition can be

expressed compactly by the vanishing of the Hessian determinant,

0 =

∣

∣

∣

∣

∂2Φ (κ̃)

∂κ̃2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂2Φ(κ̃)
∂κ̃x∂κ̃x

∂2Φ(κ̃)
∂κ̃x∂κ̃y

∂2Φ(κ̃)
∂κ̃y∂κ̃x

∂2Φ(κ̃)
∂κ̃y∂κ̃y

∣

∣

∣

∣

∣

∣

. (2.6.6)

These points are associated with the fold catastrophe (Poston & Stewart 1996), where

two stationary points (saddlepoints) of the phase coalesce. In three dimensional position

space these conditions define surfaces when Φ is real, called caustics, or lines when Φ is

complex, called complex whiskers (Poston & Stewart 1976).

The set of saddlepoints included in the convergent integral depends on the parameters

appearing in Φ. A saddlepoint may enter or leave the set when, as the parameters vary

smoothly, two saddlepoints become connected by a phase contour. For two solutions κ̃i

and κ̃j of (2.6.2), the loci of points satisfying that condition are lines in the complex space

of each vector component of κ̃, given by

Re [Φ (κ̃i) − Φ (κ̃j)] = 0. (2.6.7)

These are the Stokes sets, or nonlocal bifurcation sets, first identified in the asymptotics

of the Airy function by Stokes (1847a, 1847b, 1864, 1902). In three dimensional position

space they are surfaces. One saddlepoint, κ̃i, is dominant over another, κ̃j, if

ImΦ (κ̃i) > ImΦ (κ̃j) , (2.6.8)

and only the subdominant saddlepoint may ‘switch off’ at a Stokes set. The (exponentially

larger) contribution of the dominant saddlepoint masks the disappearance of the subdomi-

nant saddlepoint, this dominance being maximal on a Stokes set, so that the discontinuous

change generally causes no jump in the integral. In fact, it has been shown (Berry 1989)

that even the disappearance of the saddlepoint is smooth, being described by the steep

slope of an error function; for our purposes this smoothing will not be necessary.
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The relative dominance of saddlepoints can exchange in pairs, across anti-Stokes sets

given by

Im [Φ (κ̃i) − Φ (κ̃j)] = 0. (2.6.9)

These also define lines in the complex κ̃ plane and surfaces in position space. In trans-

parent media Φ will generally be real so anti-Stokes sets do not exist. In the presence

of dichroism, however, the exchange of dominance occurs as an exponentially fast growth

of the saddlepoint contributions. Because one contribution is increasing exponentially on

either side of the anti-Stokes set, the set itself constitutes a locus of minimal amplitude,

and is visible as an exponential decrease in the combined contribution to the integral. In

the intensity plotted in position space, this therefore manifests as a dark surface.

2.7 . . . and Hamilton’s Principle

Hamilton’s equations for paraxial rays in a transparent medium take the form

∂ρ

∂ζ
= ∇κH,

∂κ

∂ζ
= −∇ρH, (2.7.1)

where the Hamiltonian H takes the eigenvalues of the Hamiltonian operator (2.3.12),

H (κ) =







1
2n2κ

2, outside crystal

1
2κ2 ± kwA

√

(κ − iδ)2 + γ2, inside crystal







. (2.7.2)

Let us see first how (2.3.19) would be derived geometrically. The optical path length Φ

of plane waves e−iΦ contains the transverse term κ · ρ. Along the optic axis the path

length is simply kzz ≈
(

k − 1
2k2

⊥/k
)

z where k = nk0, the refractive index being given by

n = 1 outside the crystal and (2.2.5) inside the crystal. The optical path is measured

from the source, which may be the focus for a beam and need not, as assumed by some

authors, be placed at the entrance face of the crystal, because the optical path length

from the source to the entrance face is cancelled by terms beyond the exit face. When

we neglect a direction independent length k0 (z − l + n2l) which will not contribute to

the wave amplitude, we indeed obtain the optical path length found previously from the

eigenvalues of the evolution operator F ,

Φ (κ,ρ, ζ) = −κ · ρ +
1

kw2

z
∫

0

dzH (κ) (2.7.3)

= −κ · ρ + 1
2ζκ2 ± V (κ − iδ) . (2.7.4)
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Applying Hamilton’s first equation to (2.7.3) yields Hamilton’s principle (Hamilton

1828), the statement that rays are extremal optical paths,

∇κΦ (κ) = 0. (2.7.5)

In the absence of dichroism (when κ̃ = κ) therefore, Hamilton’s rays correspond to the

saddlepoint contributions (2.6.2) of the propagator integral. This correspondence is a

consequence of both the integration contour and the wave surface being defined as lines of

stationary phase; the stationary lines studied in the phase of the propagator integral are the

extension into the complex plane of the wave surface. Hamilton’s second equation states

that the transverse wavevector is conserved along ray paths. In the simplest incarnation of

geometrical optics envisaged by Hamilton, the condition for solutions to the ray equation

(2.7.5) to contribute to the intensity is simply that they are real. However, complex

solutions may represent valid wave effects, whose contribution can only be assessed by the

consideration of Stokes surfaces.

The correspondence between rays and saddlepoints now allows us to make an intuitive

extension of geometrical optics to absorbing media. Generally, when the Hamiltonian,

optical path length, and wavevector are complex, the real rays derived as stationary points

are an approximation to the saddlepoints of section 2.6. The real ray is the point on the

real κ̃ wavevector axis where a phase contour lies tangential to the axis. As illustrated

in figure 2.4, this typically occurs close to a saddlepoint. In other words, the real ray

corresponds to stationary phase along the axis of real κ̃ values, close to but distinct from,

the saddlepoint where κ̃ is complex. Since the integration contour traverses a maximum

of the integrand only by crossing a saddlepoint, a ‘real ray’ constitutes a much weaker

approximation than the stationary phase method of section 2.6.

This distinction is not special to absorbing crystals. Berry (2004b) comments on the

great improvement for a gaussian beam in a transparent crystal that occurs when the

substitution (2.4.7) to a bundle of complex rays is made. This corresponds to shifting

from the stationary phase point in the real wavevector to the saddlepoint with a complex

wavevector – from the real ray to the exact ray in figure 2.4.

The saddlepoint contributions derived from the complexified Hamilton’s princple (2.6.2)

can be termed complex rays, generalizing Hamilton’s principle (2.7.5) to absorbing media,

for which no fixed paths exist in real space that conserve the wavevector. It is easy to

show that the stationary phase method is equivalent to complexifying Hamilton’s equa-



2.7 . . . and Hamilton’s Principle 43

real ray

exact
ray

Imκ~

~Reκ

Figure 2.4: Real and complex rays in stationary phase analysis: phase contours of the diffrac-

tion integrand are illustrated in the complex plane of the wavevector κ̃. Complex rays corre-

spond to saddlepoints of the integrand, and real rays, a weaker geometrical optics approxima-

tion, correspond to the point of stationary phase along the real axis.

tions, replacing the real wave and position vectors (and distance for a gaussian beam) with

their complex counterparts, effectively reversing the derivation from (2.7.1) to (2.7.5) but

in complex coordinates, with the result

∂ρ̃

∂ζ
= ∇κ̃H,

∂κ̃

∂ζ
= −∇ρ̃H. (2.7.6)

The geometric intensity is the sum of beam profiles a (κ̃n + iδ) over the contributing

rays, with a Jacobian multiplier giving the transformation into position space. Whether

or not a solution to the complexified Hamilton’s principle contributes as a physical ray

must be determined by studying the Stokes and anti-Stokes surfaces. For complex rays

there is also an exponential absorption prefactor, resulting in

Igeom (ρ̃, ζ) =
1

2

∑

n

eIm(Φ(κ̃n)+Φ0)

∣

∣

∣

∣

dρ̃

dκ̃n

∣

∣

∣

∣

−1

|a (κn)|2 . (2.7.7)

The intensity of rays in transparent media is dominated by the sites of focusing, where

rays crowd up forming an envelope of divergent geometrical intensity. For real rays in three

dimensional position space this occurs along surfaces, for complex rays it is restricted to

focal lines, and the general condition is the vanishing of the Hessian determinant

∣

∣

∣

∣

det
dρ̃ (κ̃)

dκ̃

∣

∣

∣

∣

= 0, (2.7.8)
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which is the same condition as (2.6.6). This crowding thus corresponds to the coalescence

of saddlepoints in the propagator integral, occurring along caustic surfaces for real rays,

or whiskers for complex rays.

Interestingly in absorbing media, focusing ceases to be the dominant feature in the

intensity. As remarked by Berry & Howls (1990), this is because the divergence at a

complex whisker can be swamped by an exponential gradient from the prefactor eImΦ.

Instead it is this gradient which dominates the intensity, characterised by anti-Stokes

surfaces and attributable to geometric interference, that is, interference between complex

rays. This is possible because complex rays contain phase information, and because,

contrary to transparent media, the two interacting rays are generally nonorthogonally

polarised. It is important to note that this geometric interference, attributed to the

saddlepoints of the propagator integral, is distinct from wave interference attributable to

the endpoints of the propagator integral, which is in no way a phenomenon of stationarity.

2.8 Inside the Crystal

The results throughout this thesis apply to the diffracted light field beyond the crystal’s

exit face, and by continuation to the virtual image field inside the crystal. This is the

field that would be observed by focusing upon planes inside the crystal, using a lens for

example, envisaged as the projection of virtual rays back into the crystal. To conclude

this section I would like to remark on the actual geometric intensity of light propagating

inside the crystal, which has been the starting point of most historical investigations.

It seems to have been Belskii & Khapalyuk (1978) who were the first to appreciate

that, in an explicit expression for the observed intensity, the physical light field confined

to the crystal would be irrelevant, drawing attention to the focal image plane ζ = 0 and

providing diffraction integrals for the image field. Nevertheless it is interesting, given the

intricacy of the geometric patterns in the image field that we will discover later, to have

some intuitive understanding of the pattern of rays which gives rise to them. We will

restrict this consideration to transparent media and geometrical optics.

The actual ray propagation inside the crystal is obtained by integrating the optical

path length (2.7.3) not to some z > l beyond the exit face of the crystal, but to some

z < l inside the crystal. (The procedure is analogous for obtaining the actual wave field

inside the crystal, but since this cannot be imaged we are not interested in interference
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effects). It is the definition of the propagation distance ζ (2.3.15) that is key, and should

perhaps be more appropriately termed image distance. It turns out that the result can

be obtained by a simple transformation to conical coordinates associated with the conical

propagation of rays constituting Hamilton’s phenomenon. Taking the image field we first

replace the propagation distance ζ by the (dimensionless) propagation distance from the

source

ζ → ζ ′ ≡ z/k0w
2. (2.8.1)

We then replace the transverse position ρ by an angle of propagation θρ from the optic

axis,

ρ → θρζ ′, (2.8.2)

replacing the radius ρ0 of the conical refraction cone at the exit face by the scaled half-angle

of the cone θ0,

ρ0 → θ0ζ
′, θ0 ≡ An2k0w. (2.8.3)

The two definitions of propagation distance necessarily agree at the exit face, where

ζ = ζ ′ = l/n2k0w
2 = ρ0/θ0, (2.8.4)

so that rays inside the crystal correctly refract at the exit face to form rays beyond the

crystal.





Chapter 3

The Wave Surfaces

“a sound induction enabling us to predict, bearing not only stress, but torture: of

theory actually remanding back experiment to read her lesson anew; informing

her of facts so strange, as to appear to her impossible, and showing her all the

singularities she would observe in critical cases she never dreamed of trying.”

Sir John Herschel on Hamilton’s discovery, 1841 (Graves 1882)

Fresnel’s ingenious theory of double refraction preceded Maxwell’s electrodynamic

equations by almost 50 years, relying on geometrical arguments that extended the the-

ories of Young and Huygens, making possible the discovery of conical refraction before

Maxwell was even a year old. The wave surface, in both its standard interpretation and as

a surface in the virtual field which I will present here, is invaluable to an intuitive under-

standing of double and conical refraction. We will derive Fresnel’s wave surface rigorously

from Maxwell’s equations and discuss some of the interesting geometry associated with it,

which is responsible for conical refraction and which led to its discovery, and then discuss

the more useful virtual wave surface which is central to the phenomena expounded in this

thesis.

47
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3.1 Fresnel’s Wave Surface and Hamilton’s Cones

The wave surface is simply a phase contour. For a wave propagating in a medium with

refractive index n, wavevector k, and frequency σ, this is a level surface of the dispersion

relation

σ (k) =
ck

n (k)
. (3.1.1)

Hamilton’s equations state that a ray trajectory is given by the group velocity ṙ = ∇kσ (k),

and that the wavevector is conserved along a ray, k̇ = ∇rσ (k) = 0. The former states

that the rays are the normals to the wave surface, and therefore a small displacement dk

with σ constant (anywhere in the wave surface) lies perpendicular to a ray, that is

ṙ · dk = 0. (3.1.2)

Energy flows along the Poynting vector

S = Re E∗ × H, (3.1.3)

which, from Maxwell’s equations (2.1.11), satisfies

S · dk =
σ

2
Re [E∗ · dD− D · dE∗ + H · dB∗ − B∗ · dH] . (3.1.4)

For a transparent crystal the hermiticity of the constitutive relations (2.1.1) makes this

vanish, S · dk = 0, so the ray and Poynting vector directions coincide. Nonhermiticity

in absorbing media means that S · dk 6= 0, so the Poynting vector is not a wave surface

normal, and therefore does not coincide with the (complex) ray direction.

To derive Frensel’s wave surface for a biaxial crystal we must write (2.1.12) in its dual

form for E instead of D,

1

n2
N−1.E = −k̂× k̂× E

= E −
(

k̂ ·E
)

k̂. (3.1.5)

N−1 is just the diagonal matrix of squares of the principal refractive indices diag
[

n2
1, n

2
2, n

2
3

]

,

so we can rearrange this equation and write the jth component as

Ej

n2
− k̂ · E

n2 − n2
j

k̂j = 0. (3.1.6)
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Multiplying this by k̂j , summing over j’s, then dividing by the first term k̂ ·E/n2, gives

upon some rearrangement the form of the wave surface originally stated by Fresnel,

k̂2
1

1
n2 − 1

n2
1

+
k̂2
2

1
n2 − 1

n2
2

+
k̂2
3

1
n2 − 1

n2
3

= 0. (3.1.7)

This equation, quadratic (as is clear from (3.1.6)) in the refractive index n(k̂), defines

a two-fold surface generated by the wavevector k = k0n(k̂)k̂, as the direction vector k̂

traces out all directions on the unit sphere. This is the wave surface depicted in figure 2.1

& 3.1(a). The optic axes, along which the two sheets of the wave surface intersect, were

found in (2.1.20) from our own expression for the wave surface (2.1.17).

The wave surface is related to another surface that characterises N called the index or

tensor ellipsoid. It can be derived from the first constitutive relation in (2.1.1) by taking

the dot product with D, and noting that E · D is constant in the absence of dispersion

(Landau et al. 1984), giving

D2
1

n2
1

+
D2

2

n2
2

+
D2

3

n2
3

= constant. (3.1.8)

In the direction space of D this defines an ellipsoid with three unequal principal axes,

which by a general property of ellipsoids possesses two circular cross sections, whose axes

define the optic axes. This is shown in figure 3.1(b-c). When a wavevector is drawn from

the centre of the ellipsoid the vibration directions, D, lie in the transverse plane along

optic 
axes

(a) (b)

(c)

k

D

D

optic 
axes

Figure 3.1: The optic axes: (a) cutaway of Fresnel’s wave surface in direction space for a biaxial

medium (3.1.7), showing the wave surface degeneracy along the optic axes; (b) the refractive

index ellipsoid (3.1.8) showing a wavevector k and corresponding directions of vibration D; c)

the two circular sections of the ellipsoid and the optic axes normal to them.
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the greatest and least radii of intersection with the ellipsoid (semimajor and semiminor

axes of the elliptical section perpendicular to k). If the wavevector points along the optic

axis then all of these radii are equal (the section is circular), so the vibration direction is

indeterminate. This is another, less geometrical, means of understanding the degeneracy

responsible for conical refraction.

Let us now discuss conical refraction in the sense discovered by Hamilton. Let the

wavevector k lie along an optic axis, and let the vacuum constants µ0 = ǫ0 = 1. We can

write the constitutive relation

E = N̄ .D, (3.1.9)

where N̄ is the dielectric matrix, rotated from the {1, 2, 3} principal axes to the {x, y, z}
frame, by rotation about the 2-axis so an optic axis lies along the z-direction. N̄ is

determined by four conditions: elements involving the 2 (or y) rotation axis should remain

fixed, the z-direction is degenerate so we must have N̄xx = N̄yy, and rotation does not

change the trace and determinant. This uniquely sets

N̄ =
1

n2
2

I +









0 0
√

αβ

0 0 0
√

αβ 0 α − β









, (3.1.10)

(here I is the 3× 3 identity matrix) in terms of the biaxial anisotropy parameters defined

in section 2.1. The matrix that generates the rotation N̂ = RNR−1 to the optic axis,

R =









cos θOA 0 − sin θOA

0 1 0

sin θOA 0 cos θOA









, (3.1.11)

can then be used to imply the angle of the optic axis previously found in (2.1.20).

Let the electric displacement vector, which is transverse to the wavevector, have an

angle χ to the x-axis,

DOA = D









cos χ

sin χ

0









, (3.1.12)

then the constitutive relation gives

EOA =
D

n2
2









cos χ

sin χ

2A cos χ









. (3.1.13)
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Thus the electric field vector traces out an ellipse as D rotates, given by

1
4

(

Ex +
Ez

2A

)2

+ E2
y =

D2

n4
2

, (3.1.14)

and the ray (Poynting vector), perpendicular to E and H, traces out a skewed cone

S =
D2

n3
2









A (cos 2χ − 1)

A sin 2χ

1









. (3.1.15)

As χ runs from 0 to π the Poynting vector completes a circuit of the optic axis, but the

polarisation of the wave D turns only half a circuit, a geometric phase effect characteristic

of the conical point.

From (3.1.15) our definition of a skewed cone is clear: the axis of the cone is slanted

such that the optic axis is itself a generator of the cone (lies in its surface and through its

apex), while importantly the cross-section transverse to the optic axis remains circular.

This is the source of the skew recognised in (2.3.1). The half-angle of this narrow cone is

given exactly by

tan 2θcone = 2A, (3.1.16)

and paraxially by

θcone ≈ A (3.1.17)

≈ 1

n2

√

(n1 − n2) (n2 − n3). (3.1.18)

Equation (3.1.14) further shows that the wave surface near the optic axis direction

has the shape of a pair of opposing cones, called a conical or diabolical point, with large

half-angle π/2 − θcone. A single ray incident upon the crystal thus degenerates into an

infinite number of rays (S), lying in the surface of a narrow cone, and this Hamilton termed

internal conical refraction. At the exit face, the simple laws of refraction applying, each

ray leaves the crystal with the direction it entered so the cone refracts into a cylinder.

The geometry of the wave surface is illustrated in figure 3.2(a), where the conical

point is labelled A and the origin O, so the optic axis is OA. The wave surface possesses

another degeneracy, a tangent circle, the locus of points where a single plane can contact

the surface everywhere tangentially. The radial line perpendicular to this tangent plane

is called the binormal OB. Such a circle encloses each optic axis, and from it springs a

ring of parallel ray normals constituting an axial focal line. In the 1-3 (also x-z) plane
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Figure 3.2: Duality of the wave and ray surfaces: (a) Geometry of the two surfaces, showing

the optic axis OA, biradial OB, with the cones of internal (bold) and external (dashed) conical

refraction, and the axes of the associated ring and axial focus. (b) The wave surface (outer)

is generated by the wave vector k, with the ray vector S normal and the E field tangential to

it. Reciprocally, the ray vector S generates the ray surface, with the ray vector S normal and

the D field tangential to it.

illustrated, the direction of these normals is at an angle θspike to the vertical 3-axis, and

from figure 3.2 and the equations (2.1.19) it is easy to find:
√

α

β
= tan θOA =

n1

n3
tan θOB =

n3

n1
tan θspike. (3.1.19)

Figure 3.2 also depicts the ray surface, dual to the wave surface in the sense indicated

in part (b). The construction of this is due to Hamilton, though he attributes the theory

of the existence of such duality to Cauchy (Hamilton 1837). Each wavevector k generates

a point on the wave surface at which the normal is a ray S. Reciprocally, this ray vector

generates a point on the ray surface at which the normal is the wavevector. The relative

scale is fixed by the condition k · S = 1. The electric E and electric displacement D

vectors are everywhere tangential to the wave and ray surfaces respectively. As illustrated

in figure 3.2(a) the degeneracy structure of the two surfaces must be connected thus: the

conical point and tangent circle on the wave surface correspond respectively to a tangent

circle and a conical point on the ray surface. Figure 3.3 illustrates this paraxially. The

cone of internal conical refraction is exactly the cone of rays formed by joining the origin

point O to the tangent circle TA of the ray surface.

It was by this construction that Hamilton derived a second associated phenomenon,
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wave surfaceray surface

OA

OB

k1

k3

k2

B
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A

Figure 3.3: Geometry of internal and external conical refraction: a depiction of the wave

and ray surfaces showing the correspondence between the optic axis OA, conical point A, and

tangent circle TA responsible for internal conical refraction, and between the binormal OB,

conical point B, and tangent circle TB responsible for external conical refraction. The paraxial

regions are shown enlarged and angles are exaggerated for clarity.

external conical refraction, whereby a pencil of rays converging upon a crystal refracts

into a single ray focused along its optic axis – note that this is just the focal line from the

wave surface’s tangent circle, a fact neglected ever since by all but Raman – which then

refracts out of the crystal into another cone. The cone exiting the crystal is the cone of

wavevectors formed by joining the origin O to the tangent circle TB of the wave surface,

and has half-angle B given by

tan 2B = n1n3

√

αβ. (3.1.20)

For beams of light containing a range of wave and ray directions, the phenomena

of internal and external conical refraction transform into one another as a function of

propagation distance. This can readily be seen from the wave surface construction by

considering the different wave directions in a beam that contribute at different distances,

and the form of the wave surface that scatters them, as was the approach taken by Raman

et al. (1941). We shall study this in more detail in section 4.1.
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Note that paraxially the angles A of internal, and B of external, conical refraction are

equal,

A ≈ B ≈ 1

n2

√

(n1 − n2) (n2 − n3), (3.1.21)

and proportional to the index differences. The difference between them, with the anis-

totropy parameters regarded paraxially (α ≈ 2 (n2 − n1) /n3
2 and β ≈ 2 (n3 − n2) /n3

2),

is

A − B ≈ n4
2

4

√

αβ

[

α − β +
n2

2

8

(

3 (α − β)2 + 4αβ
)

]

, (3.1.22)

which is proportional to the square of the two refractive index differences if they are

distinct, or the cube if they are equal, and vanishes if n2
1 + n2

3 = 2n2
2. For example,

in aragonite paraxiality constitutes an 8.9% error, in the monoclinic double-tungstate

KYb (WO4)2 it is 0.44%, and in naphthalene, which exhibits particularly strong conical

refraction, with a large cone angle in which paraxiality might be assumed to be least

applicable, this error is only 0.027%. The errors in the paraxial cone angle, A, compared to

the exact cone angle, θcone, are 6.8%, 0.09%, and 0.33% for these three crystals respectively.

Voigt (1905c, 1905b) discussed the effect of chirality on Fresnel’s wave surface. We will

reserve this case for the following paraxial discussion of the virtual wave surface, which

possesses exactly the same local geometry as Fresnel’s wave surface, but rigorous analytic

investigation is much simpler.

3.2 The Paraxial Phase Surfaces

In this thesis we are concerned with the image field. Rather than Fresnel’s wave surface

for the actual field, it is useful to define a wave surface associated with the image field.

Outside the crystal these fields and surfaces are identical, but inside the crystal the image

field is a virtual field (see section 2.8), and the wave surface associated with it will form a

virtual wave surface.

Using the dimensionless variables defined in section 2.3 for plane waves and treating

propagation distance as an evolutionary ‘time’, ray paths according to Hamilton’s principle

(2.7.5) satisfy

ρ (κ) = ∇κ (Φ (κ) + κ · ρ) . (3.2.1)

This defines rays ρ as normals to the surface Φ (κ)+κ ·ρ = 1
2ζκ2±V (κ) which, therefore,

is the wave surface we seek. V (κ) comprises the singularity structure of the wave surface
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as a function of the transverse wavevector κ. For a biaxial crystal we have V (κ) = ρ0κ;

the wave surface has a conical point along the optic axis

κOA = 0, (3.2.2)

and a tangent circle of points

κext = ρ0/ζ (3.2.3)

around which the normals are all parallel. This is shown in figure 3.4(a). With chirality

we have V (κ) = ρ0

√

κ2 + γ2, preserving the tangent circle now at

κext = γ
√

ζ2
cusp/ζ2 − 1, (3.2.4)

but breaking the conical point degeneracy, leaving in its place a ring of inflection points

κc =
ρ

ζ
(

1 − ζ2/ζ2
cusp

) =
ρ

ζ

(

ρ0

ζκext

)2

, (3.2.5)

where

ζcusp ≡ ρ0

γ
. (3.2.6)

This is depicted in figure 3.4(b-c).

For completeness let us briefly discuss the dichroic wave surface obtained via (2.3.11).

δ is the smallest perturbation that breaks rotational symmetry about the conical point,

splitting each optic axis into a pair of singular axes at κsing = ±e3 × δ at which the

eigenpolarisations (2.3.30) are circular. This wave surface is shown in figure 3.4(d). More

generally, including chirality, in the dichroism-dominated regime δ > γ the singular axes

lie at

κsing = ±e3 × δ
√

δ2 − γ2 /δ, (3.2.7)

approaching as chirality increases and annihilating when δ = γ, shown in figure 3.4(e),

leading to figure 3.4(f) where the degeneracy vanishes because chirality dominates, δ < γ.

As this happens the circular polarisation points remain fixed at ±e3 × δ, like ghosts of

the departed nonchiral singular axes, called the haunting theorem by Berry & Dennis

(2003). It was shown in (3.1.15) that a polarisation state rotates by π in a circuit of the

conical point, called a 1
2 -index polarisation singularity. The splitting of the optic axis into

two singular axes means that each singular axis is a 1
4 -index polarisation singularity, a

polarisation state rotates by π/2 in a circuit of one singular axis, and by π in a circuit

containing the pair.
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The dichroic wave surface is complex and a branch cut connects the singular axes –

branch points of the wave surface. The real part of the wave surface is the phase contour

surface sought in the nonabsorbing case, while the newly introduced imaginary part is a

contour of wave magnitude. Clearly such a thing does not exist in transparent media.

(Circular dichroism, which can be introduced by making γ imaginary, for instance γ → iδ,

spreads the singular axes into a ring of branch points κ = δ outside of which (κ > δ) the

wave surface is real, but inside of which it branches into Riemann surfaces.)

The complexity of the dichroic wave surface will not be of interest. For our purposes,

as outlined in section 2.6, the wavector κ itself can take complex values, and it becomes

perverse to plot the wave surfaces in real space. For this reason the dichroic wave surface

does not yield geometrical insight akin to the transparent case. The singular axes, branch

cut, and haunting theorem, therefore do not have obvious effects on the refracted light

field, unlike the similar singularities of transparent media.

Returning to transparent crystals, the wave surface has a dual ray surface as in Hamil-

ton’s construction of Fresnel’s surface. The normals to a ray surface Θ (ρ) + κ · ρ are the

wavevectors, expressed as

κ (ρ) = ∇ρ (Θ (ρ) + κ · ρ) (3.2.8)

=

(

ρ ∓ ρ0κ
√

κ2 + γ2

)

ρ

ρζ
. (3.2.9)

The duality between the surfaces can be expressed as a Legendre transformation,

∇κ (Φ (κ) + κ · ρ) =
[

∇ρ (Θ (ρ) + κ · ρ)
]−1

, (3.2.10)

where ‘−1’ denotes the inverse function. The ray and wave surfaces are simple for γ = 0,

but with chirality the wave surface is of fourth order and the Legendre transformation

produces an implicit function for the ray surface. The duality of degeneracies of the two

surfaces is exactly analogous to that for Fresnel’s surface depicted in figure 3.3.
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Figure 3.4: (a-c), The paraxial wave surfaces: (a) Hamilton’s diabolical point: the paraxial

wave surface for a biaxial medium (δ = γ = 0), cutaway to show the diabolical point at

κOA = 0 responsible for internal conical refraction, and the tangent circle at κext = ρ0/ζ

responsible for external conical refraction; (b-c), The chiral wave surface: optical activity

destroys the diabolical point, separating the sheets, but leaving a ring of inflection points

(3.2.5), whose normals form a caustic ”trumpet horn”; (d), The dichroic wave surface Φ± (κ)

is complex, and the conical point splits into a pair of singular axes at κsing = ±e3 × δ

connected by a branch cut. The real part is the phase contour surface distorted by dichroism,

and the imaginary part introduced by dichroism is a wave amplitude surface. (e-f), the singular

axes approach as γ increases, annihilating at δ = γ, but leaving behind the asymmetry of the

imaginary wave surface.





Chapter 4

The Phenomena of

“So-Called” Conical Diffraction

“in the teeth of all analogy”

from Dublin Uni. Mag. 1842 (Graves 1882)

Thus far we have laid out the mathematical framework underpinning conical diffrac-

tion, in crystals exhibiting the three fundamental optical degeneracies of birefringence,

chirality, and dichroism. Here we study the phenomena that result from that theory.

Wherever possible we will follow an intuitive derivation based on simple geometric de-

generacy assumptions that can be followed without the full rigour of the crystal theory in

sections 2.1-2.3. This approach will be based on a monochromatic incident beam, repre-

sented as a superposition of paraxial plane waves with transverse wavevector profile a(κ)

and polarisation d0 = {d0x, d0y}. Position will be in dimensionless cylindrical coordinates

comprised of the radius vector ρ and propagation distance ζ. A propagator integral then,

(2.3.16), describes the diffracted beam,

D (ρ, ζ) =
1

2π

∫ ∫

dκe−iF(κ,ρ,ζ)a (κ)d0,

in terms of a 2 × 2 evolution matrix F whose eigenvalues are optical path lengths Φ±.

Using the geometrical argument in the second paragraph of section 2.7 to find the optical

path length, (2.3.19),

Φ± (κ,ρ, ζ) = −κ · ρ + 1
2ζκ2 ± V (κ − iδ) ,

59
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we can directly infer F in the form (2.3.14),

F (κ,ρ, ζ) =
(

−κ · ρ + 1
2ζκ2

)

I + V (κ − iδ) · Σ.

The traceless part of F (that is V · Σ) comprises some unknown crystal vector, V (κ),

which we will show can be directly implied from consideration of the optical degeneracy.

In dealing with complex quantities it will be important to define the square root as

√
x ≡ |x|

1
2 e

1
2 iArgx. (4.0.1)

In section 4.1 we consider Hamilton’s original phenomenon in biaxial crystals, for

which the diffraction theory was discovered by Belskii & Khapalyuk (1978), advanced by

Berry (2004b) and reviewed by Berry & Jeffrey (2007), but is presented here in a different

formulation with minor new results where noted. Section 4.6 details new experiments

probing the emergence of the predicted asymptotic wave and ray phenomena of that

theory, previously reported by Berry et al. (2006). The intervening sections consist of

new theoretical predictions for the effect of chirality and dichroism on conical diffraction,

and for the associated optical angular momentum. These results extend and elucidate

several publications: section 4.2 extends Berry & Jeffrey (2006a) and Jeffrey (2006) to

further discuss intensity in the focal image plane and inside the chiral crystal; sections 4.3

& 4.4 extend Berry & Jeffrey (2006b) and Jeffrey (2007) to general (nongaussian) beams,

adding a note on circular dichroism in section 4.3.4; section 4.5 follows Berry et al. (2005).

Throughout, our interest will centre around the critical structure of the light field

exiting the crystal rather than polarisation dependency. Therefore we will mainly present

intensity images for an unpolarised incident beam, though analytic results will be entirely

general.
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4.1 Biaxial Crystals

A biaxial medium (δ = γ = 0, N real symmetric) propagates plane wave eigenstates

d↑↓ (κ) defined by (2.3.25). They are the evolving eigenstates of a real symmetric matrix

F (κ) which rotate half a turn in a circuit of the optic axis, which determines the traceless

part of F to be given by

F tr = V (κ) · Σ = ρ0κ · {σ3, σ1} , (4.1.1)

yielding the propagator integral

D (ρ, ζ) =
1

2π

∫ ∫

dκe
i
“

−1
2 ζκ2+κ·ρ

”

[cos ρ0κ−iκ̂ ·Σ sin ρ0κ] a (κ)d0, (4.1.2)

where κ̂ = κ/κ. Exploiting the circular symmetry of the integral with (2.5.2) and using

the eigenwave representation of section 2.5, we can write simply

D = b+d0 · d↑ d↑ + b−d0 · d↓ d↓, (4.1.3)

where the eigenvalues are the diffraction integrals

b± (ρ, ζ) = B0 (ρ, ζ) ± B1 (ρ, ζ)

=
1

2π

∫ ∫

dκa (κ) e
i
“

−1
2 ζκ2+κ·ρ

”

[cos ρ0κ ∓ iκ̂ · ρ̂ sin ρ0κ] (4.1.4)

=

∞
∫

0

dκκa (κ) e−
1
2 iζκ2

[J0 (ρκ) cos ρ0κ ± J1 (ρκ) sin ρ0κ] , (4.1.5)

and the eigenvectors are d↑↓ (ρ) as defined by (2.3.25). The second equality (4.1.5) assumes

that the incident beam is circularly symmetric, a (κ) = a (κ). Otherwise this can be

treated as an approximation for a slowly varying beam profile, placing the zeroth order

approximation to a (κ) outside the integral as part of a stationary phase analysis.

For an unpolarised or circularly polarised incident beam the intensity (2.3.22) is

Iunpol =
|b+|2 + |b−|2

2
. (4.1.6)

For an incident beam linearly polarised at an angle χ to the horizontal axis (2.3.27), this is

superposed with a simple pattern that rotates twice as fast as any rotation of the incident

beam,

Iχ = Iunpol +
|b+|2 − |b−|2

2
cos (2χ − φρ) , (4.1.7)
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where in polar coordinates ρ = ρ {cos φρ, sin φρ}.

The diffraction integrals (4.1.5) cannot be expressed in closed form but are suitable for

numerical evaluation. Figures 4.2 and 4.1 show the diffracted light intensity for a gaussian

incident beam, in planes transverse to the optic axis successively further from the focal

image plane. In the focal image plane are a pair of concentric bright rings, encompassing

a dark ring, and with a dark central disc. The bright focused rings spread, developing

oscillations on the inner ring, fading away eventually to be dominated by a bright axial

spike. Note that the location of the dark ring appears fixed. This behaviour is general

to any incident beam, and further simulations (not shown) show that the precise profile

differs significantly between beams only near the focal image plane.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.1: Evolution of the conical diffraction rings: theoretical 3D cutaway plots of conical

diffraction intensities in figure 4.2
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.2: Simulation of the conical diffraction ring evolution: theoretical density plots of

conical diffraction intensities (4.1.7) for ρ0 = 60, at distances ζ equal to: (a) 1.8, (b) 3, (c)

6, (d) 12, (e) 18, (f) 30, (g) 42, (h) 98, from the focal image plane in units of the Rayleigh

length for a gaussian incident beam.
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4.1.1 So-called conical refraction

The eigenvalues of the evolution operator, F , are the optical path lengths

Φ± (κ) = −κ · ρ + 1
2ζκ2 ± ρ0κ (4.1.8)

of two refracted eigenrays. Hamilton’s principle (2.7.5) yields the ray equation

ρ = (ζκ ± ρ0) κ̂, (4.1.9)

describing rays emanating from a ring ρ = ρ0, forming a diverging cylinder as distance ζ

from the focal image plane increases. The wavevector solutions are

κ± =
ρ ∓ ρ0

ζ
ρ̂ :







∇κΦ− (κ±) = 0, ρ < ρ0

∇κΦ± (κ±) = 0, ρ ≥ ρ0







. (4.1.10)

The geometric ray intensity (2.7.7) is given by summing over the two rays κ±,

Igeom (ρ, ζ) =
1

2ρζ2

∑

±
|ρ ± ρ0|

∣

∣

∣

∣

a

(

ρ ± ρ0

ζ

)∣

∣

∣

∣

2

. (4.1.11)

Focusing occurs where the Hessian determinant
∣

∣

∣

∣

det
dρ

dκ

∣

∣

∣

∣

=
ρζ

κ
(4.1.12)

vanishes, that is in the focal plane ζ = 0, and along an axial focal line ρ = 0. The quadratic

divergence in the focal plane and linear divergence at the axial focus contrast with an anti-

focus at ρ = ρ0. This is a dark cylinder originating from κ+ = (ρ − ρ0) /ζ = 0, the conical

point (3.2.2), near which the argument κ− = (ρ + ρ0) /ζ is typically beyond the observable

range of the beam, so we can write

Irings (ρ, ζ) ≈ |ρ − ρ0|
2ρζ2

∣

∣

∣

∣

a

(

ρ − ρ0

ζ

)∣

∣

∣

∣

2

. (4.1.13)

The intensity profiles of the two geometric cylinders (rings in ζ level-planes) are symmetric

in intensity about the dark Hamilton cylinder ρ = ρ0.

The origin of these cylinders as ray normals to the wave surface Φ± (κ) + κ · ρ (figure

3.4(a)), are illustrated in figure 4.3. A beam illuminates directions over some neighbour-

hood of the conical point, producing ray normals as shown. Rays from the ‘+’ sheet of

the wave surface give rise to the outer ring in figure 4.3(a), while those from the ‘−’ sheet

are out of range of the beam, and the vanishing intensity of the single ray from the con-

ical point produces Hamilton’s dark ring. The inner ring is produced by rays of the ‘+’



4.1 Biaxial Crystals 65

(a) (b) 

ρ(κ−)
ρ(κ+)

+− +−

ρ(κ+)
ρ(κ−)

Figure 4.3: The rays of internal conical refraction: the dashed line is a mathematical abstrac-

tion, Hamilton’s singular ray from the conical point, producing a dark ring at ρ = ρ0. Around

it: (a) ρ > ρ0, outside the dark ring one ray (4.1.10) originates from each sheet of the wave

surface; and (b) ρ < ρ0, inside the dark ring both rays originate from the same sheet.

solution in (4.1.10), but in a direction where all rays originate from the ‘−’ sheet of the

wave surface, shown in figure 4.3(b).

This is the phenomenon of internal conical diffraction; already the spread of directions

in the beam is necessary to describe the phenomenon beyond the abstraction described

by Hamilton’s conical refraction. Consider the fate of these rays as distance ζ from the

focal image plane increases. Any beam will spread due to diffraction as it propagates, so

that wave directions farther from the optic axis eventually contribute, accessing parts of

the wave surface farther from the conical point. From the shape of the wave surface it is

easy to see that the ray normals turn away from the cone direction as this happens, so the

diffraction cone spreads, the inner cone becoming narrower and the outer cone becoming

wider, accompanied by defocusing (increasing curvature of the wave surface) making the

cones fainter. Near the tangent circle (3.2.3) of the wave surface at κ± = ρ0/ζ, rays focus

along the optic axis as illustrated in figure 4.4 – the region of external conical diffraction.

+−

ρ(κ−)ρ(κ+)

Figure 4.4: The rays of external conical refraction, scattered along the optic axis from the

tangent circle at the turnover of the wave surface, produce a bright focal spike .
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To describe this axial focal line we approximate (4.1.11) for small ρ,

Ispike (ρ, ζ) ≈ ρ0

ρζ2

∣

∣

∣

∣

a

(

ρ0

ζ

)∣

∣

∣

∣

2

, (4.1.14)

which dominates over Iring only far from the focal plane.

Note that in any direction in κ space the normals to the two sheets of the wave surface

are rays associated with orthogonal polarisations. Also a π rotation about the optic axis

rotates a polarisation to its orthogonal state. These facts combined mean that the ray

pairs depicted in figures 4.3 & 4.4 are orthogonal.

For a gaussian beam we can soften the focal plane singularity in the geometric in-

tensity by using the complex ray representation (2.4.7), replacing the distance ζ with
∣

∣

∣
ζ̃
∣

∣

∣
=
√

1 + ζ2 and the beam profile with unity. This would predict the symmetric ring

intensity profile Iring to extend to the focal plane, where careful inspection of the exact

wave intensity in figure 4.2(a) and 4.1(a) reveals the outer ring to be far brighter than the

inner. Away from the focal plane the geometric approximation does capture the average

intensity correctly, and the severe failure of the geometric approximation near the focal

plane is indicative of the importance of wave effects: we will find that the dimming of the

inner ring is an extreme effect of diffraction.

Using the transformation (2.8.2) we infer the ray trajectories of light inside the crystal

that give rise to the above geometrical images,

θρ = κ ± θ0κ̂. (4.1.15)

A ray incident along the optic axis, κ = 0, is refracted into Hamilton’s cone θρ = θ0 inside

the crystal. The intensity,

Icrystal

(

θρ, ζ
′) =

1

2θρζ ′2

∑

±
|θρ ± θ0| |a (θρ ± θ0)|2 , (4.1.16)

reveals that, since the area of the wave surface scattering rays shrinks to zero at the conical

point, Hamilton’s cone is in fact dark, and separates two concentric bright cones, which

refract at the exit face into the bright cylinders (4.1.13). The origin of the axial focal line

is evident at θρ ≈ 0. We will present an image of this intensity when considering chiral

crystals, in figures 4.13-4.15.

4.1.2 Diffraction in the rings

The bright rings (4.1.13) are only well developed for thick crystals, ρ0 ≫ 1, meaning that

the geometric cone attains a radius sufficiently larger than the beam width to resolve the
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bright cylinders. Away from the focal plane, ζ ≫ 1, we can use the asymptotic expansion

of the Bessel function,

Jn (x) ≈
√

2

πx
cos
(

x − π(1+2n)
4

)

, (4.1.17)

to approximate the integrand of the diffraction integrals (4.1.5) for ρ ≈ ρ0 ≫ 1, giving

J0 (ρκ) cos (ρ0κ) ± J1 (ρκ) sin (ρ0κ) ≈
√

2

πρκ
cos
(

(ρ ∓ ρ0)κ − π

4

)

. (4.1.18)

The resulting asymptotic ring formula is

b± (ρ, ζ) ≈ 1

(iζ)3/4 √ρ
f (s±, ζ) , (4.1.19)

expressing the diffraction integrals (4.1.4) in terms of a function

f (s, ζ) =

√

2

π

∞
∫

0

dτ
√

τe−
1
2 τ2

cos
(

sτ − π
4

)

a
(

τ√
iζ

)

, (4.1.20)

which, were it not for the beam profile, would depend only on the saddlepoints of the

integrand at

s± = κ±
√

−iζ =
ρ ∓ ρ0√

iζ
, (4.1.21)

suggesting an asymptotic expansion (section 2.6).

Each of the b± integrals contains a single saddlepoint s±, reflecting their physical sig-

nificance: the two integrals correspond distinctly to two orthogonal eigenwaves, originating

from the two eigenpolarisations in the crystal, as a consequence of the eigenpolarisation

decomposition (2.5.13), and the saddlepoints are just the geometric ray contributions

(4.1.10). Careful consideration of phases shows that the b+ integral also has a contribu-

tion from the endpoint κ = 0, a wave scattered from the conical point, with a unit-step

determining that this exists only inside the Hamilton ring ρ < ρ0 (the unit-step T [..] was

defined in (2.3.6)). To obtain correct phases it is best to transform to a new integration

variable t =
√

τ , and the asymptotic result, valid away from the focal plane and Hamilton’s

anti-focus ρ0 ≫ |ρ − ρ0| ≫
√

ζ ≫ 1, is

f (s+, ζ) ≈ a
(

s+√
−iζ

)

e−
1
2s2

+
√−s+ (−1)T[−Ims+] − a (0)

T [−Res+]√
2 (−s+)3/2

(4.1.22)

f (s−, ζ) ≈ a
(

s−√
−iζ

)

e−
1
2s2

−
√−s−. (4.1.23)

In the sense defined in (2.6.8), the endpoint term is dominant over the saddlepoint term

in the asymptotic expansion, and yet the saddlepoint term is clearly the larger due to its
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prefactor. This is an example of new mathematics discovered within conical diffraction

(Berry 2004a), termed asymptotic dominance by the subdominant exponential. Interest-

ingly, this supposed paradoxical phenomenon occurs throughout conical diffraction.

As in the geometric intensity (4.1.13), the argument involving s− is typically out of the

range of the beam profile (a (κ−) is small), with the result that only one of the diffraction

integrals is significant,

|b+| ≫ |b−| , (4.1.24)

so we can write the propagator integral,

D (ρ, ζ) ≈ b+ (ρ, ζ) (d↑ · d0)d↑, (4.1.25)

and the intensity,

I (ρ, ζ) ≈ |b+ (ρ, ζ)|2 |d↑ · d0|2 . (4.1.26)

We can separate terms from the geometric rays and endpoint wave corrections, into

|b+ (ρ, ζ)|2 ≈ 1

ρζ
βgeom

(

ρ − ρ0

ζ

)

+
T
[

ρ0−ρ
ζ

]

ρ (ρ0 − ρ)3
βend

(

ρ − ρ0

ζ
,
ρ − ρ0√

iζ

)

, (4.1.27)

where

βgeom (κ+) = |κ+| |a (κ+)|2 (4.1.28)

is just the geometric ray contribution appearing in (4.1.13), and

βend (κ+, s+) = 1
2 |a (0)|2 −

√
2 a (0) a (κ+) |s+|2 cos 1

2 |s+|2 (4.1.29)

introduces oscillations due to the endpoint of the diffraction integral κ = 0, that is,

interference with a wave scattered from the conical point. Figure 4.5 shows the evolution

of the bright rings exhibiting this asymptotic form.

From βgeom we can imply the location of the peaks of the two bright rings, at

ρring = ρ0 ± ζ/
√

2, (4.1.30)

and from the cosine, which produces oscillations on the inner ring, we can imply the

peak-to-peak width of the ring fringes

∆ρfringe =
2πζ

ρ0 − ρ
. (4.1.31)
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(a) (c)

2ζρ0I
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(b) (d)
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Figure 4.5: Asymptotic intensity of the secondary rings: exact (thin) from (4.1.4), asymptotic

expansion (thick) from equation (4.1.27), and uniform approximation (dots) from equation

(4.1.39), for: ρ0 = 20 with (a) ζ = 3, (b) ζ = 6; and for ρ0 = 60 with (c) ζ = 9, (d) ζ = 18.

The expansion (4.1.27) diverges near the dark ring due to a singular prefactor in the

endpoint wave term, rendering it valid only for ρ0−ρ >
√

ζ and ρ > ρ0, therefore correctly

describing the smooth exponential decay outside the dark ring, and the fringes on the inner

ring which get faster compared to the ring width as ζ increases. There are approximately

ζ/2π of these fringes in the 1/e2 width ζ
√

2 of the inner ring peak, eventually crowding

toward the symmetric ring profile predicted geometrically. A subsequent approximation

1/
√

ρ ≈ 1/
√

ρ0 in (4.1.19) made by Berry (2004b) inadequately describes the relative

brightness of the rings, which requires the first correction

1√
ρ
≈ 1√

ρ0

(

1 − ρ − ρ0

2ρ0

)

. (4.1.32)

The considerations above, compared to the geometric expressions (4.1.13) and (4.1.14),

lead to the detailed schematic diagram in figure 4.6 which has not been shown explicitly

before. For small ρ0 and ζ (bottom picture) we identify regions where the inner ring

separates from the axis leaving two well defined conical diffraction rings, setting the ‘thick

crystal’ or ‘large ring-to-beam ratio’ condition more precisely at ρ0 ≫ 1 + ζ2 and showing

just how clear the boundary is. For thick crystals (top picture) the regions where two

geometric rings appear is clear, as is where they develop secondary oscillations, and the
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Figure 4.6: The regimes of conical diffraction: (top) the well developed rings and axial focal

spike occur in well defined regions, showing also growth of oscillations with ρ0, and (bottom) at

small ρ0 the rings may not be resolved. The regions determined from the asymptotic formulae

are: ρ0 ≫ 1+ζ2 (full curve) is the thick crystal condition for the inner ring to be distinct from

the axis, ρ3
0ζ

−2e−ρ2
0/ζ2 ≪

(

2π2e
)−1/2

(dashed curve) is the far field condition for dominance of

the focal spike, and ρ0 ≤ ζ1/2 (dotted curve) is the very far field condition in which diffraction

blurs out conical diffraction and the incident (gaussian in this case) beam profile returns.
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transition to the axial focus. The experiments of Lloyd (1837) (see figure 1.1) inhabit the

region ρ0 ≈ 1, showing why a thin crystal and wide beam allowed him to view only a

poorly resolved outer ring, the dark ring having not fully formed.

The polarisation term in the intensity (4.1.26) is simple. If the incident beam is linearly

polarised it is
∣

∣

∣d↑ · dlin
χ

∣

∣

∣

2
= cos2

(

1
2φρ − χ

)

, (4.1.33)

for circular polarisation it is

∣

∣d↑ · dcirc
±
∣

∣

2
= 1

2

∣

∣cos 1
2φρ ± i sin 1

2φρ

∣

∣

2
= 1

2 , (4.1.34)

which is the same as for an unpolarised beam, found by averaging over any two orthogonal

polarisations, for example

|d↑ · dun
0 |2 = 1

2

(

|d↑ · d+|2 +
∣

∣d↑ · d2
−
∣

∣

)

= 1
2 . (4.1.35)

The polarisation (2.3.26) in the rings, described by

ω ≈ e−iφρ, (4.1.36)

is independent of the incident polarisation, and linearly polarised with an orientation

φρ/2 to the horizontal, shown in figure 1.3. Like the eigenstates in the crystal, this

rotates only half a turn in a circuit of the optic axis, reflecting the presence of a 1
2 -index

polarisation singularity, a C (circular polarisation) point, in the dark center of the rings

(and at exactly the centre for circular incident polarisation). The factor (4.1.33) reflects

this structure: a linearly polarised incident beam will illuminate only part of the rings,

one radius (φρ = 2χ + π) being totally dark, and this dark brush rotates twice as fast as

any rotation ∆χ of the incident beam.

4.1.3 Uniformisation and rings in the focal image plane

The asymptotic expansion of (4.1.20) diverges near the Hamilton dark ring, and since

this divergence comes from the endpoint term in (4.1.22) it exists only on the inner ring.

The divergence can be smoothed out by a slightly more sophisticated approximation. By

approximating the beam profile a (κ) with its constant value a (κ+) at the saddlepoint of

the integrand, the remaining integral can be evaluated in various forms involving standard
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functions, three of which were presented by Belsky & Stepanov (1999) and Berry (2004b),

and we give two alternative forms here:

f (s, ζ)

a
(

s√
−iζ

) ≈
√

2

π

∞
∫

0

dτ
√

τe−
1
2 τ2

cos
(

sτ − π
4

)

(4.1.37)

=
e−

1
2s2

23/4

√

2
π

[

(

3
4

)

!1F1

[

−1
4 , 1

2 , 1
2s2
]

+ s
√

2
(

5
4

)

!1F1

[

−1
4 , 3

2 , 1
2s2
]

]

(4.1.38)

=
e−

1
4s2

s3/2√π

4
sgn [Re s]3/2 ×

[

I− 1
4

(

1
4s2
)

− I 3
4

(

1
4s2
)

+ sgn [Re s]
(

I− 3
4

(

1
4s2
)

− I 1
4

(

1
4s2
)

)]

, (4.1.39)

in terms of confluent hypergeometric functions 1F1 and modified Bessel functions of the

first kind In (Abramowitz & Stegun 1972). Note that these are exact as stated, and that

the function f/a is a function only of the variable s. Each of the b+ and b− polarisations

can be written in terms of such functions f (s+, ζ) and f (s−, ζ) respectively, though for

the well developed rings only the former is significant.

The saddlepoint expansion (4.1.27) suffers from the same focal image plane singularity

as the geometrical intensity. This, as there, can be overcome for a gaussian incident

beam by means of the complex ray representation but, as there, fails to correctly describe

the inner ring, this time because the divergence of the endpoint term encroaches on the

inner ring. Using the uniform approximation above, however, the divergence is removed

completely. Furthermore, the gaussian complexification sets the beam profile to unity, so

f itself becomes a function only of the saddlepoint variable s, valid for all ζ ≪ ρ0, and

(4.1.37) becomes exact.

The result is an extremely accurate expression for the well developed rings, compared

to the exact in figure 4.5. In the focal image plane the profile is universal, shown in figure

4.7(a), scaling with the Hamilton radius ρ0 and the distance ρ−ρ0 from it. The dimming of

the inner ring by diffraction is clear. The form (4.1.39) is suitable for asymptotic expansion

and yields (4.1.22) subject to the gaussian complexification.

The uniform approximation above cannot be extended to the focal plane for a nongaus-

sian incident beam, where further investigation requires considering special cases, only one

other of which has been solved. Berry (2004b) derived the universal focal plane profile for

a pinhole incident beam. This is achieved by using the fourier representation (2.3.8) for

the beam, integrating first over the wavevector κ, carrying out the azimuthal ρ integral
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Figure 4.7: Rings in the focal image plane: the universal intensity profiles in the focal image

plane for (a) a gaussian incident beam, exact (curve), and asymptotic approximation (dots)

from equation (4.1.39); and, (b) a pinhole incident beam, exact (thick curve) and asymptotic

(dots), and exact with aperture angle 16/k0w (thin curve).

followed by a first order approximation in |ρ − ρ0| ≪ ρ0, before finally simplifying the ρ

integral. Noting that (4.1.24) holds, Berry obtains

b+ (ρ, 0) ≈ 2
√

2

π
√

ρ
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ξ=ρ−ρ0

, (4.1.40)

in terms of the complete elliptic integrals E and K (for which we use the notation in

MathematicaTM). Thus diffraction of the beam from a pinhole produces a brighter but

narrower inner ring (ξ < 0), and a sharp outer ring (ξ > 0). Figure 4.7(b) shows that

not only is this approximation indistinguishable from the exact wave integral, but the

logarithmic singularity in the inner ring is indeed part of the exact wave theory.

Of course this singularity is unphysical, a matter that has not been discussed elsewhere.

It originates in the slow convergence of the κ → ∞ tail of the integral, and is physically

smoothed by the presence of a finite aperture angle, either from the finite width of the

crystal or some objective lens. This cuts the integral off at some finite κaperture, inducing

oscillations in the universal profile, an example of which is overlayed in figure 4.7(b). The

integral cannot then be solved analytically, but numerical integration yields the depen-

dence of the profile on aperture angle κaperture/k0w shown in figure 4.8, approaching the

universal form as the aperture grows toward infinite size.

In both the gaussian and pinhole incident beams, geometrical optics breaks down near

the focal image plane due to focusing and diffraction is of prime importance. These cases
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Figure 4.8: Aperture-induced oscillations in the focal plane: the intensity in the focal image

plane for a pinhole incident beam depends strongly on the aperture angle κaperture, which

determines the range of wave directions under observation. As the aperture angle increases

the intensity evolves towards the universal profile in figure 4.7(b).

highlight different ways in which diffraction can play a role: for a gaussian beam the ge-

ometric intensity predicts symmetric rings, but diffraction dominates the inner ring, all

but destroying it; for a pinhole beam poor collimation comes into play, and the observa-

tional aperture size produces interference which softens the logarithmic singularity from

an infinite aperture.

4.1.4 The bright axial spike

The internal conical diffraction rings of the last two sections become fainter as distance ζ

from the focal image plane increases, and the axial focus begins to dominate. In the axial

region far from the focal plane ρ ≪ ρ0 <
√

ζ, we can consider the Bessel functions and

beam profile in the diffraction integrals (4.1.5) to be slowly varying. Evaluating them at

the saddlepoints κ± ≈ ρ0/ζ of the remaining integrals, we obtain

b± (ρ, ζ) ≈ ei
ρ2
0

2ζ
ρ0

ζ

√

π

2iζ
a

(

ρ0

ζ

)[

J0

(

ρρ0

ζ

)

∓ iJ1

(

ρρ0

ζ

)]

. (4.1.41)
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This implies |b+|2 = |b−|2, so the intensity has no azimuthal dependence regardless of the

incident beam’s polarisation, and we can write

I (ρ, ζ) ≈ πρ2
0

2ζ3

∣

∣

∣

∣
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]

. (4.1.42)

This attains a maximum along the axis at ζ = ρ0

√

2/3. The bright axial spike is sur-

rounded by faint interference rings which spread outward as ζ increases. These ‘shoulders’

are the inflection points of the Bessel J0 function (zeros of J1) rather than maxima or

minima, with a spacing of ∆ρ ≈ πζ/ρ0, shown magnified in figure 4.9. A taylor expansion

of this result near the axis correctly yields the divergent geometric focus (4.1.14).

(a) (b)
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Figure 4.9: Intensity of the axial spike: (a) spike profile for ρ0 = 20, approximation (4.1.42)

scaled to unity on the axis (dotted curve), and exact intensity for ζ = 10 (thick curve), ζ = 15

(medium curve), ζ = 30 (thin curve); (b) axial intensity ζI, approximation (4.1.47) (dots),

and exact intensity for ρ0 = 20 (thick) and ρ0 = 60 (thin).

Along the axis itself, an asymptotic expansion of the diffraction integral contains a

subdominant saddlepoint contribution, and a dominant endpoint contribution required

for the correct limit at small ζ, giving

b+ (0, ζ) = b− (0, ζ) ≈
√

π

2

iρ0

(iζ)3/2
ei

ρ2
0

2ζ a

(

ρ0

ζ

)

− 1

ρ2
0

a (0) . (4.1.43)

This again seemingly paradoxical result involves the subdominant exponential (first term)

giving the greater contribution in the region of interest. For the intensity the subdominant

saddlepoint term is sufficient, giving

I (0, ζ) ≈ πρ2
0

2ζ3

∣

∣

∣

∣

a

(

ρ0

ζ

)∣

∣

∣

∣

2

. (4.1.44)



For a gaussian incident beam the integrals (4.1.5) can be evaluated exactly along the

axis in terms of the error function. For this purpose the integrals defined in (2.5.5) or

(2.5.16) are also suitable, satisfying

b±
(

0, ζ̃
)

= B0

(

0, ζ̃
)

=
1

ζ̃
C0





ρ0
√

ζ̃



 , (4.1.45)

where

C0 (r0) = 1 + r0

√

iπ
2 e

1
2 ir2

0erf

(

r0√
−2i

)

. (4.1.46)

An asymptotic expansion gives, in agreement with the general beam result above,

I (0, ζ) ≈ πρ2
0

2ζ3
e
− ρ2

0
ζ2 . (4.1.47)

The uniform scaling of this approximation is shown in figure 4.9(b).
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4.2 Biaxial Crystals with Optical Activity

We define optical activity as the rotation of phase by a total amount ρ0γ, of a circu-

larly polarised plane wave propagating along the optic axis of a crystal, where γ specifies

chirality and ρ0 provides a convenient paraxial scaling. Written in terms of a hermitian

antisymmetric matrix Fch, this is the eigenequation

D = e−iFch

dcirc
± = e∓iρ0γdcirc

± , (4.2.1)

uniquely determining Fch as

Fch = ρ0γσ2. (4.2.2)

Combined with biaxiality the paraxial effect of the crystal is therefore, up to a trace,

F tr = V (κ) · Σ = ρ0 {κ, γ} · {σ3, σ1, σ2} . (4.2.3)

The effect on a linearly polarised wave is to rotate the orientation,

D = e−iFch

dlin
χ = dlin

χ+ρ0γ . (4.2.4)

Exploiting circular symmetry of the propagator integral via (2.5.2) and using the eigen-

wave representation (2.5.5) to write D = [B0I + {ρ̂B1, B2} ·Σ] .d0, we obtain D (ρ, ζ) as

defined by (2.5.5). Carrying out the azimuthal integration gives
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, (4.2.5)

which was first written down as an extension to the Belskii-Khapalyuk theory by Belsky

& Stepanov (2002).

The intensity for an unpolarised incident beam is simply the circularly symmetric sum

of magnitudes

Iunpol = |B0|2 + |B1|2 + |B2|2. (4.2.6)

Chirality distinguishes the handedness of circularly polarised incident beams with a cir-

cularly symmetric brightening or dimming,

I± = Iunpol ∓ 2Re [B∗
0B2] . (4.2.7)
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Linear incident polarisation introduces azimuthal dependence, a swirl pattern whose ori-

entation rotates twice as fast as that of the incident beam,

Iχ = Iunpol + 2Re
[

ei(φρ−2χ) (Re [B0B
∗
1 ] + iIm [B∗

1B2])
]

. (4.2.8)

The chiral conical diffraction intensity for an unpolarised gaussian incident beam is

shown in figures 4.10 and 4.11. In the focal image plane there is a set of bright concentric

rings, whose brightness decreases with radius. As distance from the focal plane increases

one outer ring dominates, eventually giving way to a bright axial spot surrounded by

fainter rings. The range over which the bright outer ring shrinks to a spot depends on

γ, as can be seen in figure 4.10, with the number and sharpness of interference fringes

increasing with ρ0.

ρ

ζcusp

ζcusp/2

0
0−ρ0 ρ0 0−ρ0 ρ0

ζcusp

ζcusp/2

0
0−ρ0 ρ0 0−ρ0 ρ0

ζ

Figure 4.10: Intensity sections of the caustic horn for unpolarised incident beam, calculated

using (4.2.5), for: (a) ρ0 = 50, γ = 1, and ρ0 = 20 with γ values: (b) 2, (c) 1, (d) 1/2.
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(a)

(b)

(c)

(d)

Figure 4.11: The rings of chiral conical diffraction: theoretical plots and 3D cutaways of

intensities calculated using (4.2.5) for ρ0 = 50, γ = 1, at distances ζ equal to : (a) ζcusp/50,

(b) ζcusp/5, (c) 2ζcusp/5, (d) 7ζcusp/5.
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4.2.1 The “trumpet horn” caustic of chiral conical refraction

Chirality breaks the conical point degeneracy of the optical path length,

Φ± (κ,ρ, ζ) = −κ · ρ + 1
2ζκ2 ± ρ0

√

κ2 + γ2. (4.2.9)

Rays beyond the crystal are thus given by

ρ± =

(

ζ ± ρ0
√

κ2 + γ2

)

κ, (4.2.10)

which rearranges to a quartic ray equation

(ρ − ζκ)2
(

κ2 + γ2
)

− (ρ0κ)2 = 0 (4.2.11)

with solutions

κ = κn (ρ, ζ) ρ̂, n = 1, 2, 3, 4, (4.2.12)

given analytically in appendix A. The ray determinant, simplified using the ray equation

to remove ± signs, can be written

∣

∣

∣

∣

det
dρ

dκ

∣

∣

∣

∣

=
ρ

κ

(

ζ +
(ρ/κ − ζ)3

(ρ0/γ)2

)

. (4.2.13)

The ζ dependent factor vanishes around a ring of inflection points (3.2.5) in the wave

surface, which focuses rays around a rotationally symmetric caustic surface

(

ρc

ρ0

)2/3

+

(

ζ

ζcusp

)2/3

= 1, (4.2.14)

whose apex is a spun cusp at ζ = ζcusp = ρ0/γ. Despite the removal of the κ = 0 conical

degeneracy, the wave surface still possesses the tangent circle (3.2.4), producing an axial

focal line which threads the horn-shaped caustic.

The geometric intensity is summed over the real solutions to (4.2.11),

I (ρ, ζ) =
1

2ρ

∑

n



κ

(

ζ +
(ρ/κ − ζ)3

ζ2
cusp

)−1

|a (κ)|2




κ=κn(ρ,ζ)

. (4.2.15)

Inside the caustic (where the left hand side of (4.2.14) is less than unity), there are four

real rays. Two of these coincide on the caustic and vanish (become complex) outside it.

The origin of these rays from the two sheets of the wave surface are illustrated in figure

4.12. In the absence of a conical point degeneracy, polarisation states rotate fully in a
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Figure 4.12: Rays of chiral conical refraction: (a) ρ < ρc, inside the caustic there are four real

solutions of the ray equation (4.2.10), two of which coalesce on the inflection ring (see figure

3.4(b)); and (b) ρ > ρc, outside the caustic only two real solutions remain.

circuit of the optic axis, so two rays symmetric about the axis have the same polarisation

but with a π phase difference. This means that the polarisations associated with the ‘−’

sheet rays are orthogonal to those of each ‘+’ sheet ray in figure 4.12.

The ray geometry suggests a natural scaling {u, v} = {ρ/ρ0, ζ/ζcusp}, in terms of which

the optical path length and intensity can be written in a universal form dependent only

on u and v. Only with the introduction of phase information would we require γ, and only

in considering the integrals B1,2 would we require ρ0. This is a useful simplification but

the scaling is singular for nonchiral crystals, so we do not use it here, but we do employ

it in appendix A.

4.2.2 Voigt’s “Trompeten Trichters”: rays inside the chiral crystal

The optical path length of rays after refraction by the entrance face of the crystal is given,

according to section 2.8, by

Φ
(

κ,θρ, ζ ′
)

= ζ ′
(

−κ · θρ + 1
2κ2 ± θ0

√

κ2 + γ2
)

, (4.2.16)

giving rays with anglular deflection

θρ± =

(

1 ± θ0
√

κ2 + γ2

)

κ (4.2.17)

from the optic axis. The geometric intensity inside the crystal is given, returning to

cartesian coordinates, by

I
(

ρ, ζ ′
)

=
1

2ρζ ′

∑

n



κ

(

1 +
(ρ/ζ ′κ − 1)3

(ζcusp/ζexit)
2

)−1

|a (κ)|2




κ=κn(ρ,ζ′)

, (4.2.18)
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where ζexit is the exit face of the crystal (2.8.4). As in the image field, the sum is over the

real solutions κn (ρ, ζ ′) to the quartic ray equation obtained from (4.2.17).

The tangent circle of Fresnel’s wave surface for a chiral crystal focuses rays along the

axis. The ring of inflection points produces a caustic ray cone inside the crystal given by

(

θρ+

γ

)2/3

+

(

θ0

γ

)2/3

= 1. (4.2.19)

This cone, and the envelope of normals producing it, was predicted by Voigt (1905b). Note

that it is distinct from Hamilton’s nonchiral conical refraction cone which, with the conical

point destroyed by chirality, leaves a faint conical remnant at an angle much larger than

that of the caustic. Many twentieth century investigations mistakenly believed that this

remnant would dominate the chiral phenomenon, prompting Voigt to dub it “sogenannte

konische Refraktion”.

Clearly from (4.2.19) the caustic cone exists only when

θ0

γ
=

ζcusp

ζexit
> 1, (4.2.20)

that is, when the cusp in the image field lies outside the crystal. As γ increases Voigt’s

cone emerges from the axial focal line and the cusp appears in the image field. The cone

refracts out of the crystal to form the horn-shaped caustic of the image field, and at the

exit face the two necessarily coincide over a ring with radius

ρexit = ρ0

[

1 −
(

ζexit

ζcusp

)2/3
]3/2

. (4.2.21)

Figures 4.13-4.15 illustrate this transition. Figure 4.13 shows the actual ray intensity,

inside the crystal from (4.2.18) and beyond it from (4.2.15), in the nonchiral, chiral, and

strongly chiral cases. The faint remnant of Hamilton’s cone can be seen at the same wide

angle in the chiral images, along with the axial focal line. Voigt’s caustic cone and its

refracted horn spring out of the axial focus as chirality increases, with the image cusp

appearing from ζ → ∞ and eventually vanishing inside the crystal. Figure 4.14 shows

the complete image field, with the cusp moving inside the crystal under strong chirality.

The caustic cone reaches its maximum radius of ρ = ρ0 in the focal image plane which is

where, in the absence of chirality, the bright rings surrounding the dark anti-focus can be

seen. Finally figure 4.15 illustrates the paths of rays refracted through the crystal, and in

(a) it is seen that these project back onto two focal points (Hamilton’s dark ring) in the

focal image plane.
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Figure 4.13: Ray intensity through the crystal, (entrance face ζ ′ = 0 and exit faces ζ = ζ ′ =

ζexit), for ζcusp/ζexit values: (a) 103; (b) 3; (c) 4/5.
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Figure 4.14: Projected ray intensity through the crystal, projected back within the crystal to

the focal image plane ζ = 0 and beyond, for the values in figure 4.13.
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Figure 4.15: Ray trajectories through the crystal, for the values in figure 4.13, with (d), a

magnification of the ray caustic. Rays from the ‘−’ sheet are full lines, rays from the ‘+’ sheet

are dashed lines.
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4.2.3 Diffraction and the caustic horn

For asymptotic analysis we choose the vector form of the chiral diffraction integrals (2.5.6).

Using cartesian coordinates κ = {κx, κy} where κx lies along ρ, the saddlepoints of the

integrals satisfy the ray equations (4.2.10) and (4.2.11) with κy = 0.

Following section 2.6 we extract the ‘heart’ of the diffraction integrals, b± (ρ, ζ), whose

phase can be expanded as

Φ (κ) = Φ (κn) +
(κx − κn)2

2

∂2

∂κ2
x

Φ (κn) +
κ2

y

2

∂2

∂κ2
y

Φ (κn) + ... (4.2.22)

Note the vanishing of the first derivative at the saddlepoints κn, the solutions to (4.2.12),

each of which contributes

bn (ρ, ζ) =
a (κn)

2π
e−iΦ(κn)

∞
∫

−∞

dκye
−i ρ

κn
κ2

y

∞
∫

−∞

dκxe
−i

1
2 (κx−κn)2 ∂2

∂κ2
x

Φ(κn)
(4.2.23)

to the integral. As shown in figure 4.12, only one ray originates on the ‘+’ sheet of the

wave surface Φ+ + κ · ρ. This corresponds to one saddlepoint contribution which exists

everywhere, a stability consistent with the fact that the Φ+ part of the integral can be

separated from the Φ− part. The integral involving Φ− then has three saddlepoints,

which all lie on the real κx axis when {ρ, ζ} is inside the caustic, and the stationary

phase integration contour passes through all three as illustrated in figure 4.16. At the

caustic (4.2.14) two saddlepoints coalesce, and outside the caustic they become complex

(a)                   (b)         (c)

branch
cut

saddle-
point

Reκ

Imκ

Figure 4.16: Saddlepoints of the wave function (4.2.23): the phase function Φ− plotted (a)

inside the caustic, (b) on the caustic, (c) outside the caustic; showing branch cuts (dashed),

branch points (dots), phase contours (lines), integration contour (bold), integrand magnitude

(shaded), and saddlepoints (crossings), plotted in the complex κx plane.
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conjugates in the complex κx plane. The integration contour passes then through one

saddlepoint that remains on the real axis and corresponds to a ray, but passes through

only one of the two complex saddlepoints, which corresponds to an evanescent wave.

At the saddlepoints, using the ray equation (4.2.10), we can write the phase and its

second derivative simply as

Φ± (κn) = Ψn ≡ −κnρ + 1
2ζκ2

n +
ρ2
0

ρ/κn − ζ
(4.2.24)

∂2

∂κ2
x

Φ± (κn) = Ψ′′
n ≡ ζ +

(ρ/κn − ζ)3

ζ2
cusp

, (4.2.25)

with the corresponding κy derivative vanishing trivially. The saddlepoint contributions

integrate exactly to give

bn (ρ, ζ) = a (κn)

√

κn

−ρΨ′′
n

e−iΨn . (4.2.26)

Then the first chiral diffraction integral is given by B0 ≈ 1
2

∑

n bn, and by differentiating

(4.2.23) we obtain

Bm (ρ, ζ) ≈ 1
2

∑

n

cm (κn) a (κn)

√

κn

−ρΨ′′
n

e−iΨn , m = 0, 1, 2, (4.2.27)

where

c0 (κ) = 1, c1 (κ) =
κ

ρ0

(ρ

κ
− ζ
)

, c2 (κ) =
γ

ρ0

(ρ

κ
− ζ
)

. (4.2.28)

The intensity (4.2.6) under this approximation is then equivalent to the geometrical in-

tensity (4.2.15), with the addition of: (i), a complex saddlepoint now included in the sum

giving an evanescent wave outside the caustic, and (ii), a phase Ψ which provides the

wave information associated with each ray, introducing interference between the three ‘−’

sheet rays. Figure 4.17 shows the resulting geometric intensity with wave interference,

corresponding to the ζ > 0 region of figure 4.14(b), decorated with interference and the

evanescent wave which drops off exponentially outside the caustic.

The geometric approximation over complex rays and including phase contains all phys-

ical information about the diffracted light field from a biaxial chiral crystal. But it diverges

along the caustic, along the focal line and, more severely, where the two intersect at the

cusp. (Note that the geometrical intensity for chiral crystals does not diverge at ζ = 0

except at ρ = ρ0, implying that this is no longer strictly a focal plane). The divergence at

the caustic can be removed for gaussian beams by use of the complex ray trick, the effect
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ρ

Figure 4.17: Geometrical optics with phase: density plot of intensity in the ρ-ζ plane for

unpolarised incident beam, from stationary phase approximation (4.2.27), with ρ0 = 50, γ = 1.

being to separate the caustic into Stokes and anti-Stokes sets, reducing the singularity

to a small jump. In the next section we give a more powerful method for smoothing the

caustic discontinuity for general beams, using the generic association of the caustic with

the fold catastrophe and the Airy function.

4.2.4 Uniformisation over the caustic

To derive a uniform approximation (Chester et al. 1957) we map the divergent integrand

onto a function with the same critical behaviour. To describe the caustic the function must

have two stationary points which coalesce on a subset of the domain. The simplest such

function is a cubic exponential. The cubic phase function is known as the fold catastrophe

(Poston & Stewart 1996, Nye 1999), and the simplest integral obtained from it is the Airy

function.

The chiral conical diffraction caustic concerns only two of the saddlepoint solutions

(4.2.12). For convenience we will define these solutions as in appendix A, labeled so that

their associated phases satisfy

Φ (κ4) > 0 > ReΦ (κ1) ≥ ReΦ (κ2) > Φ (κ3) , (4.2.29)

in which case the caustic occurs when κ1 = κ2, the phases (and κn’s) are all real inside

the caustic, and outside the caustic Φ (κ1) and Φ (κ2) are complex conjugates.
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If we define

αmn =
cm (κn) a (κn)

2

√

κn

iρ |Ψ′′
n|

, (4.2.30)

we can write the stationary phase approximation (4.2.27) for the two caustic saddlepoint

contributions as

Bsp
m = αm1e

−iΨ1+i
π
4 + αm2e

−iΨ2−i
π
4 . (4.2.31)

The ±π/4 phase comes from the sign of Ψ′′
n, consistent with κ1 and κ2 corresponding

respectively to a maximum and minimum along the integration contour.

Uniformisation is achieved by mapping the phase Φ (κ) smoothly onto a cubic function

Φ (κ) = ϕ (q) = 1
3q3 − sq + λ. (4.2.32)

The κy part of the integral (4.2.23) can be carried out smoothly by stationary phase and

does not concern us here. Applying this mapping to the κx part we have

∞
∫

−∞

dκxcm (κx) a (κx)
√

κxe−iΦ(κx) =

∞
∫

−∞

dqp (q) e−iϕ(q). (4.2.33)

The constants s and λ are found by considering the phase at the mutual saddlepoints

κ1,2 = q± = ±√
s, giving

λ = 1
2 (Ψ1 + Ψ2) , s =

[

3
4 (Ψ1 − Ψ2)

]2/3
. (4.2.34)

It is necessary to expand the prefactor p in the mapped integrand to first order,

cm (κx) a (κx)
√

κx = p (q) ≈ p0 + qp1. (4.2.35)

The constants pj are found in terms of dκx/dρ at the stationary points of ϕ, by differ-

entiating the mapping (4.2.32) twice with respect to q. The resulting mapped integrals

consist of an Airy function (multiplying p0) and its derivative (multiplying p1), giving

Buni
m =

√
πe−i

1
2 (Ψ1+Ψ2)

[

αm1 + αm2

s−
1
4

Ai (−s) + i
αm1 − αm2

s
1
4

Ai′ (−s)

]

. (4.2.36)

This result is actually inevitable given the assumption that the uniform approximation

takes the form

Buni ∼ e−iλ
[

f1Ai (−s) + f2Ai′ (−s)
]

, (4.2.37)

if s and λ are known to be given by (4.2.34); the unknowns f1,2 are determined by the

equality of the uniform and stationary phase approximations far from the caustic, where

Ai (−s) ≈ 1

s1/4
√

π
sin
(

2
3s2/3 + π

4

)

, Ai′ (−s) ≈ s1/4

√
π

cos
(

2
3s2/3 + π

4

)

. (4.2.38)
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The uniform intensity is almost indistinguishable from the exact in most regions; the

comparison is shown in figure 4.18. The uniform approximation still diverges along the

axis, though this only becomes significant at large ζ near the cusp, a higher order catas-

trophe, which we will consider in section 4.2.6.
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ρ

Figure 4.18: Asymptotics of the chiral Airy fringes: comparison of exact intensity from the

integrals (4.2.5) (dots), stationary phase approximation from equation (4.2.27) (thin curves),

and uniform asymptotic approximation using equation (4.2.36) (thick curves), where ζ =

ζcusp/2, γ = 1, and ρ0 equals: (a) 20, (b) 50, (a) 100.

4.2.5 The Stokes set

We have so far commented on the disappearance of ray solutions across the caustic and

seen how this correctly reproduces the intensity, but there is also a Stokes surface. In

the labelling convention (4.2.29) this encloses a region where the saddlepoint κ3 ceases

contributing to the integral by Stokes’ phenomenon illustrated in figure 4.19.

(a)       (b)           (c)branch
cut

saddle-
point

Reκ

Imκ

Reκ

Imκ

Reκ

Imκ

Figure 4.19: Stokes’ phenomenon: the phase function Φ− plotted in the complex κx plane

as a Stokes surface is crossed, showing the transition between (a) one saddlepoint, (b) phase

contour degeneracy on the Stokes surface, (c) two saddlepoints. (cf figure 4.16).



4.2 Biaxial Crystals with Optical Activity 89

In this instance the Stokes surface lies in the darkness far outside the caustic where

ReΨ1 = ReΨ2, and is given by the Stokes conditions ReΨ1,2 = ReΨ3, or

Ψ3 = 1
2 (Ψ1 + Ψ2) . (4.2.39)

This surface has no analytic solution that we have found, but by writing the phase in the

form

ζΨn = 1
2 (ρ − ζκn)2 +

ρρ2
0

ρ − ζκn
− 1

2ρ2 − ρ2
0, (4.2.40)

the last two terms are irrelevant, and we can write the Stokes condition as

y1

y3
=

y3
1 + 2ρρ0

y3
3 + 2ρρ0

, yn = ρ − ζκn, (4.2.41)

where y1 is interchangeable with y2.

Wright (1980) showed that near the cusp, the Stokes surface must have the form

(

ρ
√

5 +
√

27ρ0

)3

+

(

ζ

3ζcusp

)2

≈ 1, (4.2.42)

and far away (4.2.41) shows that it tends to the form ρ/ρ0 = ζ/ζcusp. These conditions

lead to an approximate expression for the Stokes surface:

(

ζ

ζcusp

)2

−
ǫ
(

ρ
ρ0

− 1
)3

1 + ǫ
(

ρ
ρ0

− 1
) = 0, ǫ =

2

27

(

5 + 3
√

3
)

, (4.2.43)

defining a horn-shaped surface, wider than the caustic, extending from the top of the cusp

as shown in figure 4.20.

There is a further surface on which Ψ4 satisfies the Stokes condition (4.2.39) in place

of Ψ3, obtained from the Stokes surface by reflection in the cone ρ/ρ0 = ζ/ζcusp. This is a

false Stokes set, where the Stokes condition is satisfied but analysis of the stationary phase

contours shows no corresponding degeneracy or change in topology. The reason is that

the κ4 solution is a saddlepoint of the separable Φ+ part of the diffraction integral, or a

ray normal of the ‘+’ sheet of the wave surface, and cannot interact with the saddlepoints

in the Φ− part of the integral, since they are in the orthogonal polarisation.
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ρ0

caustic

stokes set

false
stokes
set

ρ

2 real 

2 real
1 evanescent

ζ

ζcusp

4 real 
0 

Figure 4.20: Geometry of chiral conical diffraction: showing the caustic (thick curve) and

Stokes set (dashed curve), separating the shaded regions containing 2 real rays, 4 real rays,

and 2 real rays with one evanescent wave (solutions of the ray equation (4.2.10)).

4.2.6 The spun cusp and axial spot

The geometric and uniform approximations both diverge along the axis, most severely at

the cusp, which represents a catastrophe of fourth order. It is characterised in space by

the crossing of two focal surfaces – the axial focal line and the caustic – and in phase

space by the coalescence of all three stationary points of Φ−. The generic catastrophe

can therefore be described in terms of an integral over a quartic phase function, which

in this circularly symmetric case is the spun cusp (or bessoid (Kirk et al. 2000, Kofler &

Arnold 2006)) integral

J (ξ, η) =

∞
∫

0

dtte−i(t4+ξt2)J0 (ηt) . (4.2.44)

We will study this case only for a gaussian incident beam, using the Cm integrals

(2.5.16) in terms of the integration variable σ given by (2.5.15). Then a mapping

σ → t

√

2
[

t2 + g
√

2
]

(4.2.45)

gives the C0 integral in the exact form

C0 (r) = 2

∞
∫

0

dtt
[

2t2 + g
√

2
]

e−i(t4+g
√

2t2)

× J0

(

rt

√

2
[

t2 + g
√

2
]

)

cos
(

r0

[

t2
√

2 + g
])

, (4.2.46)
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which converges rapidly along the path arg t = −π/8. Approximating the mapping by

neglecting the quadratic term so t
√

2
[

t2 + g
√

2
]

≈ t
√

2g
√

2, and defining

ξ± ≡
√

2 (g ∓ r0) , η ≡ r

√

2g
√

2, (4.2.47)

we differentiate to find the other integrals, giving the spun cusp form

C0 (r) ≈ 2

(

( η

2r

)2
+ i

∂

∂ξ

)

∑

±
e±ir0gJ (ξ±, η)

C1 (r) ≈ iη
√

2

r

∂

∂η

∑

±
±e±ir0gJ (ξ±, η)

C2 (r) ≈ − η2

2r2

∑

±
±e±ir0gJ (ξ±, η) . (4.2.48)

Figure 4.21 shows that this correctly describes the intensity near the cusp, but decorates

the caustic

ρ

ρ0
≈
√

ζcusp

ζ

[

2

3

(

1 − ζ

ζcusp

)]
3
2

, (4.2.49)

which differs from the exact geometric caustic for small ζ (because of the approximated

mapping), a region we have already dealt with in the previous section.

(b)(a)
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ζcusp

ζcusp/2
ρ0/4−ρ0/4

ζ

ρ
0 ρ0/4−ρ0/4 ρ

Figure 4.21: The spun cusp catastrophe: intensity near the cusp for ρ0 = 100, γ = 1, (a)

from the exact integrals (4.2.5), and (b) from the spun cusp approximation (4.2.48).

The diffraction integrals for a gaussian incident beam can be evaluated exactly on

the ρ = 0 axis in terms of complementary error functions, extending the biaxial formula

(4.1.46) to include chirality. From the gaussian beam integrals (2.5.16) we transform to a

new integration variable

σ →
√

2t2 − g2, (4.2.50)
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to obtain

C0 (0) = cos r0g + 1
2r0e

g2+ir2
0

2

√

iπ

2

[

erfc

(

g − r0

√
i√

2

)

− erfc

(

g + r0

√
i√

2

)]

C1 (0) = 0

C2 (0) = −ge
g2+ir2

0
2

√

π

2

[

erfc

(

g − r0

√
i√

2

)

− erfc

(

g + r0

√
i√

2

)]

. (4.2.51)

Figure 4.22 shows the axial intensity for thick crystals with different strengths of chirality.

The scaling on the ζ axis makes it clear that the peak intensity does not always occur at

the cusp, exhibiting a competition between the cusp of chirality and the axial focal line

that survives from nonchiral biaxiality. This can also be seen in figure 4.10. For strong

chirality γ ≫ 1 in thick crystals ρ0 ≫ 1, the cusp manifests clearly as a maximum near

ζ = ζcusp. As chirality decreases, focal line dominance brings the maximum to smaller ζ,

towards ζ = ζspike ≡ ρ0

√

2/3 when γ = 0, that is when ζ/ζcusp ∼ γ
√

2/3.

10

Iζcusp

ζ/ζcusp

Figure 4.22: Cusp and spot competition: axial intensity from (4.2.51) for ρ0 = 100, and γ

equal to: 1/10 (thin), 1/2 (dotted), 1 (dashed), 2 (thick).

This behaviour can be understood in terms of the asymptotics of the error function.

Labelling the arguments of the complementary error function in (4.2.51) as E− and E+

respectively, “erfc (E−) − erfc (E+)” is an integral in the complex plane of the integrand

e−t2 from E− to E+. For large ζ the endpoint E+ is asymptotically close to the ‘wave

line’ arg t = π/4 and its contribution, decaying as 1/ζ, can be neglected. This endpoint

contribution corresponds to the ray (κ4 in section 4.2.3) originating on the ‘+’ sheet

of the wave surface. For 0 ≪ ζ < ζcusp the endpoint E− is the dominant exponential

in the asymptotic expansion of (4.2.51), (associated with the ray κ1), but similarly to

the non-chiral case (Berry 2004b) the axial intensity is dominated by the subdominant
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exponential. The subdominant exponential comes from the integrand saddlepoint, where

two rays (κ2,κ3) coalesce on the axial focus. This biaxial focal line with maximum at

ζspike is the dominating axial feature for small γ. As ζ increases towards ζcusp the E−

endpoint contribution grows as 1/ (ζcusp − ζ), then crosses a Stokes line which eliminates

the saddlepoint contribution when ζ = ζcusp, and gives a 1/ (ζ − ζcusp) decay for ζ > ζcusp.

If γ >
√

2/3, i.e. ζspike > ζcusp, the subdominant exponential never reaches its maximum,

and the cusp becomes the dominating axial feature. These considerations are illustrated

in figure 4.23, and embodied in the asymptotic expansion of the B0 integral,

B0 (0, ζ) ≈ a+

ζ
e−iρ0γ +

adom

ζ − ζcusp
eiρ0γ +

asub

ζ3/2
ej(ζ), ζ ≫ 1, (4.2.52)

where

j (ζ) = 1
2

{

γ2z−1
(

z − z−1
)

+ i
(

z + z−1
)}

, z = ζ/ζcusp (4.2.53)

To summarise more simply, the intensity at the cusp is of order I (0, ζcusp) ∼ πγ3

4ρ0
, and

the focal line maximum is of order I (0, ζspike) ∼ π
ρ0

(

3
2

)3/4
e

1
2γ2−3

4 . The peak intensity

from the focal line occurs at ζ ≈
√

2/3ρ0 and dominates over the cusp maximum for
√

2/3ρ0 < ρ0/γ, but for γ >
√

2/3 the spike never attains its maximum and the cusp

dominates the axial intensity. Hence we can define a domain γ >
√

2/3, for which chirality

dominates over biaxiality along the axis.
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ζ=ζcusp

ζ<ζcusp

ζ>ζcusp
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arg[t]=π/4
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Figure 4.23: Stokes’ phenomenon on the axis: loci of the endpoints E± of the error function

integral (4.2.51): (a), starting at ζ = 0 and continuing to ζ = 10ζcusp, overlaying stationary

phase contours of the integrand. Integration path includes: (b), 2 endpoints and a saddlepoint

(responsible for axial focal line) when ζ < ζcusp, which vanishes in (c), as E− crosses a Stokes

line (imaginary t axis) when ζ > ζcusp.
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4.2.7 Fringes near the focal plane

Historical interest in chiral conical diffraction has centred around the bright spiral of figure

1.4. This is observed at the exit face of the crystal, which is typically very close to the

focal image plane, when the incident beam is linearly polarised. Figure 4.24 shows the

evolution of the focal plane intensity profile with chirality for an unpolarised beam, from

the two rings of Hamilton’s conical diffraction to the rings and central plateau of chiral

conical diffraction. More intriguingly, figures 4.10 and 4.17 show that the interference

fringes near the focal plane appear to be ζ independent, and for these a simpler analytic

expression may be obtained that at last solves the problem of the historically irksome

intensity spiral.

ρ0 0

1I

γ0

ρ

Figure 4.24: Focal image plane intensity profile varying with the optical activity γ

The geometric intensity obtained from (4.2.27), including wave effects, is valid down

to the focal image plane and can be greatly simplified by approximating for small ζ. For

this we consider strong chirality, γ ≫ 0, away from the caustic, ρ ≪ ρ0, where the ray

solutions are

κ1,3 ≈ 0, κ2,4 ≈ γρ
√

ρ2
0 − ρ2

. (4.2.54)

A set of spherical coordinates {u, v} will be useful, defined by

u ≡ ρ

ρ0
, u2 + v2 = 1, (4.2.55)

with which the geometrical approximation to leading order in ζ becomes
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. (4.2.56)



The propagation distance enters only as a phase, explaining the ζ independence of the

intensity fringes. For an unpolarised incident beam the intensity of the rings is simply

Iunpol (u, 0) ≈ 1

v4ζ2
cusp

∣

∣

∣
a
(γu

v

)∣

∣

∣

2 (
1 − u2 cos 2γρ0v

)

. (4.2.57)

If we write a linear incident polarisation d0 = {d0x, d0y} as a complex number eiχ =

d0x + id0y, and use the representation (2.3.26), the near-focal plane polarisation is given

by

ω =
e
i
“

χ−1
2φρ

”

+ e
−i

“

χ−1
2φρ

”

(1 − iv sin (ρ0γv))

e
−i

“

χ−1
2φρ

”

+ e
i
“

χ−1
2φρ

”

(1 − iv sin (ρ0γv))

eiφρ. (4.2.58)

For a linearly polarised incident beam, the swirl is given for u ≪ v ≈ 1 by

Iχ (u) ≈
∣

∣a
(γu

v

)∣

∣

2

ζ2
cusp

1 − u2 cos 2ρ0γv + 2u sin ρ0γv sin (ρ0γv − 2χ + φu)

v4
. (4.2.59)

This is shown in figures 4.25(a)-(b), and compared to the exact intensity in figures 4.25(e)-

(f). It also compares well to corresponding photographs taken by Schell & Bloembergen

(1978b) and reproduced here in figure 1.4, which represents the only substantial experiment

in chiral conical diffraction known to us. Taken from the exit face of an α-iodic acid crystal,

their images are near-focal plane intensity patterns.

The spiral pattern is extracted from (4.2.59) by finding its radial maxima and min-

ima. Considering only the trigonometric arguments to be fast varying, and neglecting the

quadratic term for small u, the result is a pair of spirals,

ρ2 = ρ2
0 −

1

γ2

(

πn − φρ

2
+ χ

)2

, (4.2.60)

in terms of the azimuthal angle φρ, with n odd and even giving respectively the bright

(i.e. maximum) and dark (i.e. minimum) intensity spirals. These are shown overlaying

the intensity in figures 4.25(c)-(d).
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Figure 4.25: The chiral conical diffraction coffee swirl: theoretical focal image plane intensity

corresponding to figure 1.4, for: (a) vertically polarised gaussian incident beam calculated

from (4.2.57) with ρ0 = 10 and γ = 1; and (b) horizontally polarised incident gaussian beam

calculated from (4.2.59) with ρ0 = 30 and γ = 1.2. These compare well to the experimental

images. (c-d) correspond to (a-b) with bright maximum (black) and dark minimum (white)

spirals (4.2.60) overlaid. (e-f) are horizontal axis profiles corresponding to (a-b), comparing

the approximation (dots) to the exact calculated from the integrals (4.2.5).
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4.3 Dichroic Biaxial Crystals

Let us now forget optical activity, setting γ = 0, and consider the effect of dichroism on

conical diffraction.

Dichroism is the anisotropic absorption of light dependent upon polarisation. We will

consider only linear dichroism, though the principles can be easily extended to include

circular dichroism and we will make a few remarks on that case. We specify the maxi-

mal attenuation of a linearly polarised plane wave propagating along the optic axis by a

parameter δ, along a preferential direction, constituting a vector δ.

We define a convenient scaling so that the maximal attenuation is ρ0δ, then by choosing

coordinates in which δ = {δ, 0}, the total effect of dichroism on a plane wave can be written

in terms of a nonhermitian symmetric matrix Fd as

D = e−iFd

d0 =





e−ρ0δ 0

0 eρ0δ



d0, (4.3.1)

uniquely determining Fd up to a trace as

Fd = −iρ0δσ3 = −iρ0δ · {σ3, σ1} , (4.3.2)

where the second equality implies the extension to general coordinates.

This paraxial model assumes absorption in the crystal is only weakly anisotropic,

which is reasonable for conical diffraction to be observable. It assumes also that the optic

axes of biaxiality and dichroism, or the degeneracies of the real symmetric (2.1.2) and

nonhermitian (2.1.9) parts of the dielectric tensor, are distinct. This is true in general.

Coincidence of these directions would require the next order correction to the paraxial

dichroism theory, constituting a complex cone radius ρ0. We will not consider this very

special situation which does not fundamentally alter the resulting theory, but at the end

of this section we will briefly consider the extreme case, in which dichroic anisotropy

dominates over birefringent anisotropy and Hamilton’s cone becomes imaginary.

Combined with biaxiality the paraxial effect of the crystal is therefore

F tr (κ̃) = ρ0κ̃ · {σ3, σ1} = V (κ̃) · Σ, (4.3.3)

in terms of the complex transverse wavevector κ̃ = κ − iδ. Using the complexifying

transformations (2.4.1) to (2.4.4), the propagator integral is obtained from the transparent
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result (4.1.2) by the transformation D (ρ, ζ) → e−iF0D (ρ̃, ζ), giving

D (ρ̃, ζ) = e−iF0 [b+ (ρ̃, ζ)D+ (ρ̃, ζ) + b− (ρ̃, ζ)D− (ρ̃, ζ)]d0, (4.3.4)

in terms of the diffraction integrals defined by (4.1.4). When discussing a gaussian in-

cident beam we will instead use the complexifying transformations (2.4.1)-(2.4.2) and

(2.4.7)-(2.4.10), and thus obtain the propagator integral from the transparent result by

the transformation D (ρ, ζ) → e−iF0D
(

ρ̃, ζ̃
)

, which gives

D
(

ρ̃, ζ̃
)

= e−iF0

[

b+

(

ρ̃, ζ̃
)

D+

(

ρ̃, ζ̃
)

+ b−
(

ρ̃, ζ̃
)

D−
(

ρ̃, ζ̃
)]

d0. (4.3.5)

The breaking of circular symmetry by dichroism is an obstacle to numerical or analytic

investigation of the diffraction integrals b± (ρ̃, ζ). Slow convergence of the two dimensional

integrals (4.1.4) prevents any exact simulations for a pinhole beam being presented here,

and our investigation will have to rely on asymptotic techniques. This will be remedied

in section 4.3.3 for a gaussian beam, where the complex ray representation allows us to

restate the integrals in the exact circularly symmetric form (4.1.5).

The eigenpolarisations in the emergent light field, d↑↓ (ρ̃) defined by (2.3.25), are

in general elliptical, nonorthogonal, and are normalised only according to our definition

(2.1.18) of the length of a complex vector.

The emergent light intensity is given by

I = e2ImF0

{ (

|b+|2 |d0 · d+|2 + |b−|2 |d0 · d−|2
)(

∣

∣cos 1
2φρ̃

∣

∣

2
+
∣

∣sin 1
2φρ̃

∣

∣

2
)

+ 2Re
[

b+b∗− (d0 · d+) (d0 · d−)∗ d+ · d∗
−
] }

. (4.3.6)

We will be concerned with an unpolarised incident beam, for which

Iunpol = e2ImF0

{

|b+|2 + |b−|2
2

cosh2 ImΦρ̃ − Re
[

b+b∗−
]

sinh2 ImΦρ̃

}

. (4.3.7)

For a circularly polarised incident beam this becomes

I± = e
Im

h

2F0∓Φ
ρ̃

i

{

|b+|2 + |b−|2
2

cosh ImΦρ̃ ± Re
[

b+b∗−
]

sinh ImΦρ̃

}

, (4.3.8)

and for a linearly polarised incident beam with orientation angle χ,

Iχ = Iunpol + e2ImF0 ×
{

|b+|2 − |b−|2
2

Re [cos (2χ − φρ̃)] − Im
[

b+b∗−
]

Im [cos (2χ − φρ̃)]

}

. (4.3.9)



4.3 Dichroic Biaxial Crystals 99

It is convenient to use coordinates in which the complexifying vector µ ((2.4.3) or

(2.4.8)) lies along the horizontal µ-axis, defining ρ = {ρµ, ρν} such that

ρ̃ = {ρµ − iµ, ρν} =

√

(ρµ − iµ)2 + ρ2
ν {cos φρ̃, sin φρ̃} , (4.3.10)

which we will use for simulations. Note that the angle φρ̃ is a complex number.

Note importantly that the diffractive effects of dichroism enter solely via the complex-

ification ρ → ρ − iζδ, and therefore vanish in the focal image plane ζ = 0.

4.3.1 Conical refraction complexified

The optical path length in a dichroic crystal is complex, with a κ̃ dependent part

Φ± (κ̃) = −κ̃ · ρ̃ + 1
2ζκ̃2 ± ρ0κ̃, (4.3.11)

and a constant Φ0 given by (2.4.12). Hamilton’s principle gives complex rays

κ̃± =
ρ̃ ± ρ0

ζρ̃
ρ̃. (4.3.12)

Note that the complexified wave κ̃ and position ρ̃ vectors are parallel, but the original

wave κ and position ρ vectors are not, being related by

κ± =
ρ̃ ± ρ0

ζρ̃
ρ − iǫ, (4.3.13)

where ǫ = ±ρ0

ρ̃ δ for a general beam, or for a gaussian beam misaligned from the optic

axis, ǫ = κ0 ± ρ0

ρ̃

(

ζ̃δ + κ0

)

. Also, this solution for κ is itself generally complex for real

ρ, so we must abandon the notion of real wavevectors in an absorbing medium.

The formulae derived for transparent crystals in section 4.1 now apply but with the

complexified variables substituted in. Focusing occurs where the complexified determinant

(4.1.12) vanishes, with two solutions: in the focal image plane ζ = 0 we expect the focused

image of the beam source, and axial focusing now occurs along the branch points of the

complex transverse position vector, which we call the branch axes,

ρ̃ = 0 ⇒ ρ = ρb ≡ ±e3 × µ. (4.3.14)

Thus the familiar bright axial spike is spread out along a branch cut of ρ̃. Antifocusing

will occur where |ρ̃ − ρ0|, or equivalently κ̃, vanishes. This is the direction in which Φ

is degenerate, the singular axes (3.2.7), given in complex position space by ρ̃ = ρ0. In a
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transparent medium this corresponded to the conical point and Hamilton’s conical infinity

of rays, but in the presence of dichroism it corresponds to only two real rays,

κ̃ = 0 ⇒ ρs = ±e3 × µ̂

√

ρ2
0 + µ2, (4.3.15)

scattered from the branch points of the complex wave surface, complexifying Hamilton’s

dark anti-focal ring. This underlying geometry is illustrated in Figure 4.26.

ρµ

ρν

ζ

anti-focal 
ring

δ
δ

δ ρ0

ρs
ρb

ρb ρs

Figure 4.26: Loci of critical points of dichroic conical refraction in real space, showing: ρb,

the branch axes where ρ̃ = 0, and ρs, the rays scattered from the singular axes where κ̃ = 0.

For a gaussian incident beam Hamilton’s dark ring is shifted by the dichroism vector δ.

The geometric intensity is just the sum of magnitudes (4.1.11) in complexified variables

modulated by an exponential absorption factor,

e−2ImF0I = 1
2

∑

±
|b±|2 =

e−Im
ρ̃2+ρ2

0
ζ

2 |ρ̃ζ2|
∑

±
e
±2ρ0Im

ρ̃
ζ |ρ̃ ± ρ0|

∣

∣

∣

∣

a

(

ρ̃ ± ρ0

ζ

)∣

∣

∣

∣

2

. (4.3.16)

There are no Stokes sets (2.6.7), so the two ray solutions (4.3.12) exist everywhere. More

important than focusing or antifocusing in an absorbing medium are the anti-Stokes sets

(2.6.9), where the ‘±’ parts of (4.3.16) are equal, whose solution is simply

Imρ̃ = 0 ⇒ ρ · µ = 0 and ρ > µ. (4.3.17)

This pair of half planes extend from the branch axes ρb outward in the ρv plane. They are

the surfaces on which the two complex ray solutions have equal magnitude and exchange

dominance. Since one ray contribution is exponentially increasing on either side of the

set, the planes are exponentially darker than the surrounding regions and manifest as a
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pair of dark brushes. Near the branch axes we can approximate the intensity for small ρ̃,

1
2

∑

±
|b±|2 ≈ ρ0e

−Im
ρ̃2+ρ2

0
ζ

|ρ̃ζ2| cosh

(

2ρ0Im
ρ̃

ζ

) ∣

∣

∣

∣

a

(

ρ0

ζ

)∣

∣

∣

∣

2

, (4.3.18)

from which it is clear that on the anti-Stokes surfaces the hyperbolic cosine is a minimum,

yielding dark brushes.

Figure 4.27(a) shows the regions of dominance of the two ray contributions b±, which

swap across the anti-Stokes lines, visible along the ρν axis as dark brushes separated by the

bright branch cut. Figure 4.27(b) shows the corresponding regions special to a gaussian

incident beam, which will be considered in section 4.3.3.

b+ b−

ρν

ρ0

ρµ

ρ=0~

(a)

b−b+

ρc
Rc

ρν

ρ0

ρµ

b+
endpoint

b−
endpoint

ρ=0~

(b)

Figure 4.27: Dominant asymptotics of dichroic conical diffraction for (a) pinhole, and (b)

gaussian, incident beam. Anti-Stokes lines (bold) – straight (4.3.17) in (a) and circular (4.3.28)

in (b) – bound regions dominated by the two geometric rays b±. The boundaries are completed

by a branch cut connecting the branch axes ρ̃ = 0. The dashed circle is Hamilton’s ring.

Regions where endpoint waves (sections 4.3.2 & 4.3.3) are significant are indicated. In the

background is the corresponding logarithmic intensity, symmetric in ρν , for ρ0 = 20, µ = 5.

4.3.2 Complex geometric interference

The diffraction integrals b± (ρ̃, ζ) can be expressed in terms of the asymptotic ring func-

tion f defined by (4.1.19), which was derived by approximating the Bessel functions for

large argument. Stationary phase analysis proceeds as in the transparent case, and the

asymptotic expansion (4.1.22-4.1.23) applies directly.

Consider first only the saddlepoint terms, which endow the b± geometric rays with

phases. These phases cause geometric interference, which is greatest along the anti-Stokes
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surfaces where |b+| = |b−|. Complete destructive interference requires also the equality of

phases, arg b+ = arg b−, giving

e−2iρ0ρ̃/ζ = −i, (4.3.19)

the solutions of which are a series of dark lines,

Re
ρ̃

ζ
=

π

ρ0

(

n + 1
4

)

, n ∈ Z
+, (4.3.20)

lacing the dark brush anti-Stokes planes. The source of this interference must appear

in the vector intensity (4.3.7). Far from the branch axes we have cosh2 Imφρ̃ ≈ 1 and

sinh2 Imφρ̃ ≈ 0, so only the geometric sum of magnitudes (4.3.16) is significant. Near the

branch axes however, both of these hyperbolic terms are large and we can approximate

cosh2 Imφρ̃ ≈ 1
2 +

µ2

|ρ̃|2
, sinh2 Imφρ̃ ≈ 1

2 − µ2

|ρ̃|2
, |ρ̃| ≪ 1. (4.3.21)

The geometric interference term then becomes significant and for small ρ̃ is

Reb+b∗− ≈ ρ0

2 |ρ̃ζ2|

∣

∣

∣

∣

a

(

ρ0

ζ

)∣

∣

∣

∣

2

e
−Im

ρ̃2+ρ2
0

ζ sin

(

2ρ0Re
ρ̃

ζ

)

. (4.3.22)

The dark interference spots are evident as maxima of the sine function, where the inter-

ference term gives the greatest drop in the intensity. The intensity approaches zero on the

lines (4.3.17) and they manifest as C (circular polarisation) points.

Now consider the endpoint wave contribution to b+ (ρ̃, ζ), the last term in (4.1.22),

which causes interference rings in transparent crystals. This is now a wave scattered from

the singular axes κ̃ = 0, diverging at the complexified Hamilton dark ring ρ̃ = ρ0 (the

pair of wavevector branch points (4.3.15)). Figure 4.28 shows the intensity (4.3.7) for a

(a) (b) (c) (d)

2ρ0

Figure 4.28: Transition from transparent to dichroic conical diffraction for a pinhole incident

beam; intensity calculated using uniform approximation (4.1.38) for ρ0 = 20, ζ = 6, and

dichroism δ directed to the right with µ = δζ equal to: (a) 0, (b) 1/2, (c) 1, (d) 2.
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pinhole beam, in terms of the diffraction integrals given by (4.1.19), and we remove the

above divergence by using the uniform saddlepoint approximation (4.1.38). We do not

include the exponential ramp from F0, whose effect would be an exponential horizontal

modulation of the intensity; this simple effect was remarked on in section 2.4. Even without

this exponential ramp the dichroic intensity is dominated by exponential gradients. In the

absence of dichroism the geometric bright rings separated by the Hamilton dark ring

can be clearly seen, with interference fringes on the inner ring from the endpoint of the

diffraction integral. These features are quickly destroyed by dichroism, and leave in their

place localised bright spots.

Figure 4.29 shows the rich structure revealed by a logarithmic intensity plot. Dichroism

introduces the dark geometric brushes (4.3.17) visible along the vertical axis. Connecting

them is the bright axial spot spreading between the branch axes (4.3.14). Eventually this

brush dominates the intensity, overwhelming the dark antifocal ring. A magnification near

a branch axis shows the dark spots (4.3.20) of complex geometric interference, and the

divergence at the branch axes is visible only under much greater magnification.

3ρ0 ρ0/20

(a) (b)

ρ0/100

Figure 4.29: Complex ray interference for a pinhole incident beam: (a) is a logarithmic plot

of intensity for ρ0 = 20, ζ = 6, and δ = 1 showing the dark anti-Stokes brush (4.3.17),

indicating a region near one branch axis, enlarged in (b), showing the dark spots (4.3.20) of

interference between two complex rays, including a further enlargement around the branch axis

which shows the highly localised divergence of this geometric approximation.
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We can study the exponential intensity gradients in more detail along the ρµ axis,

where they are most severe. From the asymptotics of the two different ray contributions,

we have near the ρν axis

e
−Re(ρ̃±ρ0)2

ζ2 ≈ e2δ(ρµ∓sgnρµ), ρν ≈ 0, (4.3.23)

showing a ramp e2δρµ , greater than that of the e−δρµ prefactor from F0. The ‘±’ condition

reflects the swapping of b+ and b− across the branch cut between the branch axes. Further

from the axis,

e
−Re(ρ̃−ρ0)2

ζ2 ≈ e
δ

„

2−
“

ρµ
δζ

”2
«

, ρµ ≪ ρν ≪ δζ, (4.3.24)

reflects the exponential gradient near the anti-Stokes surface.

In the region of the well developed rings |ρ − ρ0| ≪
√

ζ, the polarisation retains the

same structure as transparent conical diffraction,

Dy

Dx
≈ tan 1

2φρ̃ ≈ tan 1
2φρ, ω ≈ e

−iφ
ρ̃ ≈ e−iφρ. (4.3.25)

To this we can add a first correction from the asymptotic expansion of b±, giving for

ρ ≫ µ,
Dy

Dx
≈
(

1 − i
µ

2ρ̃
sec2 1

2φρ̃

)

tan 1
2φρ̃. (4.3.26)

The polarisation differs from the transparent pattern most greatly near the anti-Stokes

surface (4.3.17), becoming quite intricate, and we will not study it further here.

4.3.3 Gaussian beams and the transition to double refraction

It was shown in section 2.4 that, for a gaussian beam, dichroism and beam misalignment

are described by the single parameter µ defined by (2.4.8). Figure 4.30 shows the uniform

saddlepoint approximation for the intensity with a gaussian incident beam, that is, the

intensity (4.3.7) with the diffraction integrals given by (4.1.19) and (4.1.38), subject to the

gaussian complexification (2.4.7). As µ increases it is seen that, under either dichroism

or deflection from the optic axis, the diffracted beam undergoes transition from conical

diffraction to double refraction.

For a gaussian incident beam the transformation to complex propagation distance

ζ̃ dramatically alters the form of the anti-Stokes surface. We cannot omit ζ from the

condition (4.3.17) on the cosh argument, giving instead

Im
ρ̃

ζ̃
= 0 ⇒ |ρ − ρc|2 = R2

c and µρµ ≥ 0, (4.3.27)
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(a) (b) (c) (d)

3ρ0 3ρ0 4ρ0 6ρ0

Figure 4.30: Transition from conical diffraction (a,e) to double refraction (d,h) for a gaussian

incident beam: intensity calculated from approximation (4.1.38) for ρ0 = 20, ζ = 6, and

nonhermiticity µ directed to the right with magnitude equal to: (a) 0, (b) 1/2, (c) 2, (d) 5.

a circular ring with centre ρc and radius Rc given by

ρc =
1

2ζ

(

ζ2 − 1
)

µ, Rc =
µ

2ζ

(

ζ2 + 1
)

, (4.3.28)

with the arc joining the branch axes omitted. Expression (4.3.18) for the intensity near

the branch axes has been written in a form that implies its extension to gaussian incident

beams via ζ → ζ̃. The anti-Stokes set corresponds to a minimum in the geometric intensity,

a dark ring interrupted by the bright cut joining the branch axes. Near the focal plane the

geometrical approximation, and this geometrical ring, diverge. For ζ ≫ 1 the ring grows

linearly with ζ, sweeping out a funnel-like dark surface in the three dimensional intensity.

The logarithmic intensity plot in figure 4.31(a) clearly shows this manifesting as a dark

ring in a far field plane.

In the far field ζ ≫ 1 we have seen (section 4.1.4) that even for a gaussian beam we can

treat the beam profile as slowly varying. The dark anti-Stokes ring (4.3.27) derived here

for a gaussian beam, obtained by including the beam profile as a fast varying term in the

phase, should be consistent at large ζ with the more general, but less accurate, result of

dark anti-Stokes brushes (4.3.17). Indeed, as ζ becomes very large the radius of the dark

ring (4.3.28) becomes large and most of the ring exists at radii far outside the region of

interest, leaving only two arcs extending from the branch axes which tend asymptotically

towards the planar form of the dark brushes.

Again the anti-Stokes surface is the site of maximal interference between the two sets

of complex rays, and is laced by a set of dark lines given by replacing ζ → ζ̃ in (4.3.20),

originating in the maxima of the corresponding sine function in the complexified (4.3.22).
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(a) (b)

(c) (d)

3ρ0 ρ0/20

ρ0/100

Figure 4.31: Complex ray interference for a gaussian incident beam: (a) is a logarithmic plot of

Figure 4.30(d) revealing the dark adsorption ring (4.3.28), indicating a region near one ρ̃ branch

axis, enlarged in (b), showing the dark spots (4.3.20) of interference between two complex rays,

including a further enlargement of the branch axis which shows the highly localised divergence

of this geometric approximation. (c-d) are the corresponding images calculated from the exact

integrals, showing that the branch axis divergence is smoothed away by diffraction.

In a constant ζ plane, such as an image screen, these appear as darker spots decorating the

already dark ring, shown in figure 4.31(b). The exact wave intensity from the diffraction

integrals b±
(

ρ̃, ζ̃
)

defined by (4.1.5) is also shown in figure 4.31, agreeing very closely

with the geometric images.

Figure 4.27(b) shows the exchange of regions of dominance across this anti-Stokes

surface, which typically dominates the light intensity. This saddlepoint approximation,

which in transparent crystals only describes the well developed rings and suffers linear
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focal divergence near the axis, is very much more powerful in the presence of dichroism.

The divergences still exist, but in the presence of exponential intensity gradients they

become less significant, and in a logarithmic plot they appear highly localised. The effect

is not only qualitative, indeed we have already seen in figure 4.31 in the axial region the

geometric approximation correctly describes the ring and spots of interference, diverging

only in a small neighborhood of the branch axes.

Somewhat surprisingly, this accuracy of the geometric approximation in the presence

of dichroism allows it to describe the axial shoulders – faint interference rings decorating

the axial spike – given in a transparent medium by (4.1.42), and here manifesting as the

dark lines (4.3.20). Figure 4.32 shows the exact and geometric intensity profiles of the

interference spots along the ρν axis. Notice the extreme localisation of the geometric

branch axis divergence at ρν = 5. The complexification of approximation (4.1.42) is also

shown, and captures only the first few oscillations. As dichroism decreases, these well

defined maxima and minima give way gradually to the flat shoulders characteristic of the

transparent biaxial diffraction rings.

ρν
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Figure 4.32: Dichroic spots and Bessel shoulders: intensity plotted along the ρν axis with

ρ0 = 20, ζ = 16, µ = 5, dark spots of complex ray interference in the geometric intensity (dots)

from (4.3.18) correspond to Bessel shoulders from the axial spike approximation (dashed) from

(4.1.42); plotted against exact intensity (full curve).

Some discrepancy can be seen between exact and geometric intensities in figure 4.31(a)&(c)

that is not attributable to singularities, and this is the effect of wave interference. Figure

4.33(d) shows this more clearly: the remnants of the secondary inner rings are visible out-
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side the anti-Stokes ring. This occurs in the region of b+ dominance and, as in transparent

crystals, originates from the endpoint of the b+

(

ρ̃, ζ̃
)

integral, the second term in the ex-

pansion of b+

(

ρ̃, ζ̃
)

given by (4.1.22). Figure 4.33(a) shows that the inclusion of this term

correctly captures the wave interference, at the expense of introducing divergence at the

branch points of κ̃, at the intersection of the Hamilton dark ring and the ρν axis.

(a) (b)

3ρ0

(d)(c)

Figure 4.33: Endpoint interference for a gaussian beam: logarithmic plots corresponding to

Figure 4.30(c) revealing the dark anti-Stokes ring (4.3.28) decorated by interference. (a),

geometric intensity including the two rays and the endpoint from (4.1.22), showing the rem-

nants of the transparent-crystal secondary diffraction rings; (b) uniform approximation (4.1.39)

smoothing away the geometric focusing divergences at ρ̃ = 0 and the complexified Poggen-

dorff ring (4.3.15); (c) geometric intensity including also the higher order endpoint (4.3.30),

giving new interference revealed in the enlargement; (d) exact intensity, showing the dark ring,

secondary ring arcs, and higher order interference.
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Closer inspection of 4.33(d) reveals very faint oscillations inside the anti-Stokes ring,

shown magnified, whose location means they must originate in the b− integral. In the

asymptotic expansion (4.1.23) the leading order endpoint contribution of b− vanishes. To

find the first correction we must return to approximation (4.1.18) for the Bessel functions

in the diffraction integrals, and include the next order term:

Jn (x) ≈
√

2

πx

[

cos
(

x − π(1+2n)
4

)

− 1 + 2n

8x
sin
(

x − π(1+2n)
4

)

]

. (4.3.29)

The result, like the endpoint of b+, depends on the quantity s+ = (ρ̃ − ρ0) /ζ̃ rather than

s− = (ρ̃ + ρ0) /ζ̃, and gives

√

ρ̃
(

iζ̃
)3/4

b−
(

ρ̃, ζ̃
)

≈ e−
1
2s2

−
√

s− − iζ̃T [−Res+]

2ρ̃
√−2s+

. (4.3.30)

Figure 4.33(c) shows that this captures the higher order oscillations, and figure 4.34 shows

how very accurately it does so.
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Figure 4.34: Higher order interference fringes: comparison of the approximation (4.3.30)

(dots) to the exact intensity (full curve) for ρ0 = 20 and µ = 2, along the ρµ axis in the

vacinity of the dark adsorption ring, where higher order endpoint interference is visible. The

dark anti-Stokes ring crosses the ρµ axis at ρr.

The most severe divergence of the asymptotic expansion with endpoint contributions

is on the complexified Hamilton dark ring (the lines (4.3.15)). This can be smoothed away

by using the same uniform approximation (4.1.38) used for transparent crystals. Examples

of the resulting transition are shown in figure 4.35 for later comparison to experiments.

Near the focal plane the focused conical diffraction rings transform into tightly focused
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double refraction spots, and in the farfield both the secondary inner rings and axial spot

are visible during the transition. The sheets of the wave surface Φ± +κ ·ρ from which the

different structures originate are indicated, corresponding to regions dominated by each

of the two wave eigenpolarisations.

+

−

+

−

+

−

+

−

+
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2ρ0

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.35: The transition from conical diffraction (a,e) to double refraction (d,h). Images

simulated using approximation (4.1.38) in (4.3.5) for ρ0 = 60; with ζ = 2 and µ values: (a)

0, (b) 0.8, (c) 2.5, (d) 5; and with ζ = 25 and µ values: (e) 0, (f) 0.4, (g) 0.9, (h) 3.5. The

sheets of the wave surface from which the rings and spike originate, and the diameter 2ρ0 of

Hamilton’s dark ring, are indicated.

This uniform approximation neglects higher order interference (4.3.30) from the first

correction to the asymptotic expansion of the Bessel functions. This is easy to include in

forms similar to (4.1.38), requiring a function

f1 (s, ζ)

a
(

s√
−iζ

) =

√

2

π

∫ ∞

0

dt√
t
e−

1
2 t2 sin

(

st − π
4

)

(4.3.31)

=
e−

1
2 s2

25/4

√
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3
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(4.3.32)

=

√
πe−

1
4s2

2 |s|1/2

{

sI 1
4

[

1
4s2
]

− |s| I− 1
4

[

1
4s2
]

}

, (4.3.33)

and giving the correction

√

ρ̃
(

iζ̃
)3/4

bendpoint
−

(

ρ̃, ζ̃
)

= f (s−) − iζ̃a (0) f1 (s+)

8ρ̃
T [−Res+] . (4.3.34)
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Finally, we note that the dichroic diffraction integrals can be evaluated exactly along

the branch axes, yielding the optic axis formulae (4.1.45-4.1.46) with no complexification

needed. So, interestingly, the intensity along the branch axes remains exactly equal to the

intensity along the transparent optic axis when bifurcated by dichroism.

4.3.4 A note on circular dichroism

The theory above is easily extended to include circular dichroism – anisotropic absorption

dependent on handedness of circular polarisation – by redefining the dichroism parameter

δ as an imaginary part of the chirality parameter γ. The situation then bears more

resemblance formally to a transparent crystal with optical activity, and the degeneracy

structure is immediately obvious from examining the chiral formulae of section 4.2 with

γ → iδ, whereby ρ0δ is the maximal attenuation analogous to that for linear dichroism.

This corresponds to adding a real nonhermitian (antisymmetric) part to the dielectric

tensor as discussed in section 2.1, and here no complex coordinates are required. The

crystal vector V (κ) =
√

κ2 − δ2 shows that circular dichroism splits the optic axis into a

circular ring κ = γ in position space, an L (linear polarisation) line (Nye 1999) separating

regions of left and right handed circular polarisation. (Recall that linear dichroism split

the optic axis into a pair of singular axes, C-points in position space). Outside the L-line

the wave surface is real and scatters real rays similar to those of biaxial conical diffraction,

so for δ << 1 the beam that emerges is similar to that for a nonchiral transparent crystal.

Inside the L-line the wave surface, and therefore rays, are complex (they have a complex

wavevector), and exponential gradients dominate. In this instance there are no Stokes or

anti-Stokes sets of interest, and the overriding gradient is an axial concentration of rays

which swamps the conical diffraction rings. Figure 4.36 shows the intensity in the ρ-ζ

plane as it is seen emerging from the crystal, for different values of δ, calculated from the

chiral stationary phase approximation, (it has been verified that this is indistinguishable

from the exact integrals).
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Figure 4.36: Circular dichroism in conical diffraction: geometrical intensity in the ρ-ζ plane

calculated from (4.2.27) and (4.2.6) with γ → iδ, for ρ0 = 50 with δ values: (a) 0.1, (b) 1,

(c) 3, (d) 5, (e) 7. The familiar conical diffraction rings and axial focus can be seen for small

δ, but circular dichroism swamps these with an exponential axial concentration of intensity.

4.3.5 Imaginary conical refraction

Let us consider briefly the opposite limit to elsewhere in section 4.3, so instead of treating

absorption as a singular perturbation we let the crystal birefringence be isotropic, that is

ReNsym = I/n2
2 in (2.1.2), and only the dichroic tensor (2.1.9) contains any anisotropy.

The theory of this case is formally identical to the theory of conical refraction.

The nonhermitian part of the dichroic tensor determines a well-defined optic axis,

corresponding to a conical point on a purely imaginary wave surface – the ‘wave magnitude’

surface discussed in section 3.2 – whose normals are rays with cone half-angle A. The

anisotropy is then specified paraxially by the imaginary counterpart to Hamilton’s conical

refraction ring radius, ρ0. The wave and geometric theories proceed as for the biaxial

theory, with ρ0 imaginary, so we define

ρ0 = ip0 (4.3.35)

for real p0 (note we are not redefining ρ which remains real). This dichroic parameter is

larger than the perturbation µ, which we will set to zero, so the wave, ray, and position

variables are all real, there are no complex rays to cause interference, and it is sufficient



to consider the geometric ray contributions

bgeom
± ≈ − i

ζ

√

ρ ∓ ip0

ρ
e
− (ρ∓ip0)2

2iζ a

(

ρ ∓ ip0

ζ

)

. (4.3.36)

The intensity for an unpolarised beam thus contains no interference terms and is just the

sum of magnitudes

Iunpol = 1
2 |b+ (ρ, ζ)|2 + |b− (ρ, ζ)|2

≈
√

ρ2 + p2
0

ρζ2
e
− ρ2−p2

0
ζ2

∣

∣

∣

∣

a

(

ρ ∓ ip0

ζ

)∣

∣

∣

∣

2

cosh
2p0ρ

ζ
. (4.3.37)

In contrast with the bright and dark cylinders that characterise transparent conical

diffraction, this predicts one expanding bright cone of light beyond the crystal, due to a

sort of anti-focusing of absorbative power. The profile across the cone surface is approx-

imately gaussian regardless of the incident beam profile. Axial focusing is apparent in

the formula above but proves to be visually insignificant against the exponentially bright

cone. Computations from the exact wave integrals show it to be indistinguishable from

the geometric approximation. Furthermore they confirm that, for large enough ζ, the axis

does not even constitute a local intensity maximum; for a thick crystal, p0 ≫ 1, there is a

maximum along the axis only for ζ < 1/
√

3, and a minimum elsewhere.

Figure 4.37 shows the cone profile of imaginary conical refraction for a gaussian inci-

dent beam, with the intensity falling exponentially away from the focal plane, where the

geometric intensity is singular.

e
−p0I
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ζ1

0

2

3

0
0.5

1
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Figure 4.37: Imaginary conical refraction: intensity of rays refracted through a crystal with

isotropic refractive index but anisotropic absorption p0 = 10, producing a bright hollow cone,

gaussian in the radial coordinate ρ, which decays exponentially with propagation distance ζ.



114 The Phenomena of “So-Called” Conical Diffraction

4.4 Dichroic Biaxial Crystals with Optical Activity

The most general case to be considered is that of diffraction along the optic axis of a

crytal exhibiting biaxiality, chirality, and dichroism. The total anisotropic effect of such a

crystal on a paraxial plane wave is specified by the traceless part of the evolution matrix

F tr (κ̃) = V (κ̃) ·Σ = ρ0 {κ̃, γ} · {σ3, σ1, σ2} . (4.4.1)

The propagator integral is obtained from the transparent chiral integral in section 4.2 by

the complexifying transformations (2.4.1) to (2.4.4), with the result D (ρ, ζ) → e−iF0D (ρ̃, ζ),

giving

D (ρ̃, ζ) = e−iF0

[

B0 (ρ̃, ζ)I +

{

ρ̃

ρ̃
B1 (ρ̃, ζ) , B2 (ρ̃, ζ)

}

·Σ
]

d0, (4.4.2)

in terms of the diffraction integrals Bm (ρ̃, ζ) defined in (2.5.5), simplified in (4.2.5), and

related to the eigenvalue diffraction integrals A± (ρ̃, ζ) by (2.5.11). The eigenvectors d± (ρ̃)

defined by (2.3.23) are generally nonorthogonal elliptical polarisations in the presence of

absorption.

The most general expression for the exact wave intensity is then,

I = D ·D∗

= e2ImF0

(

|A+|2 |d0 · d+|2 |d+|2 + |A−|2 |d0 · d−|2 |d−|2

+ 2Re
[

A+A∗
− (d0 · d+) (d0 · d−)∗ d+ · d∗

−
] )

(4.4.3)

= e2ImF0

[

|B0|2 +
|ρ̃x|2 + |ρ̃y|2

|ρ̃|2 |B1|2 + |B2|2

+ 2

(

Re

[

B∗
0B1

ρ̃x

ρ̃

]

+ Im

[

B∗
2B1

ρ̃y

ρ̃

])

(

|d0x|2 − |d0y |2
)

+ 4

(

Re

[

B∗
0B1

ρ̃y

ρ̃

]

− Im

[

B∗
2B1

ρ̃x

ρ̃

])

Re [d∗0xd0y]

− 4

(

Re [B∗
0B2] + |B1|2

Im
[

ρ̃xρ̃∗y
]

|ρ̃|2

)

Im [d∗0xd0y]

]

. (4.4.4)

The A± diffraction integrals are most suited to the nonchiral case because of their cor-

respondence directly to waves in the two polarisation eigenstates, when A± = b±. For

the chiral case we may use the simpler b± integrals, and have seen that b+ corresponds

to three interacting waves, but the Bm integrals, which are sums over the ‘±’ states, are

most convenient because of their simple differential interrelations (2.5.6).

For an unpolarised incident beam the intensity simplifies to

Iunpol = e2ImF0

(

|B0|2 +
ρ̃ · ρ̃∗

|ρ̃|2
|B1|2 + |B2|2

)

. (4.4.5)
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A circularly polarised beam undergoes an added brightening or darkening dependent on

the handedness,

I± = Iunpol ∓ 2e2ImF0

(

Re [B∗
0B2] + |B1|2Im

[

cos φρ̃ sin φ∗
ρ̃

])

, (4.4.6)

and a linearly polarised incident beam with orientation angle χ undergoes interference

which rotates with 2χ,

Iχ = Iunpol + 2e2ImF0Re
[

B1

(

B∗
0 cos

[

φρ̃ − 2χ
]

− iB∗
2 cos

[

φρ̃ − 2χ
])]

. (4.4.7)

As elsewhere, when considering gaussian beams we will make the simplifying trans-

formation to a bundle of complex rays via the transformation (2.4.7). Figures 4.38 to

4.40 show the three dimensional structure of the logarithmic intensity field for an unpo-

larised gaussian incident beam. In figure 4.38 the bright Airy rings associated with the

transparent caustic are clearly visible. As dichroism, or since this is a gaussian beam,

misalignment with the optic axis, increases, a dark ring grows out from the axis, encircles

a bright region, and is interrupted by bright focusing near the axis. This is reminiscent of

the dark anti-Stokes ring (4.3.27) from the nonchiral case. As we shall see the connection

is qualitatively true, though in this case the ring is not perfectly circular and a simple

analytic expression is lacking.

3ρ0/2

(a) (b) (c)

u

(d)

Figure 4.38: Chiral transition: logarithmic density plot of wave intensity in the ζ = ρ0/3 plane

with ρ0 = 50, γ = 1, and µ values: (a) 0, (b) 1, (c) 2, (d) 5. The direction of µ is indicated

in (b).

The profiles in figure 4.39 show that the spun caustic surface is augmented by dichro-

ism, most notably in the plane perpendicular to the dichroism vector µ. Figure 4.40

shows the striking three dimensional picture with circular symmetry broken by dichroism.

We will see that these structures can be understood in terms of the same ray and wave

techniques used in the previous sections.
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Figure 4.39: Dichroic chiral wave intensity profiles: logarithmic density plot of wave intensity

for ρ0 = 50, γ = 1. (a-c) show the ρµ = 0 plane for µ values: (a) 0, (b) 1, (c) 2. (d-f)

show the corresponding values in the ρν = 0 plane. (c) and (f) show the intersection of three

distinct Stokes surfaces (thick, thin, and dotted curves) with these planes.

The key problems of interest are what happens to the caustic surface and the cusp

under dichroism, features that must be understood in terms of Stokes sets. In particular

the anti-Stokes sets have already been seen to dominate over focal features when absorption

is present. The most striking feature of chiral conical diffraction, the spun cusp, which

is unstable under nonhermitian perturbation, is the rotationally symmetric extension of

Pearcey’s integral (Nye 1999), whose asymptotics for complex coordinates were studied

by Paris (1991). We will see that the complexification of the spun cusp by a nonhermitian

perturbation can be described simply and affects only one of its two variables.

4.4.1 Chiral conical refraction complexified

The geometric formulae (4.2.9) to (4.2.14) apply here, with the complexifying transforma-

tions ρ → ρ̃ and κ → κ̃ made everywhere. The solutions to the ray equation (4.2.10) are

now generally four complex rays, and careful consideration of Stokes and anti-Stokes sets

are required to determine where they exist physically.

The intensity is given by the complexification of the geometric intensity (4.1.11) mod-
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Figure 4.40: Dichroic intensity in 3d: logarithmic intensity sections in 3 dimensions for ρ0 =

50, γ = 1, µ = 2: (a) in the ρµ = 0 plane, the ρν = 0 symmetry plane, and the ζ = 0 focal

image plane; and (b) in ζ level planes as shown. The direction of complexifying vector µ is

shown.

ulated by an exponential absorption factor,

I (ρ̃, ζ) =
1

2

∑

n

eIm[Φ(κ̃n)+Φ0]

∣

∣

∣

∣

dρ̃

dκ̃n

∣

∣

∣

∣

−1

|a (κ̃n + iδ)|2 . (4.4.8)

Many of the key features of the previous investigations will carry over to this case. That

ζ = 0 is not a focal plane in the presence of chirality applies also with dichroism. Since

the complex transverse coordinate ρ̃ is independent of the chirality parameter γ, axial

focusing along the branch axes (4.3.14) still occurs. This is visible at the center of figure

4.41, and in the exact intensity of figures 4.38, 4.39(a-c), and 4.40. In figure 4.39(a-c) the

axial focus spreads out between the branch axes, which separate as dichroism increases,

while along the µ direction in (d-f) the focus remains a thin focal spike.

The dominant feature in the intensity is a region where anti-Stokes sets have a high

concentration, creating exponential darkening in figure 4.41 similar to the dark ring from

figure 4.33, caused by exponentially fast pair-wise exchange of ray dominance involving all

four of the complex rays. Outside of these regions the intensity is slow varying over large

regions, and either exponentially large or exponentially small in a manner determined by

the anti-Stokes sets. We can continue to identify the different ray solutions with the two

eigenpolarisations in the crystal, or the two sheets of the complex wave surface as defined
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Figure 4.41: Ray intensity and Stokes lines: logarithmic density plot of ray intensity (4.4.8)

for µ = 2, ρ0 = 50, γ = 1, ζ = 35. The four rays are listed here in order of dominance

in some key regions, with labels assigned in order of dominance in the brightest region. The

dominance swaps in pairs across anti-Stokes lines (thin curves), one ray vanishes across the

Stokes line (bold curve, also the bold curve in Figure 4.39), and the ray equation has a branch

cut (dotted curve); these are shown only in the lower half, and are symmetric about the ρµ

axis. The complex whisker ρw and branch axes ρb are shown.

by Φ± (κ̃) and (4.2.9). There are three rays obtained from Hamilton’s principle applied

to Φ−, labelled 1-3 in the figure, and only the ray labeled 4 originates from Φ+. There-

fore the two dominant bright regions should exhibit the two distinct eigenpolarisations,

nonorthogonality notwithstanding.

In the transparent chiral crystal the dominant focal feature is a horn-shaped caustic

surface (4.2.14). This suffers the most drastic modification under dichroism, complexifi-

cation reducing the dimensionality of the caustic surface to leave behind a focal line: the

complex whisker.

4.4.2 The complex whisker

The Hessian determinant in (4.4.8) for ρ̃ 6= 0 vanishes along the complexified caustic

(

ρ̃

ρ0

)2/3

+

(

ζ̃

ζcusp

)2/3

= 1, (4.4.9)
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defining a line of focusing between two sets of complex rays. As remarked in Berry &

Howls (1990), such complex whiskers are generally subject to exponential damping from

factors such as eImΦ(κ̃n) in (4.4.8), reducing their significance as visible focusing. Although

the whisker can be seen in figure 4.41, its lack of prominence is such that, when subject to

weak diffractional smoothing, we can expect it to vanish from the visible intensity. Indeed,

this is seen to be the case in the corresponding exact intensity in figure 4.38(c).

Nevertheless the caustic whisker is a significant locus of critical points in the geometric

field. In figure 4.41 the complex whisker is seen to lie, consistent with its definition, at the

intersection of Stokes and anti-Stokes sets. Dichroism effectively separates the two sets

out of the caustic, leaving behind a caustic whisker at their intersection.

Using coordinates (4.3.10) in which the dichroism vector µ lies along the horizontal ρµ

axis, we consider first the geometric whisker that arises from a general incident beam, that

is using real propagation distance ζ, in which case (4.4.9) simply defines a planar curve

ρµ = 0, ρ2
ν = µ2 + ρ2

0

[

1 −
(

ζ

ζcusp

)2/3
]3

. (4.4.10)

Above ζ = ζcusp this defines a hoop, whose vertical sides pass through ζ = ζcusp on the

branch axes, below which the two foci curve outward toward their maximal separation

whereupon they terminate in the focal plane at ρν =
√

ρ2
0 + µ2.

For a gaussian incident beam we can use the more accurate complex ζ̃ representation,

yielding the dramatically different result of a closed loop that curls out of the plane. At

large ζ, as we expect, the whisker approximates the nongaussian planar whisker which is

the projection of the gaussian whisker onto the ρµ = 0 plane. However, at small ζ the

gaussian whisker loops round smoothly, never meeting the focal plane and deviating far

from ρµ = 0. By expressing ζ̃ = ζ− i in complex polar form and approximating for a small

argument that corresponds to ζ ≫ 1, the following very accurate approximation can be

found:

ρµ ≈ ρ2
0

µζcusp

(

ζcusp

ζ

)1/3
[

1 −
(

ζ

ζcusp

)2/3
]2

(4.4.11)

ρ2
ν ≈ µ2 − ρ2

µ − ζcusp

[

1 −
(

ζ

ζcusp

)2/3
] [

4ρ2
0

3ζ3
cusp

− ρµµ

(

ζ

ζcusp

)1/3
]

. (4.4.12)

In the second line the ρ2
0/ζ

3
cusp term is needed for the correct shape near ζ = ζcusp but is

small elsewhere, ρ2
µ is small near the highest arch section, while the ρµ term is small near

the lowest arch section. These considerations yield the geometry detailed in figure 4.42.
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Figure 4.42: Geometry of the complex whisker, plotted from approximation (4.4.11,4.4.12)

in scaled coordinates {x, y, z} = {ρµ/ρ0, ρν/ρ0, ζ/ζcusp}, and the axial focal lines (dashed)

where ρ̃ = 0. The extreme coordinates of the whisker are shown, involving P = µ/ρ0,

Q = µ/γ = Pζcusp and zL =
[(

1 +
√

4 + 3Q2
)

/
(

3 + 3Q2
)

]3/2
.

4.4.3 Diffraction

The effect of diffraction on the geometrical intensity is understood by studying the asymp-

totics of the diffraction integrals Bm (ρ̃, ζ), given by (4.2.27) with (4.2.24). The argument

of the square root in (4.2.27) requires more careful consideration than in the transparent

case.

The obstruction to an explicit expression of that argument valid for all {ρ, ζ} is the

requirement that it vary smoothly throughout any given region, (not jumping at arg Φ = π

for example), except at a single branch cut where the unique subdominant and non-

contributing complex rays swap, a possible choice of which is shown in figure 4.41. This

can be quite easily solved for most regions once specified, and leads to the geometric

intensity decorated by interference shown in figure 4.43.
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Figure 4.43: Geometrical interference: logarithmic density plot of geometrical optics intensity

(4.4.8) corresponding to Figures 4.41 and 4.38(c), endowing rays with phase.

Along the ρν = 0 axis, the geometric intensity is indistinguishable from the exact, and

figure 4.44 shows how, at a typical value of ζ, the transparent features of the bright Airy

rings associated with the caustic, and the axial focal spike, are swamped by exponential

damping as dichroism increases.

Finally, figure 4.45 shows the geometric intensity near the complexified cusp.
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Figure 4.44: Exponential swamping of the chiral conical diffraction rings: logarithmic density

plot of intensity on the ρν = 0 axis at ζ = 25 for ρ0 = 50, γ = 1. As µ increases from zero the

symmetric Airy fringes associated with the caustic, and the bright axial spike, are overcome

by an exponential gradient.
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Figure 4.45: The complexified spun cusp: (a-c) Logarithmic density plot of intensity near

the complexified spun cusp for ρ0 = 50, γ = 1 and µ = 2 in the ρµ = 0 plane: (a)

exact from (4.4.2); (b) geometrical optics (4.2.27) for ζ ≫ 1, which diverges along the

complex whiskers W and ρ̃ = 0 line B; (c) spun cusp approximation (4.2.48), smoothing

the discontinuities but decorating the wrong caustic far from the cusp. (d-f) Intensity in

the ρν = 0 plane corresponding to (a-c), with the Stokes line (dashed) shown in (b).

4.4.4 The complexified spun cusp

The cusp is identified physically by the intersection of two focal sets, and mathematically

by the vanishing of the third derivative of Φ (κ̃). This cannot be satisfied exactly for a

gaussian beam because of the complex propagation distance ζ̃, but the complex whisker

(4.4.11) and branch axes (4.3.14) do approach with a distance 1/ζcusp ≪ 1, at the two

points zb in figure 4.42. These are the points at which the more general whisker (4.4.10)

and the branch axes intersect, with coordinates

{0,±µ, ζcusp} . (4.4.13)

The gaussian diffraction integrals Cm

(

ρ̃/

√

ζ̃

)

have the same spun cusp approxima-

tion (4.2.48) as their transparent counterparts, subject to the relevent complexification



of coordinates. We have seen that this affects a dramatic breaking of circular symmetry.

Considering the approximation ζ̃ ≈ ζ, that is, simplifying to real ζ̃ for ζ ≫ 1 and including

therefore general incident beams, the effect of dichroic complexification enters only into

one of the two spun cusp control parameters, making η complex but leaving ξ± real. The

caustic of the spun cusp, given generally by η2 =
(

−2
3ξ+

)3
, becomes the complex whisker

(

ρ̃

ρ0

)2

= −ζcusp

ζ̃

(

2

3
· ζ̃ − ζcusp

ζcusp

)3

. (4.4.14)

Close to the complexified cusp (4.4.13) this is consistent with the previously derived

whisker (4.4.10), where it can be written as

ρµ ≈ 0, ρν ≈ ±µ ∓ ρ2
0

2µ

(

2

3
· ζ − ζcusp

ζcusp

)3

. (4.4.15)

The intensity in terms of the complexified gaussian integrals is given by

Iunpol =
exp (2ImF0)

1 + ζ2

(

|C0|2 +
ρ̃∗ · ρ̃
|ρ̃|2 |C1|2 + |C2|2

)

. (4.4.16)

The complexified spun cusp approximation from (4.2.48), and the geometric approximation

with ζ̃ → ζ, are compared to the exact wave integral intensity in figure 4.45. Both describe

the diffraction decorating the cusp with great accuracy, including the spreading of the focal

line between the branch axes in (a-c) and the overall horizontal exponential gradient in

(d-f). The geometric intensity fails where it diverges at the branch axes and the complex

whisker, but is correct across the Stokes line indicated, while the spun cusp approximation

decorates the wrong caustic far from the cusp as in the transparent case.

Finally, we note that the dichroic diffraction integrals can be evaluated exactly along

the branch axes, yielding the optic axis formulae (4.2.51) without any complexification.

As in the nonchiral case, the axial intensity is preserved when the optic axis bifurcates

into branch axes.
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4.5 Angular Momentum in Conical Diffraction

4.5.1 Paraxial optical angular momentum

The striking phenomena of chiral and nonchiral conical diffraction are accompanied by

similarly striking optical angular momentum effects. Orbital angular momentum of light

is associated with the spatial distribution of the light field, and spin angular momentum

is associated with the polarisation (Allen et al. 1992). Angular momentum effects are

particularly significant in the presence of optical singularities, so interesting effects are to

be anticipated with conical diffraction.

For a paraxial beam only the component of angular momentum along the optic axis

will be significant. The orbital angular momentum is given by the local expectation value

of the operator ρ× (−i~∇), integrated over the transverse electric field of the beam. The

spin angular momentum is given by the integral of the local expectation value of the

operator ~σ2. Paraxially, as derived by Berry (1998), this can be expressed as

Jorb =
~Im

∫ ∫

dρ D∗ · ∂φD
∫ ∫

dρ D∗ ·D , Jsp =
~Im

∫ ∫

dρ e3 ·D∗ × D
∫ ∫

dρ D∗ ·D , (4.5.1)

per photon, where φ is the azimuthal angle of ρ. We will consider circularly symmetric inci-

dent beams, which have no orbital angular momentum, whose polarisation d0 = {d0x, d0y}
is associated with a spin angular momentum

Jinc,0 = 2~Imd∗0xd0y. (4.5.2)

This is zero for linear incident polarisation, and ±~ for circular.

The calculation of momenta for the diffracted beam emerging from the crystal based

on the propagator integral (2.5.5) with (4.2.5) is lengthy, but simplifies greatly with the

disappearance of odd terms when integrating over the angle φ, and subsequent use of

Bessel transform identities. The result, independent of ζ and involving the momentum

density of the incident beam

P ≡
∞
∫

0

dκκ|a (κ) |2, (4.5.3)



4.5 Angular Momentum in Conical Diffraction 125

is

Jorb =
Jinc

P

∞
∫

0

dκκ|a (κ) |2
κ2 sin2

(

ρ0

√

κ2 + γ2
)

κ2 + γ2
(4.5.4)

Jsp =
Jinc

P

∞
∫

0

dκκ|a (κ) |2
γ2 + κ2 cos

(

2ρ0

√

κ2 + γ2
)

κ2 + γ2
, (4.5.5)

with the total optical angular momentum given by

J = Jorb + Jsp =
Jinc

P

∞
∫

0

dκκ|a (κ) |2
γ2 + κ2 cos2

(

ρ0

√

κ2 + γ2
)

κ2 + γ2
. (4.5.6)

For the rest of this section we shall consider only a gaussian incident beam, for which

P = 1
2 and we can write

Jorb =
1

2
Jinc

(

1 − eγ2 [

γ2E1

(

γ2
)

+ F(ρ0, γ)
]

)

Jsp = Jince
γ2 [

γ2E1

(

γ2
)

+ F(ρ0, γ)
]

, (4.5.7)

in terms of the exponential integral

E1 (x) ≡
∞
∫

x

dss−1e−s, (4.5.8)

and an integral

F (ρ0, γ) ≡ 2

∞
∫

γ

ds

(

s − γ2

s

)

e−s2
cos 2ρ0s, (4.5.9)

which can be expressed in terms of the error function, though we have not found that

representation useful so we do not give it here. The variation of these momenta with

biaxiality and chirality are shown in figure 4.46.

4.5.2 Nonchiral

For nonchiral crystals the exponential integral E1 vanishes in (4.5.7), and the integral F

simplifies leaving

Jorb =

√
π

2
Jincρ0e

−ρ2
0erfi (ρ0) (4.5.10)

Jsp =
√

πJinc

(

1 − ρ0e
−ρ2

0

)

erfi (ρ0) , (4.5.11)
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Figure 4.46: Angular momentum as a function of biaxiality ρ0 and chirality γ showing: (a)

Jorb, (b) Jsp, from (4.5.7), and (c) nonchiral momenta from (4.5.10).

in terms of the imaginary error function (or Dawson’s integral),

erfi (x) ≡ 2√
π

x
∫

0

dses2
. (4.5.12)

The nonchiral angular momenta are shown in figure 4.46(c).

Well developed conical diffraction rings emerge for thick crystals, ρ0 ≫ 1, where the

momenta simplify to

J ≈ Jorb ≈ 1
2Jinc, Jsp ≈ 0. (4.5.13)

This particularly striking result, that the incident angular momentum is halved and turned

entirely from the spin to orbital variety, can be understood physically. The well developed

rings are linearly polarised and hence carry no spin angular momentum, so, since the

orbital angular momentum is generally a radially weighted average of the polarisation

phase, Jorb will be proportional to the π geometric phase accumulated in a complete 2π

circuit of the optic axis. This reflects the presence of the 1
2 -index C point polarisation

singularity existing somewhere in the dark region near the centre of the rings, (at the

centre if the incident beam is circularly polarised), associated with a 1
2 -integer orbital

angular momentum.

4.5.3 Chirality dominated

In the chirality dominated regime of γ ≫ 1 the angular momenta simplify to

Jorb ≈ 0, J ≈ Jsp ≈ Jinc. (4.5.14)
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A similarly striking result, this is obvious physically. Chirality changes only the phase of

circular polarisation, having therefore no effect on orbital angular momentum. Chirality

also uniformly rotates linear polarisation, not altering the total spin angular momentum.

4.5.4 Strongly biaxial or chiral crystals

For either strong biaxiality ρ0 ≫ 1 or strong chirality γ ≫ 1 the oscillations in (4.5.7) and

in figure 4.46(a-b) are small. They are contributed by the F integral in (4.5.7), with the

exponential integral E1 term and the constant giving the overall average momenta.

The weak oscillations come from the endpoint s = γ of the F integral, physically

constituting geometric interference between two rays, one from each sheet of the wave

surface. The zeroth order term at the endpoint vanishes, but after integrating by parts

twice, its asymptotic behaviour is given by

F (ρ0, γ) ≈ e−γ2
Re

e−2iγρ0

(γ + iρ0)
2 . (4.5.15)

This approximation for F is shown in figure 4.47. From figure 4.46 it can be seen that

the average angular momentum is of order unity over this range, and as ρ0 increases the

oscillations become vanishingly small.
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Figure 4.47: Asymptotic angular momentum oscillations: the oscillating function eγ2
F (ρ0, γ)

plotted against γρ0, comparing the exact (4.5.9) (full curves) to the asymptotic approximation

(4.5.15) (dashed curves), for the ρ0 values indicated.

4.5.5 Torque on the crystal

The change in angular momentum associated with conical diffraction must be accompanied

by a torque on the crystal that conserves momentum. This tends to rotate the crystal



about the optic axis with a magnitude Jinc−J per photon in the incident beam. A further,

much larger torque, arises from the skew of the geometric refraction cone relative to the

optic axis. This torque is proportional to the rotation vector that rotates the cone axis to

the optic axis, with a magnitude given by the rate of photon incidence multiplied by their

angular momentum

Jph = Al × photon momentum =
~Al

λ
, (4.5.16)

where the photon wavelength is λ = 2π/k. The physical cone radius at the exit face, Al,

is much larger than the wavelength of light in any typical situation being considered here,

so Jph ≫ ~, whereas the torque associated with polarisation effects in the diffraction cone

are of order ~ or smaller.
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4.6 Observations of Biaxial Conical Diffraction

In this section we aim to exploit our recent acquisition of a crystal of the monoclinic

double-tungstate KGd (WO4)2, manufactured by the company Vision Crystal Technology

AG (Goexe, Germany), to experimentally test the theory in section 4.1 and demonstrate

the ease with which the asymptotic phenomena can be observed.

The crystal is of good optical quality, cut to a thickness of 25mm along its optic axis

with a 3mm square transverse cross-section. The refractive indices of the crystal are not

known to a higher accuracy than given in table 1.1. Since conical diffraction depends

on the small differences (2.1.4) between the refractive indices, the uncertainty in these

values constitutes a significant error on the half-angle of the conical refraction cone at

approximately 1.0o. The cone attains a radius of 0.4mm at the exit face of the crystal.

The quality of the crystal is such that, with a 100µm diameter pinhole attached to one

face, and viewed projecting sunlight from a window through the length of the crystal, two

spots of double refraction are clearly visible, and can be easily made to spread into a fine

gold ring. The optic axis direction is found by changing the orientation of the crystal in

the plane coincident with the two spots (such that rotating the crystal does not change the

direction connecting the spots), until they spread into lunes, then rings constituting the

intersection of the unresolved conical diffraction cylinders with the eye, appearing in the

focal image plane approximately halfway through the crystal. The phenomenon viewed

in this manner must be reminiscent of that seen by Lloyd during his 1833 discovery with

a somewhat poorer quality of crystal and pinhole, but a similar cone angle, and one feels

compelled to express respect for the quality of his subsequent investigations.

In our investigations, light from a He-Ne laser (wavelength 632.8nm) was passed

through a circular polariser, and focused by a 70mm lens onto the crystal along its op-

tic axis. The precise location of the focus was not determined. The emerging light was

magnified onto a screen 2 metres away using a 6.4mm focal length lens, producing image

rings of diameter 265mm, which were photographed with a Fuji F610 digital camera. The

experimental set up is shown in figure 4.48.

With the beam only approximately oriented two spots are imaged on the screen, ex-

hibiting orthogonal linear polarisations consistent with double refraction. The optic axis

direction is found by the procedure described above, and photographs of the resulting

transition are shown in figure 4.49. This compares well to the theoretical transition in
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Figure 4.48: Observing conical diffraction: a collimated circularly polarised laser beam is

focused through an object lens (focal length 70mm). The distance z is measured from the

focus. A biaxial crystal of MDT (length 25mm), with faces cut perpendicular to its optic axis,

refracts the beam, and the emerging cylinder (radius 0.4mm) is focussed by an image lens

(focal length 6.4mm) onto a screen 2m away (image ring diameter 265mm).
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Figure 4.49: Photographs of the transition from (a,e) conical diffraction to (d,h) double

refraction, as the incident beam is alligned away from the optic axis, in (a-d) the focal image

plane and (e-h) the farfield, corresponding to the theoretical images in figure 4.35. The

diameter of the rings, magnified onto a screen, is indicated.

figure 4.35. One spot spreads out to form the inner ring, one to form the outer ring,

reflecting their separate origin from the two sheets of the wave surface. As the spots

degenerate into conical diffraction rings their distinct orthogonal linear polarisations de-

generate, remaining linear but ultimately exhibiting the same polarisation as each other,

which rotates a half-turn in a circuit of the optic axis. This is observed by passing the exit
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beam through a linear polariser, blocking out light totally along one radial direction and

partially over the nearest ±90o; this structure rotates with twice the angle of a rotation of

the polariser. The transition has been explored in detail in Hamilton’s initial predictions

(Hamilton 1837), Lloyd’s observational discovery (Lloyd 1837), and a numerical simulation

of the light intensity (Dreger 1999).

Since the refractive indices are not known with sufficient certainty to usefully calculate

the cone angle, the radius of Hamilton’s ring at the exit face of the crystal was found

by back calculating from its image on the observation screen when most focused, giving

0.44± 0.01mm. The waist width w was determined by projecting the laser beam through

only the polariser and 70mm focusing lens, and measuring the 1/e width W of the laser

spot on the screen at distance D. This was estimated by fitting a gaussian function to an

intensity profile taken from a photograph of the spot, processed using MathematicaTM.

The spreading of a gaussian beam is given by the formula

W =

√

w2 + (D/k0w)2 ≈ D/k0w, (4.6.1)

from which we determined the waist width to be w = 7.1±0.6µm. The resulting biaxiality

parameter,

ρ0 = 60 ± 10, (4.6.2)

is large enough that the asymptotic phenomena of section 4.1 should present clearly.

Photographs of the light intensity observed on the screen are shown in figure 4.50,

evolving from the rings of internal conical diffraction to the spot of external conical diffrac-

tion. Theoretical profiles from the exact diffraction integrals (4.1.4), and observed intensity

profiles taken by averaging over azimuthal sectors of the photographs, are shown in figure

4.51. The theoretical ζ values in this and the corresponding figures 4.2 and 4.1 were cal-

culated from the measured experimental distances z, except for the z ∼ 0 image. Because

the location of the focal image plane is difficult to find precisely, the focal plane image was

matched by best fit, giving a ζ value of 1.8, and a corresponding z value of 0.9mm.

This uncertainly in ζ results from the tight focusing of the rings obtained with our

large value of ρ0, which is accompanied by a sensitive dependence of the dimensionless

propagation distance ζ on the physical distance z. From the definition of ζ (2.3.15) we

have ∆ζ = ∆z/k0w
2 ∼ 1.998 × ∆zmm, so that near the focal plane where the intensity

changes extremely fast with ζ due to severe diffraction effects, a physical adjustment on

the order of a millimetre constitutes a sharp change in the intensity profile.
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Figure 4.50: Photographs of the conical diffraction pattern from a 25mm slab of MDT, imaged

at distances ∆z = ζk0w
2 equal to: (a) ∼0, (b) 1.5, (c) 3.0, (d) 6.0, (e) 9.0, (f) 15.0, (g)

21.0, (h) 49.1, millimetres from the focal image plane. (The blemishes in the lower halves of

(f) and (g) result from lens imperfections).



4.6 Observations of Biaxial Conical Diffraction 133

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

20 40 60 800 ρ

20 40 60 800 ρ

20 40 60 800 ρ

20 40 60 800 ρ 20 40 60 800 ρ

20 40 60 800 ρ

0 20 40 60 80 ρ

0 20 40 60 80 ρ

Figure 4.51: Conical diffraction profiles: graphs of radial intensity, comparing theoretical

curves (full) from figure 4.2 to experimental intensity (dotted) from figure 4.50, obtained by

averaging over a 10o annular sector of the digital photographs in MathematicaTM. Vertical

scales are chosen for best fit.
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The most distinct features of conical diffraction are the two bright rings, whose radii

compare well to theoretical values in figure 4.52. For this purpose the theoretical values

were taken from exact simulations rather than the asymptotic theory.
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Figure 4.52: Ring dimensions; theoretical (curves) and observed (points) separations between

the outer ring maximum and: for ∆ρie, the inner ring maximum, and for ∆ρe, the dark ring.

Errors in ρ arise from azimuthal averaging over the digitals photographs, errors in ζ arise from

the measurement error in w.

The observed and theoretical radii of the first two diffraction rings decorating the main

inner ring are compared in figure 4.53, showing good agreement. The thickness of rings

decreases with their radius, and their number increases with distance from the focal plane,

in the manner predicted by the asymptotic theory.
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Figure 4.53: Theoretical (line) and observed (points) widths of the first secondary diffraction

ring, ∆ρs, measured between the two secondary ring maxima closest to the dark ring. Errors

arise from azimuthal averaging over the digital photographs.

Discrepancies are visible in figure 4.51 in the far field ζ ≫ 0 images, where the rings

surrounding the central spike appear to have prominent maxima and minima instead of the



shoulder-like inflections predicted by theory. It might be conjectured that a possible origin

of such oscillations is the finite aperture size which gives oscillations in the focal plane for

a pinhole beam, figure 4.7(b). This can be ruled out for two reasons: the finite aperture

size effect arises from poor collimation which does not apply to the laser beam, and the

oscillations seen here correspond in radius, if not in shape, to theory. This correspondence

is evident in figure 4.54. As yet, therefore, we cannot explain the remaining discrepancy.
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Figure 4.54: Theoretical (line) and observed (points) radii, ∆ρ1 and ∆ρ2, of the first two

diffraction rings surrounding the axial spike. Theoretical radii are shoulders of the Bessel

rings (equation (4.1.42)), experimental errors arise from azimuthal averaging over the digital

photographs.





Chapter 5

Concluding Remarks

“I have been doing what I guess you won’t let me do when we are married,

sitting up til 3 o’clock in the morning fighting against a hard mathematical difficulty.”

Sir George Gabriel Stokes, 1857, in a letter to his young lady (Stokes 1907)

The theory reported here describes the propagation of light along singular directions in

anisotropic crystals. Of foremost importance are the simplifying principles of paraxiality,

weak anisotropy, and geometrical optics. The first two of these allow the effect of a crystal

on a beam of light to be specified by three optical parameters: the refraction cone size

ρ0, transition parameter µ, and optical rotation γ. These encapsulate the leading order

optical behaviour of a paraxial beam, including the eighteen components of the general

complex dieletric tensor, the crystal length, the incident beam width and wavenumber,

and a two-vector describing the beam alignment.

The ring-radius to beam-width ratio ρ0 for a biaxial crystal determines the resolvability

of the conical diffraction rings, well defined rings being obtained either with a narrow beam

or a thick crystal. The outer ring is well described by geometrical optics, but diffraction

of a wave scattered from the conical point dominates the profile of the inner ring. Near

the focal plane this diffraction is most severe and makes the ring faint, the precise form

depending on the incident beam profile. Two particular cases considered in section 4.1.3

highlight two very different ways in which diffraction can play a role: for a gaussian

beam the geometric rings are symmetric about the anti-focal ring, however diffraction all

but obliterates the inner ring; for a pinhole beam the exact wave theory demands poor

137
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collimation of the beam be taken into account, introducing a finite aperture size which

produces interference and softens the logarithmic singularity obtained otherwise.

Far from the focal plane any incident beam can be considered slow varying and its

profile becomes less important. Let us consider more rigorously the motivation behind

the complex ray representation for a gaussian incident beam. The gaussian beam profile

violates the assumption in section 2.6 that it is not an exponential function, and we must

consider more carefully whether it is slowly varying. Recall that we obtain the diffracted

field by superposing plane waves consisting of the beam profile, e−
1
2κ2

, and the phase term

e−iΦ = e
i
“

κ·ρ−1
2 ζκ2±ρ0κ

”

, and that the complexification of the gaussian beam involves the

transformation ζ → ζ̃ = ζ − i. Compare the coefficients of the quadratic beam exponent

and the quadratic phase exponent, that is unity and iζ. When ζ is large the phase term

will oscillate many times over the width of the gaussian beam, so the latter can be treated

as slowly varying. When ζ is small the gaussian profile is relatively fast varying and its

stationary approximation can be expected to fail. Fortunately, the complex source trick

allows us to incorporate the beam profile into the phase term. Such tricks may be possible

for other beams, but as can be readily seen the conditions are rather restrictive and none

exists, for example, for the pinhole beam.

Complex rays enter into the geometric theory more crucially in the presence of the

transition parameter µ. In any case, complex rays are paths through complex position

space conserving the transverse part of the wavevector, and thereby satisfying Hamilton’s

dynamical equations (2.7.6). In an absorbing medium the instantaneous Poynting vector

is time dependent (in section 3.1 we considered the time averaged Poynting vector) and

not normal to any wave surface, though attempts have been made to define ray directions

from it (Epstein 1929, Censor 1977, Echarri & Garea 1994). Interest remains in the inter-

pretation of geometrical optics through complex rays (Bravo-Ortega & Glasser 1991). We

have seen that the definition of complex rays as the saddlepoints of wave integrals provides

a clear geometric insight through asymptotics. What we give up is the correspondence of

a ray to any real path in space, but what we gain is a deep geometric understanding of re-

fraction phenomena even in the presence of absorption. Combined with a knowledge of the

corresponding rays in a transparent medium, the complex nature of these rays constitutes

no intuitive obstacle to a detailed geometrical understanding.

It is important to note that the intuitive power of the ray concept does not rely on

its representation of the path of some abstract object, and indeed the study of conical
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refraction purely in terms of ray paths stood as an obstacle to its eventual solution for

many years. The geometric constructions of rays as normals to wave surfaces are useful

for building up a geometric insight in transparent crystals, but the central result of the

ray method can be defined even in the abstract complex space of ρ̃ and ζ̃. That central

result is the intensity of ray crowding. From this geometric intensity we can directly infer

the sites of geometric focusing which dominate diffraction in transparent crystals, and the

sites of geometric interference along anti-Stokes sets which dominate in absorbing crystals,

without any conceptual difficulties arising from dealing with complex spaces.

It is through the abstract transformation to complex coordinates that dichroism (non-

hermiticity of the dielectric tensor) and misalignment of the incident beam (transition

between double and conical refraction) are shown to give equivalent diffraction effects

embodied in the parameter µ, and this is a genuinely surprising result. The unintuitive

nature of this duality is reflected in its restriction to gaussian beams. This narrow appli-

cability is not itself difficult to comprehend, the only requirement is that a misalignment

of the incident beam modifies it by a direction dependent exponential, mimicking the

exponential symmetry breaking of anisotropic absorption. Clearly this is satisfied by a

gaussian beam, but a pinhole beam varies too slowly; other well collimated beams may

satisfy this condition paraxially.

Although the notion of complex rays allows us to fully understand the geometrical

optics of absorbing media as encountered here, one may still reserve some disappointment

in the present lack of any association with visualisable paths in real space. Even for

a gaussian beam in a transparent medium (or vacuum), for which both real rays (in

a gaussian bundle) and complex rays (uniformly issuing from a point source) may be

derived, the physical relation between them – the complexifying shift ‘−i’ – lacks a clear

geometrical interpretation.

The transition parameter µ = ζδ + κ0 implies that dichroism δ causes no diffraction

effects in the focal plane ζ = 0, so the focal plane contains the bright focused double-ring

image of biaxial conical diffraction. The entire image is modulated by an exponential

ramp, which is an easily recognised unidirectional intensity slope unrelated to diffraction.

It merely signifies the paraxial effect of direction dependent absorption. For a gaussian

beam the shift to complex propagation distance also shifts the entire field a distance δ,

given by (2.4.8) and depicted in figure 4.26.

Most important in the dichroic conical diffraction images are anti-Stokes surfaces,
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which form dark brushes laced with darker interference lines, the latter identifiable ap-

proximately as loci of C points. For a gaussian beam the dark brushes loop round into

a funnel with a perfectly circular cross-section, a beautiful geometry intimately linked to

the complex ζ̃ representation of a gaussian beam. Some remnant of these dark surfaces

survives the addition of optical activity, becoming part of a very rich intensity structure

that can be predicted accurately in terms of anti-Stokes sets. The effect of complexifica-

tion on the spun cusp involves complexifying only the radial variable, causing a simple

reduction of the rotationally symmetric caustic to a smoothly curved focal line.

The arguments employed to define the optical parameters {ρ0, δ, γ} in sections 4.1-4.4

have the benefit of being easily extended to more general situations, as we have discussed

for circular dichroism. Furthermore, they define the optical effects of biaxiality, optical

activity, and dichroism, in terms of simple and measurable changes in the polarisation of

plane waves. In this manner they are far more general than the rigorous derivation from

Maxwell’s equations in section 2.1. They avoid detailed questions as to the material causes

of the effects. In particular, optical activity may depend on the wavelength of light used,

it may manifest in the form of the Faraday effect, Raman optical activity, macroscopic

chirality of the crystal lattice or microscopic chirality of the molecular constituents. Our

motivation is not merely avoidance; the study of optically active crystals is ongoing, in

particular how they rotate (Eimerl 1988) and refract (Silverman & Sohn 1986, Ghosh &

Fischer 2006) light, and metamaterial technology, which is still in its adolescence, promises

many new structures and mechanisms by which light may be manipulated. For example,

Potts et al. (2004) have recently shown that wavelength-scale lattice structures in the form

of swastika, triskella, or chiral fractals, can rotate the polarisation state of light. Also,

conical refraction has already been studied in nonlinear (Shih & Bloembergen 1969, Bloem-

bergen & Shih 1969) and inhomogeneous (Naida 1979) crystals and continues to generate

interest. The three main effects considered here are the most fundamental means by which

a medium might alter the state of light, and therefore represent the first approximation

to a general theory of light propagating along axes of singularity.

The motivation for this general approach is also practical. The image size ρ0, rotation

of polarisation γ, and the attenuation δ or alignment κ0, of a beam can be experimentally

measured more easily than the eighteen coefficients of the dielectric tensor. In fact we

have been unable to find any data recording the anisotropic absorption indices of crystals

with which to compare the predictions of sections 4.3 and 4.4. We can estimate, however,
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that the diffraction effects described therein are most prominent when the singular axes

have an angular separation on the order of 2δ/k0w, e.g. 1o for a He-Ne laser with 10µm

waist. But the effects of dichroism as predicted here are likely to pose a great observational

challenge and demand extremely sensitive measurements. The exponential ramp omitted

from plots here will largely swamp anti-Stokes gradients, which themselves are revealed

only in logarithmic plots.

The transition from conical diffraction to double refraction offers an easier means of

studying the dichroic effects predicted here for gaussian beams, since the exponential

absorption ramp is absent and, of course, there is no overall attenuation. Our own exper-

imental images of transition in figure 4.49 do not contain sufficient dynamical range to be

plotted logarithmically, though in their general appearance they do resemble the predicted

intensity in figure 4.35.

Relevant to the growing technologies of novel materials, and the manipulation of indi-

vidual atoms and molecules through the use of “optical tweezers” (Allen et al. 2003), are

the changes in optical angular momentum which accompany conical diffraction, predicted

in section 4.5. In principle the optical angular momentum formulae (4.5.1) can be ex-

tended to include dichroism, although we have not yet found any reasonable simplification

of the resulting integrals. Nevertheless it would be interesting to further investigate the

angular momentum change and torque associated with anisotropic absorption.

There are other interesting avenues to explore through conical diffraction, particularly

involving the polarisation structure which we have barely touched upon. The theory given

here is sufficient for direct calculation, exact or asymptotic, of the polarisation of the field.

We have noted the geometric phase associated with the half rotation of polarisation around

the bright biaxial conical diffraction rings, discovered by Hamilton and Lloyd, and hinted

at its extension to absorbing crystals. We have also elucidated the intricate polarisation

spiral of chiral conical diffraction. Consider for a moment a circularly polarised incident

beam, d±, for which we can write the field conically diffracted through a biaxial chiral

crystal as

D = (B0 ± B2)d± + B1d∓. (5.0.1)

This naturally splits the diffracted beam into the first term, called the fundamental, which

retains the incident polarisation, and the second term which is a vortex beam, possessing

an axial polarisation singularity due to the Bessel function J1 in the B1 integral, (therefore

this splitting remains interesting in the absence of chirality when B2 vanishes). The two
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parts of the beam can thus be distinguished by the use of a circular polariser. Such

intricate polarisation dependence is currently being developed by a company Crystalith

(Jerusalem, Israel) for use in metrology, as a means of measuring distances far below the

diffraction limit for use in the alignment of optical components. They view this as the

first of many possible applications of conical diffraction technology.

Besides complex rays and paraxiality, the final simplifying principle in the theory

of conical diffraction is the study of the image field. This avoids detailed and difficult

study of the precise form of waves or rays inside the crystal, which cannot be directly

imaged anyway. In particular this simplifies study of the angular momentum, which has

been addressed elsewhere (Ciattoni et al. 2003) for paraxial beam propagation in uniaxial

crystals. We have also shown how the formulae for the image field can be easily transformed

to give the true field inside the crystal. Such a simple transformation is not possible in

reverse because the image field contains more information.

To date, much of conical diffraction remains unexplored experimentally. Observations

near the singular axes of a dichroic biaxial crystal (iolite) were made by Pancharatnam

(1955b) but did not concern conical diffraction. Conical diffraction experiments have been

performed on transparent crystals, most extensively the nonchiral case (Raman et al. 1941,

Schell & Bloembergen 1978b), which is now well understood through our own investigations

in section 4.6. The chiral case was studied by Schell & Bloembergen (1978b), although the

caustic horn and ζ-dependent pattern predicted in section 4.2 remain to be investigated –

these should be easy to observe.

Our own observations reported here for nonchiral transparent conical diffraction verify

the emergence of the asymptotic phenomena predicted, including the widths, separations,

and rate of growth of the geometric rings, axial focus, and interference rings. We have

not been able to explain the observation of distinct maxima and minima surrounding

the axial focus, instead of the faint shoulders predicted by theory. However our main

aim is to demonstrate the ease with which observations can be made, and considerable

improvement on the precision of these experiments is possible. A particularly interesting

avenue for experimental study might be the connection between crystal dichroism and

beam alignment for collimated beams.

We are currently aware of no published experimental observations capable of revealing

the rich distance-dependent intensity structure beyond a biaxial crystal, either in the

presence of optical activity and/or dichroism, or equivalently, of the transition from conical
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diffraction to double refraction for transparent crystals with/without chirality.

The legacy of Hamilton’s investigation into the diabolical point is tinged with contra-

diction. The phenomenon of conical refraction predicted by Hamilton is itself a curiosity,

the abstraction of an idealised mathematical theory that occurs nowhere in nature. The

physical phenomenon of conical diffraction can be understood geometrically, but only

with the inclusion of wave effects from the outset in a geometric manner. The dominant

and subdominant contributions to asymptotic expansions of the diffraction integrals swap

prominence paradoxically as they thread the conical diffraction rings with a focal spike.

The effect of optical activity is at once to smooth out the diabolical point, and to pro-

duce the more striking singularity of a caustic surface in the image field. The effects of

anisotropic absorption are severe, washing out focusing with exponential gradients – the

rich interference structures of complex rays uncovered under logarithmic enhancement.

Finally, with the geometry of a flat crystal slab and collimated beam, the theory retains

some unnatural idealisation. In more general situations of arbitrary crystal geometry, or

media which are not only anisotropic but inhomogeneous, refractive index degeneracies

may be encountered locally by propagating waves. These situations are more similar to

dynamical applications in quantum mechanics, chemistry, biochemistry and seismology.

In understanding these far more complicated situations the idealised theory is an essential

first step, and we offer some moves towards such generalisation in appendix B.





Appendix A

Solutions to the chiral quartic

The quartic ray equation (4.2.11) can be written conveniently as

(vq − u)2
(

q2 + 1
)

− q2 = 0, (A.0.1)

or
∣

∣

∣

∣

∣

det

(

(vq − u) I +
q ·Σ
√

q2 + 1

)∣

∣

∣

∣

∣

= 0 (A.0.2)

in terms of scaled variables

u ≡ ρ

ρ0
, v ≡ ζ

ζcusp
, q =

κ

γ
. (A.0.3)

Two of the four roots coalesce on the caustic

u2/3 + v2/3 = 1. (A.0.4)

The roots of the quartic equation can be expressed explicitly as

2vqn ≡ (−1)a u + M1/2 + (−1)b
√

2 (u2 − 3∆) − (M − u2) + (−1)a 2u
1 + v2

M1/2
, (A.0.5)

in terms of the quantities

∆ = 1
3

(

u2 + v2 − 1
)

and M = u2 +
(

Ω1/3 − ∆Ω−1/3
)2

, (A.0.6)

where

Ω = uv +
√

u2v2 + ∆3 (A.0.7)

is real outside the caustic and imaginary inside, for real u and v. The behaviour of these

parameters is illustrated in figure A.1. The integers a and b may be either zero or unity

and thus give rise to the four roots, for which a convenient choice of labels is

n = 2 − ab + (1 − a)(1 + b), (A.0.8)
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so that

0 < q4 < Req1 ≤ Req2 < q3. (A.0.9)

Equality is attained on and outside the caustic (where the left hand side of (A.0.4) is greater

than or equal to unity), where the Re symbols are necessary since the roots q1 = q∗2 are

complex. This convention is consistent with (4.2.29).

This is valid for positive u and v, and continued to negative values by u → |u| and

v → |v|. The continuation to complex coordinates in absorbing media is complicated by

branch cuts, and the precise form of (A.0.5) must then be chosen to make the solutions

continuous.

Re[Ω−uv]=0

u2+v2=1

∆<0

∆>0

Im[Ω−uv]=0

caustic

ρ

ζ

Figure A.1: Elements of the solutions to the quartic chiral ray equation: the quantity ∆ is

negative inside the circle u2 + v2 = 1 and positive outside, the quantity Ω is real outside the

caustic and imaginary inside. The quartic equation for u, v ∈ R has 4 real roots outside the

caustic and two inside.

In the absence of chirality, when γ = 0 and the scalings (A.0.3) are inappropriate,

these four roots reduce to the two roots of the nonchiral ray equation. With the labeling

convention above, the roots simplify as follows:

γ = 0 ⇒ κ1 = ρ0−ρ
ζ T [ρ0 − ρ] , κ2 = 0,

κ3 = ρ+ρ0

ζ , κ4 = ρ−ρ0

ζ T [ρ − ρ0] .
(A.0.10)

The general solution applies also to complex rays, where the variables u and v and the

roots q are complex, for which a consistent labeling of solutions can only be made locally.

In that case we require that the arguments of the four roots vary smoothly, except at a

single branch cut surface in {ρ, ζ} space where two solutions switch discontinuously.



Appendix B

Spherical conical refraction

2A
B

2B
4A

4A

r

l=2r D

wρball

incident 

beam

Figure B.1: The geometry of spherical conical refraction, showing the internal cone angle with

apex half-angle A refracting into a cone with apex half-angle B.

During the course of our investigations we had cause to consider the following variation

on the theme of conical refraction, in which the crystal is a sphere rather than a cuboidal

slab. The motivation was an experiment in which a He-Ne laser beam was aimed along the

optic axis of a spherical crystal of KTP (Fève et al. 1994). This may be of experimental

interest, so we draw attention to it here, extending our geometric theory to this case,

and extending both theories to include crystals of arbitrary geometry, requiring only that

the optic axis is perpendicular to the (arbitrarily curved) entrance and exit faces. We

give only the simple refraction theory which yields the paraxial parameters essential to

conical diffraction, namely the crystal anisotropy parameter ρ0, and the dimensionless
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propagation distance ζ. Perhaps surprisingly, the formulations of the geometric and wave

theories remain essentially the same as those for a crystal slab, with the new parameters

inserted. Our results are consistent with the theory and experiment reported by Fève

et al. (1994).

The beautiful geometry involved in spherical conical refraction is illustrated in figure

B.1. Most important are the refracted cone angles, of which there are now two: the usual

Hamilton cone of rays refracted into the crystal caused by the degeneracy of the optic

axis, with cone half-angle A, and the cone into which this is refracted by the curvature of

the exit face, with cone half-angle B. Snell’s law at the exit face relates these paraxially

by

sin (4A + 2B) = n2 sin 2A. (B.0.1)

The refractive index along the optic axis of the crystal is the middle refractive index n2.

Let the crystal be a sphere of radius r and diameter l = 2r (it will be important to keep

the two separate when considering the r → ∞ flat slab limit). We are only interested in

the change in optical path length of a paraxial ray due to the curvature of the crystal,

which is proportional to a refractive curvature

c ≡ n2 − 1

r
. (B.0.2)

For a beam of width w and vacuum wavenumber k0, we work in terms of the familiar

dimensionless variables, measuring transverse deviation ρ from the optic axis in units of

the beam width, and propagation distance ζ along the optic axis in units of the diffrac-

tion length k0w
2. Let the dimensionless length of the crystal be L = l/k0w

2, and the

dimensionless refractive curvature be C = ck0w
2.

A ray, striking the entrance face of the crystal at a distance ρ1 from the optic axis,

travels an optical path length −ρ2
1C/2 less than an axial ray; the quadratic power reflects

the parabolic approximation of spherical curvature. If the ray subsequently traverses the

crystal making an angle κ/k0w with the optic axis, and strikes the exit face at a distance

ρexit from the axis, its optical path length in the crystal includes the length κ (ρexit − ρ1), an

isotropic shift −1
2Lκ2/n2 due to birefringence, and Hamilton’s conical shift ±ρ0κ reflecting

the conical point (we will neglect the skew of the cone here, which is easily incorporated

by a coordinate transformation). The optical path length of a ray striking the exit face

at the distance ρexit from the axis differs from an axial ray by −1
2Cκ2. After reaching a

distance ρ from the optic axis having traveled a further distance D from the crystal, the
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total optical path length of a ray is thus given by

Φ (κ) = −C

2
ρ2
1 + κ (ρexit − ρ1) −

L

2n2
κ2 ± ρ0κ − C

2
ρ2
exit +

1

2D
(ρ − ρexit)

2 . (B.0.3)

We then apply Hamilton’s principle. By minimising the optical path length with respect

to ρexit we find
∂Φ

∂ρexit
= 0 ⇒ ρexit =

ρ − κD

1 − CD
, (B.0.4)

and by minimising with respect to κ we find the ray solutions,

∂Φ

∂κ
= 0 ⇒ κ± =

ρ + (±ρ0 − ρ1) (1 − CD)

D + L (1 − CD) /n2

≈ ρ ± ρ0 (1 − CD)
1
n2

(L + (n2 − CL) D)
, (B.0.5)

where ρ0 ≫ ρ1 for well developed conical diffraction rings.

Note that when the refractive curvature vanishes we correctly obtain the optical path

length for a flat slab,

ΦC=0 (κ) = κρ ± ρ0κ − 1
2κ2

(

L

n2
+ D

)

, (B.0.6)

in which the dimensionless propagation distance is

ζ =
L

n2
+ D. (B.0.7)

Comparing (B.0.5) to the flat slab rays κ± = (ρ ± ρ0) /ζ, we can define parameters for the

spherical crystal analogous to ρ0 and ζ, given by

ρ0 → ρball = ρ0 (1 − CD) (B.0.8)

ζ → ζball =
L + (n2 − CL) D

n2
= ζ +

CLd

n2
. (B.0.9)

The half-angle of the external cone obtained from this paraxial theory is B ≈ A (n − 2),

consistent with Snell’s Law (B.0.1).

The implication of these transformations is that all of the theory detailed in this thesis

applies to spherical crystals, subject to this change of variables. The effect, as suggested

by figure B.1, is to focus the refracted rays onto an axial point a distance D = L/ (n2 − 2)

from the exit face of the crystal, beyond which the image magnifies. Note that for n2 > 2

the focal image plane ζ = 0 is outside the crystal and the most focused rings can easily be

imaged even without a lens, something impossible for flat slabs where the focus is inside

the crystal.
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Since ρball is distance dependent it can be extremely large far from the crystal, satisfy-

ing the ‘thick crystal’ condition that we have relied on for slabs, but now regardless of the

crystal’s size! At the opposite and less interesting extreme, in the plane D = 1/C we have

ρball = 0. Recall that the asymptotic phenomena of well developed conical diffraction

rings arise for ρ0 ≫ 1. For small ρ0 the large width of the beam obscures the conical

diffraction pattern which has not yet spread over a large enough conical section to be

resolved. ρ0 → ρball = 0 is the extreme situation in which the conical diffraction pattern

is compressed into a single spot on the axis, reconstructing the incident beam as if the

crystal were isotropic.

Furthermore, the evolution of the diffraction pattern, from focused rings, to secondary

interference, to axial spot, depends on the dimensionless propagation distance ζ. We have

already noted that the zero of this lies outside the crystal for n2 > 2. But ζball increases

in proportion to n2 − CL = 2 − n2, so for a crystal whose refractive index is close to 2

(typical of the crystals in table 1.1) the diffraction pattern (and ζ) evolves very slowly,

spreading the features that for a slab are typically contained within millemetres of the

crystal, out over potentially huge distances, easily on the order of a metre or more.

This paraxial treatment allows us to extend the theory to arbitrary crystal geometries.

Firstly the crystal need not be spherical. Let the exit face have a radius of curvature

r as above, but let the entrance face have a radius of curvature r1 for which we must

define a new refractive curvature C1 = k0w
2 (n2 − 1) /r1. It turns out that all of the C’s

above are unaffected, except for the first term in (B.0.3) where C is replaced by C1, whose

only effect is a distance independent phase shift that has no effect on the intensity or ray

geometry. The surfaces may then be arbitrarily curved, provided that the beam is well

enough collimated that in the paraxial region the surfaces are approximately spherical

with a large radius of curvature.

Finally we can consider the case in which the optic axis is not even perpendicular to

the two (possibly curved) faces of the crystal. This introduces a direction dependency in

the linear κ terms of the optical path length, which can be dealt with simply by a shift of

origin of the transverse coordinate. The result is a simple skew of the diffraction pattern

similar to the skew of Hamilton’s refraction cone, which can also be incorporated in the

same manner. Thus in the transformed coordinates the theory will again be formally the

same.



Appendix C

Glossary of key symbols

A few summary notes on notation: I is the 2 × 2 identity matrix; operators (calligraphic

font) are 2×2 matrices acting upon 2-vectors (bold face) transverse to the optic axis, with

the exception of the crystal 3-vector V and the Pauli 3-vector Σ throughout; in sections

2.1-2.2 and 3.1 only do we assume 3×3 matrices and 3-vectors. Following is a list of some

key symbols used extensively throughout the thesis:

Symbol Definition Description

Variables concerning position space and the crystal:

Σ (2.1.15) The 3-vector of Pauli matrices {σ3, σ1, σ2}

A (2.2.6) Hamilton’s conical refraction angle

ρ, ζ (2.3.1), (2.3.15) Dimensionless cylindrical position coordinates

ρ̃, ζ̃ section 2.4 Complexified position coordinates

V (κ) (2.3.10) 3-vector specifying the crystal

ρ0 (2.3.9) Biaxiality (ring resolution) parameter

γ (2.3.9) Chirality parameter

δ (2.3.9) Dichroism parameter

µ (2.4.3) Nonhermiticity parameter
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Variables concerning plane waves:

κ (2.3.2) Dimensionless transverse wavevector

κ̃ section 2.4 Complexified transverse wavevector

F (κ,ρ, ζ) (2.3.14) 2 × 2 evolution matrix, operator on plane waves

F tr (2.3.14) Traceless part of F , F tr
ij = Fij − 1

2 (F11 + F22)I

Φ (κ,ρ, ζ) (2.7.4) Optical path length of a refracted ray

Functions concerning the diffracted light beam:

Complex electric displacement field 2-vector:

D (ρ, ζ) (2.5.5) - of diffracted light beam

D0 (ρ, ζ) (2.3.3) - of incident light beam

d0 (2.3.3) Polarisation of incident light beam

a (κ) (2.3.3) Fourier profile of incident light beam

I (ρ, ζ) (2.7.7) Intensity of diffracted light beam

b± (ρ, ζ) (2.5.4) Diffraction integral in eigenwave representation

Bm=0,1,2 (2.5.6) Diffraction integral in differential representation

d± (2.5.8) Eigenpolarisations of the diffracted light field

dlin
χ (2.3.27) Linear polarisation 2-vector

dcirc
± (2.3.28) Circular polarisation 2-vector

ω (2.3.26) Complex polarisation variable

Quantities particular to gaussian beams:

Cm (r) (2.5.17) Single-variable diffraction integral

ζ̃ (2.4.7) Complex-source transformation of ζ

r, r0 (2.5.15) Complex scaling of ρ and ρ0

τ , g (2.5.15) Complex scaling of κ and γ

µ (2.4.8) Nonhermiticity / beam misalignment parameter
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