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Abstract
The intensity of light refracted along the optic axis of a slab of dichroic chiral
birefringent crystal is studied for a Gaussian incident beam. The geometrical
optics is derived in terms of complex rays. The dominant intensity features
are exponential changes in intensity where pairs of rays exchange dominance,
attributable to the interference of nonorthogonally polarized complex rays.
These exponential gradients swamp the sites of ray focusing, which occur
along two lines in space associated with the branch points of the ray
equation, and around a closed loop called a complex whisker. The complex
whisker intersects the branch focal lines at two ‘complexified cusp’ points,
sites of higher-order focusing, which can be understood in terms of the
complexification of one of the two control parameters defining the spun cusp
catastrophe. The diffraction integrals are derived, and their asymptotics
complementing the geometrical optics is explored.
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1. Introduction

A recent series of papers [1–5] have shown that conical
diffraction—conical refraction of light by a biaxial crystal
and the associated wave effects—arises in a domain where
both Hamilton’s geometric ray theory [6] and the full wave
theory of Belskii and Khapalyuk [7] are essential to a proper
understanding. Natural extensions to crystals with chirality
(optical activity or the Faraday effect) [3] and dichroism [4]
have required more sophisticated asymptotics and yielded a
few surprises. Here we make the natural extension to include
both effects combined.

In the presence of chirality the conical point of the wave
surface [8], or degeneracy of the evolution operator matrix [1],
responsible for conical refraction, is removed and replaced
by a ring of inflection points in the wave surface [9, 10].
This produces focusing along a circularly symmetric caustic
surface, in the form of a spun cusp threaded by an axial focal
line. Although the quartic order of the ray equation prevents
a simple explicit expression of the ray intensity, geometrical
optics still provides a detailed understanding of these dominant
features [3], recognizable as singularities in the geometric
intensity due to the coalescence of rays. These rays are the
saddlepoints of the integrand in the full diffraction theory,

and contributing saddlepoints are chosen if they lie along the
unique path of integration for which the integral converges,
when deformed to lie along contours of phase. In this way
the caustic surface is found to enclose a region of space where
four saddlepoints contribute as rays, two of which coalesce at
the surface. Only three saddlepoints contribute in the region
outside the caustic, two of which are rays and the third,
decaying exponentially away from the surface, constitutes an
evanescent wave.

The introduction of dichroism [11, 12] requires the notion
of complex rays—solutions of the ray equation in complex
coordinates as a function of a complex wavevector. The locus
of such a complex ray has no corresponding path in real
space, instead deriving its powerful meaning from its status
as a saddlepoint through the method of stationary phase. For
Gaussian beams this leads to a surprising duality between
the effects of dichroism (nonhermiticity of the dielectric
matrix and corresponding plane wave evolution operator) and
beam misalignment (transition between conical and double
refraction), which can be described by a single parameter [4].
Aside from an exponential ramp in the intensity present
only with dichroism, the dominant features are geometrical
interference, giving a dark cylindrical surface where two sets of
rays exchange dominance, laced with a series of darker lines,
characteristic of interference involving complex rays.
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Spun cusp complexified

Our aim here is to consider the effect of adding dichroism
(equivalently beam misalignment) to chiral conical diffraction
for a Gaussian incident beam. In section 2 we develop
the geometrical optics, which involves complexifying the
ray and wave coordinates of chiral conical diffraction. In
section 3 we derive the full wave theory, and in section 4 we
examine more closely its asymptotics, primarily the inclusion
of phase into geometrical optics, and the complexification of
the spun cusp—the rotationally symmetric extension of the
Pearcey integral, whose asymptotics for complex variables
were studied in [13].

Paraxially, that is within small angles of the optic axis, the
birefringence of a crystal is specified by a single parameter, the
half-angle of the conical refraction cone,

A = 1

n2

√
(n1 − n2) (n2 − n3), (1)

which is the geometric mean of the crystal’s principal refractive
indices, n1 < n2 < n3. A crystal slab of thickness l (along the
optic axis) and a Gaussian incident beam of waist width w are
completely specified by the radius of the refracted cone at the
crystal’s exit face measured in units of the beam width,

ρ0 ≡ Al

w
. (2)

The effect of birefringence on a plane wavevector D,
propagating paraxially close to an optic axis of the crystal, is
the multiplication by a unitary matrix exp(iMb), whose well
known [6, 14, 12] linear eigenpolarizations in the crystal rotate
by a half-turn in a 2π circuit of the optic axis. This determines
the real symmetric matrix Mb to be given, up to a trace, by

Mb = −ρ0w
{
kx , ky

} · {σ3, σ1} , (3)

where
{
kx , ky

}
is the (small) part of the wavevector transverse

to the optic axis and the σi denote Pauli matrices.
Chirality and dichroism can also be specified by their

effect on the polarization of a wave which has traversed the
crystal along its optical axis. Consider an incident wave with
circular polarization

dcirc
± = 1√

2

(
1
±i

)
. (4)

Chirality changes the phase of a circularly polarized wave by a
total amount γ , which we write in terms of a Hermitian matrix
Mch as the eigenequation

D = exp (iMch) dcirc
± = exp (∓iγ ) dcirc

± , (5)

uniquely determining Mch up to a trace to be given by

Mch = −γ σ2. (6)

Dichroism is anisotropic absorption dependent on polarization,
specified by a total attenuation parameter δ and a direction,
constituting a vector δ. Choosing coordinates so that δ =
{δ, 0}, this effect can be written in terms of a nonhermitian
symmetric matrix Md as

D = exp (iMd) d0 =
(

exp (ρ0δ) 0
0 exp (−ρ0δ)

)
d0, (7)

which uniquely determines Md up to a trace to be given by

Md = −iρ0δσ3 = −iρ0δ · {σ3, σ1} , (8)

where the second equality implies the extension to general
coordinates. In this case the trace is a coordinate-independent
absorption constant that we will neglect, though it is required
to make TrMd < 0 so the crystal is absorbing overall. In the
presence of chirality and dichroism, the two eigenpolarizations
in the crystal are generally elliptical and nonorthogonal.

2. Geometrical optics

The theory takes its simplest form paraxially expressed in
terms of simple dimensionless variables, used exclusively here,
and discussed in more detail in previous papers [2–4].

Rays refracted from the exit face of the crystal have an
optical path length � (κ,ρ, ζ ). This is derived paraxially by
expanding to quadratic terms in κ , the small transverse part of
the wavevector measured in units of 1/w. ζ is the distance
along the optical axis from the nonchiral (γ = 0) focal image
plane, measured in units of the diffraction length k0w

2, for a
monochromatic incident beam with vacuum wavenumber k0.
ρ is the transverse radial coordinate measured in units of the
incident beam width w.

Rays are defined by minimizing the optical path length
according to Hamilton’s principle,

∇κ� (κ) = 0, (9)

or, equivalently, as the normals to a wave surface � + κ · ρ,
given by

�± (κ,ρ, ζ ) + κ ·ρ = 1
2ζκ2 ± V (κ) . (10)

V (κ) is determined by the effect of the crystal’s optical
properties on the wave surface. In the absence of chirality
or dichroism we have simply V (κ) = ρ0κ; the wave surface
has a conical point along the optic axis κ = 0, responsible
for internal conical refraction, and a circle of points κ =
ρ0/ζ around which the normals are all parallel, responsible
for an axial focal line (external conical refraction). Chirality
separates the two sheets of the wave surface at the conical point
and V becomes

V (κ) =
√

ρ2
0κ

2 + γ 2, (11)

where, here and hereafter, we define the length of a vector by

κ ≡ √
κ · κ . (12)

Dichroism is introduced as a symmetry-breaking perturba-
tion [4], equivalent to a transformation to a complex wavevec-
tor:

V (κ) → V (κ̃) , κ̃ ≡ κ + iδ. (13)

The resulting wave surface has been studied previously [15]
in real κ space, where its degeneracies depend upon the ratio
ρ0δ/γ . For our purposes κ itself can take complex values
and it is more useful to make a transformation to complex ray
coordinates as follows.
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A Gaussian beam can be represented as a bundle of
complex rays [16], simply achieved by replacing propagation
distance ζ by

ζ → ζ̃ ≡ ζ − i. (14)

It was shown in [4] that dichroism of the crystal, δ, and an
alignment of the beam away from the optical axis, κ0 (angle
from the optical axis κ0/kw), can be described by a single
parameter

u = ζδ − κ0. (15)

We define a complex radial ray coordinate

ρ̃ ≡ ρ + iu, (16)

(omitting here a further trivial shift of origin by the small
amount +δ), with which the optical path length is replaced by

�± (κ,ρ, ζ ) → �±
(
κ̃, ρ̃, ζ̃

)
+ �0

(
ρ̃, ζ̃

)
(17)

�0

(
ρ̃, ζ̃

)
= i
[
δ · ρ̃ + 1

2

(
δ2 − κ2

0

)]+ 1
2 ζ̃ δ2. (18)

The only nontrivial effect of the κ̃-independent part �0 is an
exponential amplitude slope from δ · ρ̃, understood in [4] and
omitted from all of the following intensity plots. For the rest of
this paper we emphasize only the κ̃ dependence of �±.

Hamilton’s principle (9) can be recast as minimization
with respect to κ̃ , yielding the ray equation

ρ̃± =
⎛

⎝ζ̃ ± ρ2
0√

ρ2
0 κ̃

2 + γ 2

⎞

⎠ κ̃, (19)

which has four sets of ray solutions, κ̃n

(
ρ̃, ζ̃

)
, n = 1, 2, 3, 4.

The geometric ray intensity involves the Hessian
determinant

∣
∣∣∣
dρ̃

dκ̃

∣
∣∣∣ =

∣
∣∣∣
∣∣∣

ρ̃

κ̃

⎛

⎜
⎝ζ̃ +

(
ρ̃/κ̃ − ζ̃

)3

(
ρ2

0/γ
)2

⎞

⎟
⎠

∣
∣∣∣
∣∣∣
, (20)

summed over the four sets of rays and modulated by an
exponential absorption factor, in the form

I
(
ρ̃, ζ̃

)
= 1

2

∑

n

∣∣∣
∣

dρ̃

dκ̃n

∣∣∣
∣

−1

exp {Im (� (κ̃n) + �0)} . (21)

This is sufficient to understand the two dominant features of the
intensity, namely focusing and interference. Focusing occurs
where the determinant (20) vanishes, along lines in three-
dimensional {ρ, ζ } space: (i) at the branch points

ρ̃ = 0 ⇒ ρ = ρb ≡ ±e3 × u, (22)

corresponding to the complexification of the axial focal
spot [4], visible near the centre of figure 1; and (ii) along
a complex whisker, corresponding to the complexification of
the cusped caustic surface [3]. Geometric interference occurs
along anti-Stokes surfaces, where the amplitudes of complex
rays are equal.

342 3214 134

314341

4321
1234

Figure 1. Logarithmic density plot of ray intensity (21) for u = 2,
ρ0 = γ = 50, ζ = 35. The four rays are listed here in order of
dominance in some key regions, with labels assigned in order of
dominance in the brightest region. The dominance swaps in pairs
across anti-Stokes lines (thin curves), one ray vanishes across the
Stokes line (bold curve, also the bold curve in figure 4), and the ray
equation (19) has a branch cut (dotted curve); these are shown only
in the lower half and are symmetric about the ρu axis. The complex
whisker ρw and branch points ρb are shown.

2.1. The complex whisker

The vanishing of (20) for ρ̃ �= 0 is satisfied by

1 =
(

ζ̃

ζc

)2/3

+
(

ρ̃

ρ0

)2/3

, (23)

where
ζc ≡ ρ2

0/γ. (24)

This defines a line of focusing between two sets of complex
rays, called the complex whisker [17]. (In the case u = 0
this condition defines a horn-shaped cusped caustic surface.)
As remarked in [18], the complex whisker is generally subject
to exponential damping from the factors exp {Im � (κ̃n)},
reducing its significance as a visible focusing effect, though
it can still be seen in figure 1.

The whisker forms the closed loop shown in figure 2. We
choose coordinates

ρ = {ρu, ρv} (25)

in which u = {u, 0}. By expressing ζ̃ = ζ − i in complex polar
form, and approximating for a small argument corresponding
to ζ 	 1, the following very accurate approximation for the
whisker can be found:

ρu ≈ ρ2
0

uζc

(
ζc

ζ

)1/3
(

1 −
(

ζ

ζc

)2/3
)2

(26)

ρ2
v ≈ u2 − ρ2

u − ζc

(

1 −
(

ζ

ζc

)2/3
)(

4ρ2
0

3ζ 3
c

− ρuu

(
ζ

ζc

)1/3
)

.

(27)
In (27) the ρ2

0/ζ
3
c term is needed for the correct shape near

ζ = ζc, but is small elsewhere, and the ρ2
u is small near

the highest arch section, while the ρu term is small near the
lowest arch section. These considerations lead to the geometry
indicated in figure 2.
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Figure 2. Geometry of the complex whisker, plotted from
approximation (26) and (27) in scaled coordinates
{x, y, z} = {ρu/ρ0, ρv/ρ0, ζ/ζc}, and the axial focal lines (dashed)
where ρ̃ = 0. The extreme coordinates of the whisker are shown,
involving a = u/ρ0, b = uρ0/γ = aζc and

zL =
[(

1 + √
4 + 3b2

)
/
(
3 + 3b2

)]3/2
.

2.2. The Stokes sets

One ray solution, κ̃m, to (19), is dominant over another, κ̃n, if

Im � (κ̃m) > Im � (κ̃n) . (28)

Such dominance is exchanged across anti-Stokes surfaces
defined by

Im
[
� (κ̃m) − � (κ̃n)

] = 0. (29)

Figure 1 shows a typical slice through {ρ, ζ } space. The
crowding of anti-Stokes surfaces (lines in the two-dimensional
slice) mark the site of exponentially fast variation in intensity,
where all of the rays are involved in pairwise exchange of
dominance. Elsewhere the intensity varies slowly, being either
exponentially bright or exponentially dark.

Essential to geometrical optics is the Stokes surface
(nonlocal bifurcation or Maxwell set [18, 19]), defined between
such a pair of rays by

Re
[
� (κ̃m) − � (κ̃n)

] = 0. (30)

This bounds a region in which one of the rays may not
contribute and must be excluded from the sum (21). This
discontinuous change generally causes no discontinuity in the
intensity because the vanishing ray is subdominant (in the
sense of (28)). However, the discontinuity may be seen in the
geometric intensity where the Stokes and anti-Stokes surfaces
of a ray pair are close together. This occurs near the complex
whiskers, where the Stokes and anti-Stokes surfaces cross, and
can be seen in figure 1. These discontinuities are, of course,
smoothed away by diffraction in the exact wave theory.

3. Diffraction

We consider an incident beam represented by a superposition
of plane waves, whose electric D vector is transverse to the

optic axis and given by

D0 (ρ) = 1

2π

∫ ∫
dκ exp (iκ · ρ) a (κ) d0, (31)

where a (κ) is the Fourier transform of the incident beam
profile and d0 is the incident beam’s polarization. For a
Gaussian beam incident along the optical axis,

a (κ) = exp
(− 1

2κ2
)
, (32)

D0 (ρ) = exp
(− 1

2ρ2
)

d0, (33)

and a misaligned beam is given by a (κ − κ0). In the absence
of dichroism, the field diffracted by the crystal is given in terms
of a 2 × 2 Hermitian matrix operator F that transforms a plane
wave through the crystal,

D (ρ, ζ ) = 1

2π

∫ ∫
dκ exp {−iF (κ,ρ, ζ )} a (κ) d0. (34)

The phases �± (κ,ρ, ζ ) are the eigenvalues of F, so we can
write

F = �+K+ + �−K−, K± ≡ 1
2

(
1 ± V · S

V

)
. (35)

This fact, combined with (3) and (6), defines (up to a trace)

F (κ,ρ, ζ ) = −κ · ρ + 1
2ζκ2 + V (κ) · S, (36)

where
V (κ) ≡ {ρ0κ, γ } , (37)

and

S ≡ {σ3, σ1, σ2}
=
{(

1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)}
. (38)

Dichroism defined by (7), and misalignment of the beam, are
introduced via the transformations (13), (17), giving

F (κ,ρ, ζ ) → F
(
κ̃, ρ̃, ζ̃

)
+ F0

(
ρ̃, ζ̃

)
(39)

F0

(
ρ̃, ζ̃

)
= i
[
δ · ρ̃ + 1

2

(
δ2 − κ2

0

)]+ 1
2 ζ̃ δ2. (40)

Thus

D
(
ρ̃, ζ̃

)
= exp (−iF0)

ζ̃

×
⎡

⎣C0

⎛

⎝ ρ̃
√

ζ̃

; ρ0√
ζ̃

, γ

⎞

⎠ 1 +
⎧
⎨

⎩
ρ̃

ρ̃
C1

⎛

⎝ ρ̃
√

ζ̃

; ρ0√
ζ̃

, γ

⎞

⎠ ,

C2

⎛

⎝ ρ̃
√

ζ̃

; ρ0√
ζ̃

, γ

⎞

⎠

⎫
⎬

⎭
· S

⎤

⎦ d0. (41)

The κ̃-independent part F0 constitutes the same exponential
amplitude ramp as �0. We are interested in the content of the
diffraction integrals,

C0 (r; r0, γ ) =
∫ ∞

0
dττ exp

(− 1
2 iτ 2

)
J0 (rτ ) cos

√
r 2

0τ 2 + γ 2

C1 (r; r0, γ ) = r0

γ

∂2

∂r∂γ
C0 (r; r0, γ ) ,

C2 (r; r0, γ ) = i
∂

∂γ
C0 (r; r0, γ ) .

(42)
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(a) (b) (c)

u

(d)

Figure 3. Logarithmic density plot of wave intensity in the ζ = ρ0/3 plane with ρ0 = γ = 50 and u values: (a) 0, (b) 1, (c) 2, (d) 5. The
direction of u is indicated in (b).

2u

0
0

0
0

0

0

0

0
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Figure 4. Logarithmic density plot of wave intensity for ρ0 = γ = 50. (a)–(c) show the ρu = 0 plane for u values: (a) 0, (b) 1, (c) 2.
(d)–(f) show the corresponding values in the ρv = 0 plane. (c) and (f) show the intersection of three distinct Stokes surfaces (thick, thin, and
dotted curves) with these planes.

The result is identical to that in [20, 3] for a transparent crystal,
but with the complex coordinate ρ̃ replacing ρ.

These integrals cannot be expressed in closed form, but
have been integrated numerically here using Mathematica™ to
produce paraxially exact simulations of the diffracted light
intensity, given by

I
(
ρ̃, ζ̃

)
= D

(
ρ̃, ζ̃

)∗ · D
(
ρ̃, ζ̃

)
. (43)

We are concerned primarily with the action of the crystal rather
than the effects of the incident polarization, so we consider
unpolarized incident beams, for which the intensity becomes

Iunpol = exp (2 Im F0)

1 + ζ 2

(
|C0|2 + ρ̃∗ · ρ̃

|ρ̃|2 |C1|2 + |C2|2
)

. (44)

Figure 3 shows density plots of light intensity for varying u,
in a plane beyond the crystal, with figure 3(c) corresponding
to the ray intensity in figure 1. The bright rings in 3(a) are
associated with the caustic ring of chiral conical refraction,
with a bright focal spot at the centre. As u increases the focal
spot spreads out between the branch lines at ρ = {0,±u}
and the overall intensity is consistent with the ray intensity
derived in section 2 with two exceptions. The divergence at the
branch points is removed, though this is actually too localized

in the ray intensity to be observed except under considerable
magnification. Also, the brightening associated with the
complex whisker is not only softened by diffraction, but
insignificant against the background of exponential variation,
which is already part of the ray intensity.

The wave interference fringes, rings for u = 0 becoming
arcs as u increases, are eventually swamped by the exponential
gradient in the ray intensity. Figure 4 shows the intensity in
the coordinate planes perpendicular to those in figures 3(a)–(c).
The intensity is symmetric about ρv = 0 and, in the ρv–ζ plane
perpendicular to u, the only significant effect is the spreading
of the axial focal spot. The ρu–ζ plane is more dramatic,
showing the exponential gradient eventually swamping both
the interference fringes, and the axial focal spot, as u increases.

Figure 5 develops the three-dimensional intensity for the
case u = 2.

4. Asymptotics

4.1. Stationary phase

The ray optics in section 2 arises in the geometric limit of the
diffraction integrals for thick crystals, that is ρ0 	 1. The
complex rays are endowed with phase by considering them
more precisely as the saddlepoints of the integrand in (42).

638



Spun cusp complexified

u

0

u

(a) (b)

Figure 5. Wave intensity sections in three dimensions for
ρ0 = γ = 50, u = 2: (a) in the ρu = 0 plane, the ρv = 0 symmetry
plane and the ζ = 0 focal image plane; and (b) in constant ζ planes
as shown. The direction of the complexifying vector u is shown.

At the saddlepoints κ̃n the phases �± can be expressed
more simply as

�± (κ̃n) = �n ≡ −κ̃nρ̃ + 1

2
ζ̃ κ̃2

n + ρ2
0

ρ̃/κ̃n − ζ̃
, (45)

and the second derivative as

∂2

∂κ̃2
x

�± (κ̃n) = �′′
n ≡ ζ̃ +

(
ρ̃/κ̃n − ζ̃

)3

ζ 2
c

(46)

when ρ̃ is taken to lie along the x direction, so the
corresponding y derivative is trivially zero. Then

Cm (ρ, ζ ) ≈ 1

2
ζ̃
∑

n

cm (κ̃n)

√
κ̃n

ρ̃�′′
n

e−i�n, (47)

(correcting an erroneous omission of the
√

κ factor in [3]),
where

c0 (κ̃) = 1, c1 (κ̃) = κ̃

ρ0

(
ρ̃

κ̃
− ζ̃

)
,

c2 (κ̃) = γ

ρ2
0

(
ρ̃

κ̃
− ζ̃

)
.

(48)

The argument of the square root in (47) requires careful
consideration. The obstruction to an explicit expression
valid for all {ρ, ζ } is the requirement that the argument
vary smoothly throughout a given region (i.e. not jumping at
arg � = π , for example), except at a single branch cut surface
where the subdominant and noncontributing solutions κ̃n must
swap, as shown in figure 1. This can, however, easily be solved,
for any specified region.

With these conditions the geometric intensity is plotted
in figure 6 for u = 2. This shows how the ray intensity in
figure 1 is decorated by the interference shown in 3(c). The
dark region where anti-Stokes lines crowd in figure 1 marks
the region of greatest interference between the four different
geometric rays. Along the ρv = 0 axis, this geometric intensity
is indistinguishable from the exact, and figure 7 shows how, at
a typical value of ζ , the bright Airy fringes associated with
the caustic for u = 0, and the axial spot, are swamped by
exponential damping as u increases.

Finally, figures 8(b) and (e) also show the geometric
intensity near the complexified cusp.

Figure 6. Logarithmic density plot of geometrical optics
intensity (47) corresponding to figures 1 and 3(c), endowing rays
with phase.

3

0

1

2
u

axial
spot

Airy
fringes

Log

20

–20

0

–10

–5

0

Figure 7. Logarithmic density plot of intensity on the ρv = 0 axis at
ζ = 25 for ρ0 = γ = 50. As u increases from zero the symmetric
Airy fringes associated with the caustic, and the bright axial spot, are
overcome by an exponential gradient.

4.2. The complexified spun cusp

The cusp is identified by the intersection of two focal lines,
where the third derivative of � (κ̃) vanishes. This cannot
be satisfied exactly with the complex ζ̃ , but the complex
whisker (23) and branch lines (22) do approach within the
small distance 1/ζc, at the two points zb in figure 2, with
coordinates

{0,±u, ζc} , (49)

near which the diffraction integrals (42) can be expressed
approximately in terms of the ‘spun cusp’ integral

J [μ, ν] =
∫ ∞

0
dss exp

{−i
(
s4 + μs2

)}
J0 (νs) , (50)

by introducing a new integration variable

τ = s

√

2

(
s2 + γ

√
2ζ̃ /ρ0

)
≈ s

√

2γ

√
2ζ̃ /ρ0. (51)
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(a) (b)

(d) (e)

0

0

(c)

(f)

WB

Figure 8. (a)–(c) Logarithmic density plot of intensity near the complexified spun cusp for ρ0 = γ = 50 and u = 2 in the ρu = 0 plane:
(a) exact from (42); (b) geometrical optics (47) for ζ 	 1, which diverges along the complex whiskers W and ρ̃ = 0 line B; (c) spun cusp
approximation (52), smoothing the discontinuities but decorating the wrong caustic far from the cusp. (d)–(f) Intensity in the ρv = 0 plane
corresponding to (a)–(c), with the Stokes line (dashed) shown in (b).

The result is

C0 (r; r0, γ ) ≈ 2

{( ν

2r

)2 + i
∂

∂μ

}∑

±
exp (±iγ ) J (μ±, ν)

C1 (r; r0, γ ) ≈ iν

r

√
2

∂

∂ν

∑

±
± exp (±iγ ) J (μ±, ν)

C2 (r; r0, γ ) ≈ − ν2

2r 2

∑

±
± exp (±iγ ) J (μ±, ν) ,

(52)
where

μ± ≡ √
2 (γ /r0 ∓ r0) , ν ≡ r

√
2γ

√
2/r0. (53)

Figures 8(c), (f) show that this approximation correctly
captures the intensity near ζ = ζc, though the caustic differs
from the exact one for smaller ζ .

Emanating from the cusp for real μ and ν is the caustic

ν2 =
(

−2

3
μ+
)3

⇒
(

ρ̃

ρ0

)2

= −ζc

ζ̃

(
2

3

ζ̃ − ζc

ζc

)3

. (54)

If we consider that ζ 	 1 so ζ̃ ≈ ζ , for which the cusp lies
at ζ = ζc, the key effect of dichroism is to make the spun cusp
argument ν complex (leaving μ real). Near this ‘complexified
cusp’, the caustic, as already seen, is replaced by the complex
whisker, given locally by

ρu ≈ 0, ρv ≈ ±u ∓ ρ2
0

2u

(
2

3

ζ − ζc

ζc

)3

. (55)

Figures 8(b), (e) show the geometrical intensity with ζ̃ replaced
by ζ , in which this complex whisker can be clearly seen.

5. Concluding remarks

The intensity of light diffracted from a dichroic chiral
birefringent crystal can be understood in terms of geometrical
optics. The complex rays necessary in the presence of
absorption pose no intuitive obstacle, even though they do not
represent any ray path in real space, defining paths conserving
the complex wavevector κ̃ = κ + iδ. They yield a detailed
and simple understanding of the dominant features in the
geometric intensity, including focusing and the exponential
gradients expected from absorption. Wave interference effects
can be added to the geometrical optics intensity similarly to
dealing with real rays, providing a complete understanding of
the diffracted light intensity. The divergence along the complex
whisker and branch point focal lines, which are physically
smoothed away by diffraction, could be dealt with analytically
by a uniform mapping to a function with the same critical
structure, as in the appendix of [3], expressing the diffraction
integrals in terms of the Airy function of a complex argument.

The geometric intensity in the presence of chirality can
be evaluated numerically with ease, but an explicit analytic
expression is complicated by the need to solve the quartic
ray equation. Nevertheless, this poses little obstruction to
a detailed geometric understanding. In the presence of
dichroism, the obvious focal lines may not be the dominant
features of even the geometrical intensity. Instead, the intensity
is dominated by the exchange of dominance of rays across anti-
Stokes surfaces, the sites of geometric interference between
complex rays.

In the absence of chirality the anti-Stokes set forms a
dark cylindrical surface [3]. The exact circularity of the
surface results from the equivalence implied by (14), between
a Gaussian beam, and a bundle of rays whose propagation
distance is shifted by an imaginary constant. In the method
of stationary phase this amounts to incorporating the beam
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profile into the phase, because it cannot be treated as slowly
varying. For more slowly varying beams (e.g. light refracted
from a pinhole) the analysis from [4] can be expected to hold
approximately with the imaginary shift in propagation distance
removed. This changes the dark cylinder into a pair of dark
brushes sprouting symmetrically outwards from the lines ρ̃ =
0, corresponding to the cylinder radius in [3] becoming infinite.
With chirality included, neglecting the imaginary shift makes
all terms in (23) real, forcing the complex whisker to lie in the
plane of the lines ρ̃ = 0 (the x = ρu = 0 plane in figure 2), as
is seen in the approximate cusp intensity in figures 8(b), (e).

The geometric meaning of the wave surface, which
has historically played an important intuitive role in conical
diffraction, is unclear for complex rays. The wave surface’s
local singular structure (a pair of singular axes if δ � γ /ρ0, a
ring of inflection points if δ < γ /ρ0) is not obviously apparent
in the ray intensity. Therefore the haunting theorem [15], in
which points of circular polarization ‘haunt’ the locations of
the departed singular axes in κ space as chirality is added, has
no counterpart in the diffracted light field. Furthermore, the
wave surface seems to offer no intuitive understanding of the
duality between beam direction and dichroism for a Gaussian
beam.

It is beyond the scope of this paper to discuss the
various optical properties responsible for the effects contained
herein. In particular, optical activity can arise through the
Faraday effect and Raman optical activity, as well as from
crystalline chirality and underlying molecular chirality. We
maintain generality by specifying the effect only in terms of
the total optical rotary power of the crystal. Though we have
not considered circular dichroism it does not fundamentally
alter the nature of the phenomenon and can be incorporated
simply from our introductory arguments: the effect is to make
γ imaginary (leaving ρ̃ = ρ real), merely changing the
orientation of the singular axes. The relation of δ and γ to
the dielectric tensor has previously been given in [4] and [20].

Much of conical diffraction remains unexplored exper-
imentally. Observations near the singular axis of a biaxial
dichroic crystal were made in [21] but did not concern coni-
cal diffraction. Conical diffraction experiments have been per-
formed on transparent crystals, most extensively the nonchiral
case [22, 23, 2], which is now well understood. The chiral case
was studied in [24], although the caustic structure and ζ depen-
dence predicted in [3] remains to be investigated, and should be
easy to observe. The size of the effects individually have been
considered in [3] and [4], although hampered by a lack of data
regarding absorption coefficients. The effects are prominent
when the singular axes have angular separation on the order of
2δ/k0w, for example 1◦ for a He–Ne laser with a 10 μm waist
width.

There are no published experimental observations, to our
knowledge, which unveil the rich distance-dependent intensity
structure beyond a biaxial crystal in the presence of chirality
and/or dichroism, or equivalently, of the transition from conical
diffraction to double refraction for transparent crystals with or
without chirality. Transition in transparent crystals offers a
simpler route, since dichroism imposes an extra exponential
ramp across the intensity. The phenomena predicted here and
in [4] pose an experimental challenge since the interference
effects are faint, revealing themselves only in logarithmic
intensity plots.
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