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Conical refraction was produced by a transparent biaxial crystal of KGd(WO4)2
illuminated by a laser beam. The ring patterns at different distances from the crystal
were magnified and projected onto a screen, giving rings whose diameter was 265 mm.
Comparison with theory revealed all predicted geometrical and diffraction features: close
to the crystal, there are two bright rings of internal conical refraction, separated by the
Poggendorff dark ring; secondary diffraction rings decorate the inner bright ring; as the
distance from the crystal increases, the inner bright ring condenses onto an axial spot
surrounded by diffraction rings. The scales of these features were measured and agreed
well with paraxial theory; this involves a single dimensionless parameter r0, defined as
the radius of the rings emerging from the crystal divided by the width of the incident
beam. The different features emerge clearly in the asymptotic limit r0[1; in these
experiments, r0Z60.
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1. Introduction

The phenomenon of conical refraction (Born & Wolf 1959) was predicted as long
ago as 1832 (Hamilton 1837; O’Hara 1982) and observed soon afterwards (Lloyd
1833). It played an important part in the development of optics, not only by
speeding the acceptance of the transverse wave nature of light, but also, in
retrospect, as one of the first optical singularities (Berry 2000). More generally,
conical refraction was influential in theoretical physics, as Hamilton’s first
concrete application of his concept of phase space. Nevertheless, comparisons of
theory with experiment have been scanty.

Even the definitive formulation of the theory (Belskii & Khapalyuk 1978;
Belsky & Stepanov 1999) was relatively recent, and depended on the recognition
of two principles: first, that details of the field emerging from the crystal can be
understood only in terms of waves—hence our term ‘conical diffraction’; and
second, that the analysis can be greatly simplified by incorporating paraxiality
(all deflection angles small). Exploration of the content of the theory continues
(Berry 2004) with the derivation of analytical formulae for three features of
conical diffraction: the two bright rings separated by the Poggendorff dark ring
(previously explained in qualitative terms by Voigt (1905a)); the secondary inner
rings (previously observed in numerical computations by Warnick & Arnold
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M. V. Berry and others1630
(1997)); and the transition from internal to external conical refraction as the
observation distance increases (previously noted in observations by Raman
(1942) and Raman et al. (1941)).

There have been a few experimental confirmations of conical refraction (Lloyd
1833; Poggendorff 1839; Raman et al. 1941), including a spectacular
demonstration (Perkalsris & Mikhailichenko 1979; Mikhailichenko 2004) and
at least two quantitative comparisons with theory (Schell & Bloembergen 1978a;
Fève et al. 1994) for the two bright rings. However, the difficulty of obtaining
biaxial crystals of sufficient quality and size, together with the late development
of theory, has delayed comprehensive identification of all the associated
phenomena.

Our aim here is to exploit our recent acquisition of a transparent biaxial
crystal of sufficiently high quality to provide this identification and make
quantitative comparisons between theory and experiment. We begin (§2) by
describing our observations and showing digital photographs of the conical
diffraction patterns beyond the crystal, illustrating the different phenomena in a
qualitative and non-technical manner. Then (§3), we give an outline of the
theory, by presenting the formulae (Belsky & Stepanov 1999; Berry 2004) in a
simplified form, and without derivation, alongside a description of the
phenomena they describe. We emphasize the fact that the field beyond the
crystal depends on a single parameter r0: the radius of the cylinder emerging
from the crystal divided by the width of the incident light beam. Section 4
contains analyses of the photographs, comparing the scales of different features of
the patterns with the predictions of theory. Without the paraxial approximation,
the theory would be much more complicated; paraxiality is analysed in appendix A,
where it is shown that differences between geometrical features of the patterns
calculated paraxially and those of the exact theory are indiscernible in our
experiments and in all others so far reported.
2. Observations

At the heart of the experimental arrangement (figure 1) is a biaxial crystal of
KGd(WO4)2, belonging to the monoclinic double tungstate family, manufactured
by the company Vision Crystal Technology AG. The crystal has the shape of a
matchstick 25 mm long, with its cross-section 3 mm2, and is cut so that an optic
axis lies close to the long direction. Circularly polarized light from a He–Ne laser
(wavelength 632.8 nm) was focused onto the crystal, the emerging light was
projected, magnified, onto a distant screen, and was photographed with a Fuji
F610 digital camera.

Unless the crystal is accurately oriented, the incident beam is split into the
two beams characteristic of double refraction, visible as spots on the screen
(figure 2a). As the crystal is rotated so that its optic axis is brought into
alignment with the incident beam, the spots deform into lunes (figure 2b) and
then merge (figure 2c) to form the two rings of internal conical refraction
(figure 2d ); these are the intersections with the observation plane of the two
coaxial cylinders of bright light into which the incident beam has been
transformed. This transition has been explored in detail (Lloyd 1837; Dreger
1999); we show it here for completeness.
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Figure 1. Arrangement for observing conical diffraction. A collimated laser beam passes through a
circular polarizer P, is focused by the lens L1 (focal length 70 mm) and enters a biaxial crystal of
KGd(WO4)2 of length 25 mm. The emerging cylinder of light, magnified by the lens L2 (focal length
6.4 mm), is observed on the screen S, 2 m from the crystal.

(a) (b)

(c) (d)

265 mm 265 mm

265 mm

265 mm

Figure 2. Transition from (a) double refraction to (d ) conical refraction as the crystal is rotated
until the incident beam is parallel to an optic axis.
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With the incident beam aligned with the optic axis, the lens L2 was moved so
as to project onto the screen observation planes at different distances from the
crystal. Figure 3a shows the narrow, sharp rings near the plane within the crystal
where the incident beam waist is imaged. Receding from this plane (figure 3b),
the rings get broader; the outer ring is fainter and the inner, brighter ring
acquires structure in the form of fine inner fringes; these are the ‘secondary rings’
previously noted in numerical calculations by Warnick & Arnold (1997).
Proc. R. Soc. A (2006)



(a) (b) (c)

265 mm 265 mm 265 mm

Figure 3. Conical diffraction patterns at increasing distances from the crystal. (a) Very close to the
focal image plane inside the crystal; (b) 12 mm from the focal plane; (c) 49 mm from the focal
plane.
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Receding further (figure 3c), the outer ring disappears, and the inner ring
collapses into a bright central spot surrounded by fine circular fringes; this is
related to (and near the crystal exit face corresponds to) the spot of external
conical refraction noted in experiments by Raman et al. (1941).

In our experiments, we used circularly polarized incident light, for which the
emerging light intensity has circular symmetry; it is the detailed radial structure
of this pattern that concerns us here. We also made observations with linearly
polarized light, and observed the resulting characteristic azimuthal modulation
of the intensity; since this is well understood (Hamilton 1837), we do not report
these observations. We note, however, that the polarization pattern has
interesting implications for optical angular momentum (Berry et al. 2005).
3. Recapitulation of theory (Belskii & Khapalyuk 1978;
Belsky & Stepanov 1999; Berry 2004)

In attempting to interpret the observations in the light of theory, we begin by
considering a transparent biaxial non-chiral linear crystal, with three distinct
principal refractive indices

n1!n2!n 3; ð3:1Þ
and assuming that the differences n2Kn1 and n3Kn2 are small compared with n2,
so that all refraction and diffraction effects are paraxial (see appendix A). As
predicted by Hamilton (1837), a collimated beam of light spreads within the
crystal into a narrow hollow cone with a semiangle

AZ
1

n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2Kn1Þðn 3Kn2Þ

p
: ð3:2Þ

We consider the case where the incident beam, with vacuum wavenumber k 0, is
circularly symmetrical and Gaussian, with the transverse profile of the electric
field magnitude, in the beam waist (width w) given by

E0ðrÞZ exp K
r2

2w2

� �
: ð3:3Þ
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crystal, thickness l

‘focal image’ plane of
incident beam waist

Figure 4. Geometry and coordinates for incident beam, cone inside the crystal and cylinder
emerging from the crystal (schematic).
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The spectrum of plane waves comprising this beam is also Gaussian, with the
plane waves filling a cone of directions whose semiangle is 1/(k 0w).

The profile of the beam that emerges after passing through thickness l of the
crystal (figure 4) depends on the following dimensionless variables:

r0h
Al

w
; rh

r

w
; zh

lCðzKlÞn 2

n 2k 0w
2

; ð3:4Þ

where r and z are cylindrical polar coordinates, with r measured from the axis of
the emerging cylinder and z measured from the waist of the incident beam.

We emphasize the significance of r0. This single parameter, incorporating the
influence of the five physical quantities n1, n 2, n3, l and w, is the radius of the
cylinder of conical refraction outside the crystal divided by the beam width. We
will present the exact paraxial theory for any r0, but the interesting regime, for
which the phenomena of conical diffraction emerge distinctly, is r0[1; if r0 is
not large, the fine details are obscured by the beam width.

r and z are the dimensionless variables denoting radial position and
propagation distance in the field outside the crystal, with z measured from the
location zZl(1K1/n 2) of the virtual image of the incident beam waist in the
equivalent isotropic crystal with index n 2; we call this the focal image plane
(figure 4). In physical terms, r measures radial position in units of the beam
width w and z measures propagation distance in units of the Rayleigh range
(Fresnel length) k 0w

2.
For any state of polarization of the incident beam, the emergent field depends

on the following two integrals, each depending on two variables and involving
Bessel functions J0 and J1:

C0ðu; u 0ÞZ
ðN
0
dqq exp K

1

2
q2

( )
cosðu 0qÞJ0ðuqÞ;

C1ðu; u 0ÞZ
ðN
0
dqq exp K

1

2
q2

( )
sinðu 0qÞJ1ðuqÞ:

9>>>>>=
>>>>>;

ð3:5Þ

(These integrals are simple transformations of B0 and B1 in Berry (2004).)
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We will need the formula for the light intensity not for arbitrary incident
polarization (e.g. Berry 2004), but only for circularly polarized light:

I ðr; z; r0ÞZ
1

1Cz2

"
C0

rffiffiffiffiffiffiffiffiffiffiffiffiffi
1C iz

p ;
r0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C iz

p
� �����

����2C C1

rffiffiffiffiffiffiffiffiffiffiffiffiffi
1C iz

p ;
r0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C iz

p
� �����

����2
#

ð3:6Þ
(the formula is also valid for unpolarized light). This is the exact paraxial theory
in its simplest form. Although it gives the intensity beyond the crystal, it holds
also for the field continued backwards to z values corresponding to points inside
the crystal or even in front of it, because such virtual image planes can (and in
our experiments will) be made real by the lens beyond the crystal.

For the case r0[1 in which we are interested, the formulae simplify. Close to
the rings, that is when jrKr0j/r0 and, provided z/r0, C0 and C1 can be
approximated as a single function of one variable, namely

C0ðu; u 0ÞzC1ðu; u 0Þz
1ffiffiffiffiffiffi
u 0

p f ðuKu 0Þ; ð3:7Þ

where, with Kn and In denoting Bessel functions,

f ðsÞZ 1ffiffiffiffiffiffi
2p

p
ðN
0
dq

ffiffiffi
q

p
exp K

1

2
q2

� �
cos qsK

1

4
p

� �

Z
1

4
ffiffiffiffiffiffi
2p

p jsj3=2exp K
1

4
s2

� �
K3=4

1

4
s2

� �
CsgnðsÞK1=4

1

4
s2

� ��

Cp
ffiffiffi
2

p
QðKsÞ I3=4

1

4
s2

� �
KI1=4

1

4
s2

� �� ��
:

ð3:8Þ

Thus, the intensity of the rings is

Irings Z
2

r0ð1Cz2Þ3=4
f

rKr0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C iz

p
� �����

����2: ð3:9Þ

Figure 5a–c shows how well this approximates the exact paraxial intensity (3.6).
The rings are sharpest in the focal image plane zZ0 (figure 5a). Numerical

study of (3.9) for zZ0 shows that the Poggendorff dark ring, where fZ0, is at
sZK0.765. The bright rings are the maxima of f 2, the outer, at sZC0.551,
having greater intensity, by a factor of 4.735, than the inner, at sZK1.764.

Away from the focal image plane, that is where sZðrKr0Þ=Oð1C izÞ, further
simplification is possible. For 1/z/r0, the most elementary Bessel asymptotics
gives the geometrical-optics intensity, in which the outer and inner rings originate
in the two sheets near the conical intersection of the wave surface:

Igeomðr; z; r0Þz
jrKr0j
2r0z

2
exp K

ðrKr0Þ2

z2

� �
: ð3:10Þ

The bright rings, at rZr0Gz=O2, are symmetrical, and centred on the
Poggendorff dark ring at rZr0.

More sophisticated asymptotics (explained by Berry (2004)) introduces
interference: between the inner ring and a contribution that can be interpreted
Proc. R. Soc. A (2006)
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Figure 5. Theoretically calculated intensity profiles for r0Z60, for (a) zZ0; (b) zZ8; (c) zZ22;
(d ) zZ40 (the inset in (d ) is a magnification of the central spot). Thick curves: intensities
computed exactly from (3.6), in terms of the integrals (3.5). Thin curves in (a) and (b): asymptotic
approximation Irings (3.9). Thin curves in (d ): asymptotic approximation Ispot (3.13). Thin curve in
(c): sum of the asymptotic approximations IringsCIspot.
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as a wave scattered from the conical intersection itself, leading to

Iringsðr; z; r0ÞzIgeomðr; z; r0Þ

C
Qðr0KrÞ
4r0jr0Krj3

1K
23=2jr0Krj2

z
exp K

ðrKr0Þ2

2z2

� �
cos

ðrKr0Þ2

2z

� �" #
:

ð3:11Þ

The oscillations are clearly visible in figure 5b,c. The correction is valid only
when r!r0KOz, so its divergence at rZr0 is never encountered. The width of
the fringes near r is of the order

Drfringe Z
2pz

r0Kr
; ð3:12Þ

therefore, the fringes get finer as r decreases, and there are about z/(2p) of them
in the 1/e2 width zO2 of the inner ring.

As z increases, the outer ring fades away, and the inner ring collapses onto the
central spot associated with external conical refraction. In this regime (zOr0),
the asymptotics (3.7)–(3.12) is no longer valid, and it is necessary to return to
(3.6). Different asymptotics leads to the spot intensity

Ispotðr; z; r0Þz
pr20

2z3
exp K

r20

z2

� �
J0

rr0

z

� �2

CJ1
rr0

z

� �2� �
: ð3:13Þ

This predicts a maximum spot intensity near zZr0Oð2=3Þ. The function J 2
0 ðxÞC

J2
1 ðxÞ possesses shoulders—flat inflection points—at the zeros of J1(x), which

have the spacing Drzpz=r0; these are the weak fringes surrounding the central
spot, visible in figure 5d.
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(e) ( f ) (g ) (h)

(m) (n) (o) (p)

Figure 6. (a–h) Theoretical density plots of conical diffraction intensities at different propagation
distances, computed from (3.6), for r0Z60 and (a) zZ0, (b) zZ3, (c) zZ6, (d ) zZ12, (e) zZ18,
( f ) zZ30, (g) zZ42, (h) zZ98. (i–p) Experimental conical diffraction patterns corresponding to
(a–h), observed at distances zZk0w

2zZ0.501z mm from the focal image plane (the blemishes on
the right-hand side of (n) and (o) result from lens imperfections).
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4. Comparison of theory with experiment

The theoretical conical diffraction patterns depend on the dimensionless
quantities defined in (3.4). Most important is the parameter r0, involving the
beam width w of the laser beam focused by the lens L1. We determined w by
removing the crystal and the projection lens L2, measuring the width W of the
spot on the screen (distance D), and using the beam-spreading formula

WZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2CðD=k 0wÞ2

q
zD=k 0w, i.e. wZD/k 0W. This gave wZ7.1G0.6 mm.

We were not able to calculate A directly from theory using (3.2), because to our
knowledge the three principal refractive indices of our KGd(WO4)2 crystal have
Proc. R. Soc. A (2006)
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Figure 7. Graphs of radial intensity corresponding to figure 6 for (a) zZ0, (b) zZ3, (c) zZ6,
(d ) zZ12, (e) zZ18, ( f ) zZ30, (g) zZ42, (h) zZ98. Full curves, theory; dotted curves,
experiment. The experimental graphs were obtained by importing the digital photographs into
MATHEMATICA as JPEG files, and smoothing over an angular sector of 108 (using the command
ListConvolve). Vertical scales were chosen for best fit.

100 20 30 40 50

10

20

30

40

50

Figure 8. Poggendorff ring dimensions: comparison between theory (full curves) and observations
(filled circles). We show distances Dre between external (outer) bright ring maximum and
Poggendorff dark ring (of zero intensity), and distances Drie between the inner and outer bright
ring maxima. The errors in Dr arise from differences between the four azimuth-averaged 108 sectors
of the digital images, and the errors in z arise from the error in w.
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not been measured accurately enough. Instead, we found the ring radius Al by
measuring the radius on the screen of the dark Poggendorff ring (figure 3a), with
the arrangement of figure 1, as magnified by the lens L2. The result is

r0 Z 60G10: ð4:1Þ
The dimensionless propagation distance z depends sensitively on physical
propagation distance z. From (3.4), DzZk 0w

2DzZ1:998!Dz ðmmÞ, so that a
change DzZ1, over which the theoretical pattern changes significantly when z is
small, requires an adjustment DzZ0.5 mm.

Figure 6 shows computed and observed ring patterns for different propagation
distances. It is clear that the observations display all the features predicted by
theory. The only discrepancy is at zZ0, where theory indicates slightly more
sharply focused rings than we were able to obtain. For a more detailed comparison,
figure 7 shows the corresponding graphs of intensity as a function of dimensionless
radius r. Overall, the agreement is excellent, but these pictures reveal discrepancies
Proc. R. Soc. A (2006)
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Figure 9. Width of the first secondary diffraction ring, i.e. the distance Drs between the two inner
ring maxima closest to the dark ring: comparison between theory (full curve) and experiment (data
points).
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Figure 10. Radii Dr1 (lower) and Dr2 (upper) of the first two diffraction rings surrounding the
central spot; full curves: theoretical predictions from shoulders of J 2

0 ðxÞCJ2
1 ðxÞ in (3.13); data

points: measured ring widths.
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in the far field z[1: the rings surrounding the central spot have low-contrast
maxima and minima rather than the theoretically predicted shoulders.

When z is not too large, the most prominent feature is the separation into two
Poggendorff bright rings. Figure 8 is a comparison of the predicted and observed
widths of these rings. Again, the agreement is good. In these fits, we employed
the exact paraxial diffraction theory (3.6) because the ring separation given by
geometrical optics (3.10) is not accurate enough.

Diffraction generates the secondary rings inside the inner Poggendorff bright
ring. Figure 9 compares theory and experiment for the separation between the
first secondary ring maximum and the main maximum of the inner ring. Again,
theory gives a good account of the observations. As is clear from figure 7d,e, the
secondary rings get narrower as their radius decreases, as predicted by (3.12).
The number of secondary rings increases with z, in accordance with the
prediction after equation (3.12).

Finally, we consider the far field z[1. According to (3.13), diffraction rings
should lie at radii given by zeros of the Bessel function J1(x), and figure 10,
showing the first two rings, confirms this prediction.
Proc. R. Soc. A (2006)
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5. Concluding remarks

The experiment reported here confirms the accuracy of the paraxial
approximation (Belskii & Khapalyuk 1978; Berry 2004) as the basis for the
simplest quantitative theory incorporating all details of wave and geometrical
effects associated with conical diffraction. Paraxiality has two main advantages.
First, it enables the pattern beyond the crystal to be described in terms of the
single parameter r0, allowing a fully quantitative comparison with theory
without needing to know the three refractive indices. Second, it provides a
framework within which both internal and external conical refraction can be
comprehended; these are commonly regarded as distinct, but in fact one
transforms into the other as the propagation distance increases, a point first
made by Raman (1942).

The phenomena of conical diffraction—Poggendorff rings, secondary rings, the
central spot and its associated rings—are asymptotically emergent, in the sense
that they become more clearly separated as r0 increases. The value r0Z60 in our
experiment was large enough to display this emergence. By replacing the lens L1

(figure 1) with one of longer focal length, it is possible to increase the beam width
w and so make r0 smaller. We made some such observations, and confirmed that
the rings get broader and the finer details are less distinct.

Our study has been concerned with the simplest situation, where the biaxial
crystal is non-chiral and transparent. There have been some theoretical (Voigt
1905b; Schell & Bloembergen 1978b; Belsky & Stepanov 2002) and experimental
(Schell & Bloembergen 1978b) investigations taking account of chirality (optical
activity), but recent theoretical study (Berry & Jeffrey in press) reveals a
qualitatively new phenomenon introduced by chirality: beyond the crystal, a
geometrical caustic in the form of a cusped cone. The influence of anisotropic
absorption (dichroism) remains unexplored; however, the dramatic modifications
that dichroism introduces to the wave surface and on the polarization of plane
waves in the crystal (Berry & Dennis 2003) give reason to anticipate some
striking associated conical diffraction effects.

M.V.B.’s and M.R.J.’s researches are supported by the Royal Society. We thank Oliver Müller and
Thorben Windeler for a helpful correspondence.
Appendix A. Accuracy of paraxial approximation

Paraxially, the centre of the rings corresponding to internal conical refraction
coincides with the spot corresponding to external conical refraction. In the exact
geometrical theory, these points, corresponding to directions in space, are
distinct, and the smallness of their separation is a measure of paraxiality.

In comparing the exact and approximate angles, it is convenient to define

aZ
1

n 2
1

K
1

n 2
2

; bZ
1

n 2
2

K
1

n 2
3

: ðA 1Þ

The paraxial approximation is a/1, b/1. We will refer to figure 11, showing
the kx, kz plane, with directions of lines emanating from the origin representing
wavevector directions, and angles measured from the kz direction.
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Figure 11. Geometry and notation for ray and wave directions.
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The angle of the optic axis (conical intersection of the two wave surfaces) is
given, exactly, by Landau et al. (1984)

tan q0 Z

ffiffiffiffi
a

b

r
: ðA 2Þ

The semiangle Aexact of the wave cone, equal to the semiangle of the cone of
internal conical refraction, is given by Born & Wolf (1959)

tan 2Aexact Zn 2
2

ffiffiffiffiffiffi
ab

p
: ðA 3Þ

Paraxially, this is small, being proportional to the geometric mean of the
refractive-index differences (cf. equation (3.2)). The direction of the axis of the
wave cone, corresponding to the centre of the ring system in the experiments, is

qring Z q0KAexact: ðA 4Þ
There are twowave directions corresponding to the contacts of the wave surfaces

with their common tangent; the larger of these has its angle given, exactly, by

tan q1 Z
n 3

n1

ffiffiffiffi
a

b

r
: ðA 5Þ

The normal to this tangent is the direction of the ray (biradial) corresponding to
external conical refraction (Landau et al. 1984), which appears as a spot in the
experiments:

tan qspot Z
n1

n 3

ffiffiffiffi
a

b

r
: ðA 6Þ

In general, qring and qspot are different. A paraxial perturbation calculation gives
the difference as

qringKqspotZ

ffiffiffiffiffiffi
ab

p

8
n 4
2 ðbKaÞCðaCbÞ2n 2

2

8

� �
C/

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn 2Kn1Þðn 3Kn 2Þ

p
2n 2

2

�
n1Cn 3K2n 2

C
1

4n 2

ð14ðn 2Kn1Þðn 3Kn 2ÞK5ððn 2Kn1Þ2Cðn 3Kn 2Þ2ÞÞ
�
C/:

ðA7Þ
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The leading term is proportional to the square of the refractive-index differences.
However, the factors bKa and n1Cn3K2n2 indicate that if the two index
differences are comparable, then this term can vanish; therefore, we have included
the next (cubic) correction. Some algebra gives the condition for the directions to
coincide exactly, that is, to all post-paraxial orders:

qring Z qspot0n 2
1 Cn 2

3 Z 2n 2
2: ðA 8Þ

To estimate the paraxial errors, we choose two examples. First is the monoclinic
double tungstate crystal KYb(WO4)2, similar to that in our experiment but with
Yb instead of Gd, for which the indices have been measured (Pujol et al. 2002); we
find

n1 Z 2:02139; n2 Z 2:06494; n 3 Z 2:11175;

aZ 0:010214; bZ 0:010282;

Aexact Z 0:999AZ 0:02183Z 1:2518;

qringKqspot Z 0:00103AZ 4:63 arcsec:

9>>>>=
>>>>;

ðA 9Þ

This indicates that the central spot deviates from the centre of the ring by 0.1%, so
the paraxial approximation is excellent. Note that a and b are comparable in
magnitude as well as small, so this crystal falls into the class where the deviation is
determined by the cubic terms in (A 7).

A more discriminating test is naphthalene, because this gives the largest rings
so far reported (Raman et al. 1941). The relevant quantities are

n1 Z 1:525; n2 Z 1:722; n 3 Z 1:945;

aZ 0:09276; bZ 0:07290;

Aexact Z 0:983AZ 0:1196Z 6:8528;

qringKqspot Z 0:01465AZ 6:02 arcmin:

9>>>>=
>>>>;

ðA 10Þ

Even here, the deviation is only about 1.5%.
These estimates justify the paraxial approximation for all reported

experiments on conical diffraction.
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