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Chapter 2

Conical diffraction: Hamilton’s diabolical point
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§ 1. Introduction

The bicentenary of the birth in 1805 of William Rowan Hamilton (fig. 1) comes
at a time of renewed interest in the phenomenon of conical refraction (Born and
Wolf [1999], Landau, Lifshitz and Pitaevskii [1984]), in which a narrow beam of
light, incident along the optic axis of a biaxial crystal, spreads into a hollow cone
within the crystal, and emerges as a hollow cylinder. The prediction of the effect
in 1832 (Hamilton [1837]), and its observation by Lloyd (fig. 1) soon afterwards
(Lloyd [1837]), caused a sensation. For a non-technical account, see Lunney and
Weaire [2006].

Our purpose here is to describe how the current understanding of conical re-
fraction has been reached after nearly two centuries of theoretical and experimen-
tal study. Although our treatment will be roughly historical, we do not adhere to
the practice, common in historical research, of describing each episode using only
sources and arguments from the period being studied. For the early history of con-
ical refraction, this has already been done, by Graves [1882] and O’Hara [1982].
Rather, we will weave each aspect of the theory into the historical development in
ways more concordant with the current style of theoretical physics, hoping thus
to bring out connections with other phenomena in mathematics and physics.

There are many reasons why conical refraction is worth revisiting:
(i) It was an early (perhaps the first) example of a qualitatively new phe-

nomenon predicted by mathematical reasoning. By the early 1800s, it
was widely appreciated that mathematics is essential to understanding
the natural world. However, the phenomena to which mathematics had
been applied were already familiar (e.g., tides, eclipses, and planetary
orbits). Prediction of qualitatively new effects by mathematics may be
commonplace today, but in the 1830s it was startling.

(ii) With its intimate interplay of position and direction, conical refraction
was the first non-trivial application of phase space, and of what we now
call dynamics governed by a Hamiltonian.

(iii) Its observation provided powerful evidence confirming that light is a
transverse wave.

po50 v.2007/06/12 Prn:21/08/2007; 12:53 F:po50002.tex; VTEX/Jolanta p. 3
aid: 50002 pii: S0079-6638(07)50002-8 docsubty: REV

15



16 Conical diffraction and Hamilton’s diabolical point [2, § 1

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

Fi
g.

1.
D

ra
m

at
is

pe
rs

on
ae

.

po50 v.2007/06/12 Prn:21/08/2007; 12:53 F:po50002.tex; VTEX/Jolanta p. 4
aid: 50002 pii: S0079-6638(07)50002-8 docsubty: REV



2, § 1] Introduction 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

(iv) Recently, it has become popular to study light through its singularities
(Berry [2001], Nye [1999], Soskin and Vasnetsov [2001]). In retrospect,
we see conical refraction as one of the first phenomena in singular po-
larization optics; another is the pattern of polarization in the blue sky
(Berry, Dennis and Lee [2004]).

(v) It was the first physical example of a conical intersection (diabolical
point) (Berry [1983], Uhlenbeck [1976], Berry and Wilkinson [1984])
involving a degeneracy. Nowadays, conical intersections are popular in
theoretical chemistry, as spectral features indicating the breakdown of
the Born–Oppenheimer separation between fast electronic and slow nu-
clear freedoms (Cederbaum, Friedman, Ryaboy and Moiseyev [2003],
Herzberg and Longuet-Higgins [1963], Mead and Truhlar [1979]). By
analogy, conical refraction can be reinterpreted as an exactly solvable
model for quantum physics in the presence of a degeneracy.

(vi) The effect displays a subtle interplay of ray and wave physics. Although
its original prediction was geometrical (Sections 3 and 4), there are sev-
eral levels of geometrical optics (Sections 5 and 7), of which all except
the first require concepts from wave physics, and waves are essential to a
detailed understanding (Section 6). That is why we use the term conical
diffraction, and why the effect has taken so long to understand.

(vii) Analysis of the theory (Berry [2004b]) led to identification of an unex-
pected universal phenomenon in mathematical asymptotics: when expo-
nential contributions to a function compete, the smaller exponential can
dominate (Berry [2004a]).

(viii) There are extensions (Section 8) of the case studied by Hamilton, and
their theoretical understanding still presents challenges. Effects of chi-
rality (optical activity) have only recently been fully understood (Belsky
and Stepanov [2002], Berry and Jeffrey [2006a]), and further extensions
incorporate absorption (Berry and Jeffrey [2006b], Jeffrey [2007]) and
nonlinearity (Indik and Newell [2006]).

(ix) Conical diffraction is a continuing stimulus for experiments. Although
the fine details of Hamilton’s original phenomenon have now been ob-
served (Berry, Jeffrey and Lunney [2006]), predictions of new structures
that appear in the presence of chirality, absorption and nonlinearity re-
main untested.

(x) The story of conical diffraction, unfolding over 175 years, provides an
edifying contrast to the current emphasis on short-term science.

Although all results of the theory have been published before, some of our
ways of presenting them are original. In particular, after the exact treatment in
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Sections 2–4 we make systematic use of the simplifying approximation of parax-
iality. This is justified by the small angles involved in conical diffraction (Appen-
dix 1), and leads to what we hope are the simplest quantitative explanations of the
various phenomena.

§ 2. Preliminaries: electromagnetism and the wave surface

Hamilton’s prediction was based on a singular property of the wave surface de-
scribing propagation in an anisotropic medium. Originally, this was formulated
in terms of Fresnel’s elastic-solid theory. Today it is natural to use Maxwell’s
electromagnetic theory.

For the physical fields in a homogeneous medium, we write plane waves with
wavevector k and frequency ω as

(2.1)Re
[{Dk, Ek, Bk, Hk} exp

{
i(k · r − ωt)

}]
,

in which the vectors Dk, etc., are usually complex. From Maxwell’s curl equa-
tions,

(2.2)ωDk = −k × Hk, ωBk = k × Ek.

A complete specification of the fields requires constitutive equations. For a
transparent nonmagnetic nonchiral biaxial dielectric, these can be written as

(2.3)Ek = ε−1Dk, Bk = μ0Hk.

ε−1 is the inverse dielectric tensor, conveniently expressed in principal axes as

(2.4)ε−1 = 1

ε0

⎛
⎝ 1/n2

1 0 0
0 1/n2

2 0
0 0 1/n2

3

⎞
⎠ ,

where ni are the principal refractive indices, all different, with the conventional
ordering

(2.5)n1 < n2 < n3.

For biaxiality (all ni different), the microscopic structure of the material must
have sufficiently low symmetry; in the case of crystals, this is a restriction to the
orthorhombic, monoclinic or triclinic classes (Born and Wolf [1999]). Conical
refraction depends on the differences between the indices, so we define

(2.6)α ≡ 1

n2
1

− 1

n2
2

, β ≡ 1

n2
2

− 1

n2
3

.
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It will be convenient to express the wavevector k in terms of the refractive index
nk, through the definitions

(2.7)k ≡ kek ≡ k0nkek, k0 ≡ ω

c
,

incorporating

(2.8)c = 1√
ε0μ0

.

It is simpler to work with the electric vector D rather than E, because D is
always transverse to the propagation direction ek. Then eqs. (2.2) and (2.3) lead
to the following eigenequation determining the possible plane waves:

(2.9)
1

n2
k

Dk = −ek × ek × (
ε0ε

−1 · Dk
)
.

This involves a 3 × 3 matrix whose determinant vanishes, and the two eigen-
values λ± of the 2 × 2 inverse dielectric tensor transverse to k give the refractive
indices

(2.10)nk± = 1√
λ±(ek)

.

Of several different graphical representations (Born and Wolf [1999], Landau,
Lifshitz and Pitaevskii [1984]) of the propagation governed by nk±, we choose
the two-sheeted polar plot in direction space; this is commonly called the wave
surface, though there is no universally established terminology. The wave surface
has the same shape as the constant ω surface in k space, that is [cf. eq. (2.7)], the
contour surface of the dispersion relation

(2.11)ω(k) ≡ ck

nk
;

ω(k) is the Hamiltonian generating rays in the crystal, with k as canonical mo-
mentum.

An immediate application of the wave surface, known to Hamilton and cen-
tral to his discovery, is that for each of the two waves with wavevector k, the ray
direction, that is, the direction of energy transport, is perpendicular to the corre-
sponding sheet of the surface. This can be seen from the first Hamilton equation,
according to which the group (ray) velocity is

(2.12)vg = ∇kω(k)

(for this case of a homogeneous medium, the second Hamilton equation sim-
ply asserts that k is constant along a ray). Alternatively (Landau, Lifshitz and
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Pitaevskii [1984]), the ray direction can be regarded as that of the Poynting vec-
tor,

(2.13)S = Re E∗ × H,

because for any displacement dk with ω constant – that is, any displacement in
the wave surface –

(2.14)S · dk = 1

2
ω Re

[
E∗ · dD − dE∗ · D + H · dB∗ − dH · B∗] = 0,

where the first equality is a consequence of Maxwell’s equations and the second
follows from the linearity and Hermiticity of the constitutive relations (2.3). (This
argument is slightly more general than that of Landau, Lifshitz and Pitaevskii
[1984], because it includes transparent media that are chiral as well as biaxial.)

§ 3. The diabolical singularity: Hamilton’s ray cone

Figure 2 is a cutaway representation of the wave surface, showing four points of
degeneracy where nk+ = nk−, located on two optic axes in the k1, k3 plane in
k space. Each intersection of the surfaces takes the form of a double cone, that
is, a diabolo, and since these are the organizing centres of degenerate behaviour
we call them diabolical points, a term adopted in quantum (Ferretti, Lami and

Fig. 2. Wave surface for n1 = 1.1, n2 = 1.4, n3 = 1.8, showing the four diabolical points on the two
optic axes.
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Fig. 3. The ray cone is a slant cone normal to the wave cone.

Villani [1999]) and nuclear physics (Chu, Rasmussen, Stoyer, Canto, Donangelo
and Ring [1995]) as well as optics. In fact, such degeneracies are to be expected,
because of the theorem of Von Neumann and Wigner [1929] that degeneracies of
real symmetric matrices [such as that in (2.9)] have codimension two, and indeed
we have two parameters, representing the direction of k.

Hamilton’s insight was that at a diabolical point the normals (rays) to the sur-
faces are not defined, so there are infinitely many normals (rays), not two as for
all other k. These normals to the wave cone define another cone. This is the ray
cone (fig. 3), about whose structure – noncircular and skewed – we can learn by
extending an argument of Born and Wolf [1999].

We choose k along an optic axis, and track the Poynting vector as D rotates
in the plane transverse to k. From (2.13) and Maxwell’s equations, S can be ex-
pressed as

(3.1)S = c

nk
Re

[
E∗ · Dek − E∗ · ekD

]
.

Using coordinates kx , ky , kz, with ez along k and ex in the k1, k3 plane (i.e.,
ey = e2),

(3.2)D =
⎛
⎝Dx

Dy

0

⎞
⎠ , E =

⎛
⎝Ex

Ey

Ez

⎞
⎠ = 1

ε0

(
ε′)−1D.
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Here ε′ is the rotated dielectric matrix, determined by four conditions: rotation
about the y axis does not change components involving the 2 axis, the choice of
k along an optic axis (degeneracy) implies that the xx and yy elements are the
same, and the trace and determinant of the matrices ε and ε′ are the same. Thus

(3.3)ε0
(
ε′)−1 = 1

n2
2

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ +

⎛
⎝ 0 0

√
αβ

0 0 0√
αβ 0 α − β

⎞
⎠ .

It follows that, in eq. (3.1),

E∗ · D = 1

ε0n
2
2

(|Dx |2 + |Dy |2
)
,

(3.4)Ez = E∗ · ek = 1

ε0

√
αβDx.

Denoting the direction of D in the kx , ky plane by φ, that is

(3.5)Dx = D cos φ, Dy = D sin φ,

we obtain a φ-parametrized representation of the surface swept out by S:

(3.6)S = cD2

ε0n
3
2

(
ez − 1

2
tan 2A(ex + ex cos 2φ + ey sin 2φ)

)
.

This is the ray surface, in the form of a skewed noncircular cone (fig. 3), with
half-angle A given by

(3.7)tan 2A = n2
2

√
αβ,

From eq. (3.6) it is clear that in a circuit of the ray cone (2φ = 2π), the po-
larization direction φ rotates by half a turn, illustrating the familiar ‘fermionic’
property of degeneracies (Berry [1984], Silverman [1980]).

The direction of the optic axis, that is, the polar angle θc in the xz plane (fig. 2)
can be determined from the rotation required to transform ε into ε′. Thus

(3.8)ε′ = RεR−1,

where

(3.9)R =
⎛
⎝ sin θc 0 − cos θc

0 1 0
cos θc 0 sin θc

⎞
⎠ ,
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whence identification with eq. (3.3) fixes θc as

(3.10)tan θc =
√

α

β
.

§ 4. The bright ring of internal conical refraction

In a leap of insight that we now recognise as squarely in the spirit of singular
optics, Hamilton [1837] realised that the ray cone would appear inside a crystal
slab, on which is incident a narrow beam directed along the optic axis. The hol-
low cone would refract into a hollow cylinder outside the slab (fig. 4). This is a
singular situation because a beam incident in any other direction would emerge,
doubly refracted, into just two beams, not a cylinder of infinitely many rays.
This is internal conical refraction, so-called because the cone is inside the crys-
tal.

Hamilton also envisaged external conical refraction, in which a different op-
tical arrangement results in a cone outside the crystal. This is associated with a
circle of contact between the wave surface and a tangent plane, “somewhat as a
plum can be laid down on a table so as to touch and rest on the table in a whole
circle of contact” (Graves [1882]). Since the theory is similar for the two effects,

Fig. 4. Schematic of Hamilton’s prediction of internal conical refraction.
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our emphasis henceforth will be on internal, rather than external, conical refrac-
tion.

Hamilton’s research attracted wide attention. According to Graves [1882], Airy
called conical refraction “perhaps the most remarkable prediction that has ever
been made”; and Herschel, in a prescient anticipation of singular optics, wrote
“of theory actually remanding back experiment to read her lesson anew; inform-
ing her of facts so strange, as to appear to her impossible, and showing her all the
singularities she would observe in critical cases she never dreamed of trying”. In
particular, the predictions fascinated Lloyd [1837], who called them “in the high-
est degree novel and remarkable”, and regarded them as “singular and unexpected
consequences of the undulatory theory, not only unsupported by any facts hitherto
observed, but even opposed to all the analogies derived from experience. If con-
firmed by experiment, they would furnish new and almost convincing proofs of
the truth of that theory.”

Using a crystal of aragonite, Lloyd succeeded in observing conical refraction.
The experiment was difficult because the cone is narrow: the semi-angle A is
small. If the slab has thickness l, the emerging cylinder, with radius

(4.1)R0 = Al,

is thin unless l is large. To see the cylinder clearly, R0 must be larger than the
width w of the incident beam. Lloyd used a beam narrowed by passage through
small pinholes with radii w � 200 µm. As we will see, this interplay between R0

and w is important. However, large l brings the additional difficulty of finding a

Table 1
Data for experiments on conical diffraction

Experiment n1, n2, n3 A (◦) l (mm) w (µm) ρ0

Lloyd [1837] (aragonite) 1.5326, 1.6863, 1.6908 0.96 12 � 200 � 1.0
Potter [1841] (aragonite) 1.5326, 1.6863, 1.6908 0.96 12.7 12.7 16.7
Raman, Rajagopalan and
Nedungadi [1941]
(naphthalene) 1.525, 1.722, 1.945 6.9 2 0.5 500
Schell and Bloembergen [1978a]
(aragonite)

1.530, 1.680, 1.695 1.0 9.5 21.8 7.8

Mikhailychenko [2005] (sulfur) data not provided 3.5 30 17 56
Fève, Boulanger and Marnier [1994]
(sphere of KTP = KTiOPO4) 1.7636, 1.7733, 1.8636 0.92 2.56 53.0 1210
Berry, Jeffrey and Lunney [2006]
(MDT = KGd(WO4)2 2.02, 2.06, 2.11 1.0 25 7.1 60

For the experiments of Lloyd and Raman, w is the pinhole radius; for the other experiments, w is the
1/e intensity half-width of the laser beam.
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Fig. 5. The transition (a–d) from double to conical refraction as the incident beam direction approaches
the optic axis. In (d) two rings are visible, separated by the Poggendorff dark ring studied in Section 5.

This figure is taken from Berry, Jeffrey and Lunney [2006] (see also Table 1).

clean enough length of crystal; Lloyd describes how he explored several regions
of his crystal before being able to detect the effect.

Nowadays it is simpler to use a laser beam with waist width w rather than a
pinhole with radius w. Nevertheless, observation of the effect remains challeng-
ing. Table 1 summarises the conditions of the several experiments known to us;
we will describe some of them later.

Figure 5 illustrates how double refraction transforms into conical refraction as
the direction of the incident light beam approaches an optic axis. Of this trans-
formation, Lloyd [1837] wrote: “This phenomenon was exceedingly striking. It
looked like a small ring of gold viewed upon a dark ground; and the sudden and
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Fig. 6. Simulation of rings for incident beam linearly polarized horizontally, with polarization direc-
tions superimposed, showing the ‘fermionic’ half-turn of the polarization.

almost magical change of the appearance, from two luminous points to a perfect
luminous ring, contributed not a little to enhance the interest.”

Lloyd also observed a feature that Hamilton had predicted: the half-turn of
polarization round the ring (fig. 6).

§ 5. Poggendorff’s dark ring, Raman’s bright spot

Hamilton was aware that his geometrical theory did not give a complete descrip-
tion of conical refraction: “I suspect the exact laws of it depend on things yet
unknown” (Graves [1882]). And indeed, as fig. 5(d) shows, closer observation re-
veals internal structure in Hamilton’s ring, that he did not predict and Lloyd did
not detect: there is not one bright ring but two, separated by a dark ring. This was
first reported in a brief but important paper by Poggendorff [1839] (fig. 1), who
noted “. . .a bright ring that encompasses a coal-black sliver” (“einem hellen Ringe
vereinigen, der ein kohlschwarzes Scheibchen einschliefst”). The existence of two
bright rings, rather than one, was independently discovered soon afterwards by
Potter [1841] (Table 1).

After more than 65 years, the origin of Poggendorff’s dark ring was identi-
fied by Voigt [1905a] (fig. 1) (see also Born and Wolf [1999]), who pointed out
that Hamilton’s prediction involved the idealization of a perfectly collimated in-
finitely narrow beam. This is incompatible with the wave nature of light: a beam
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of spatial width w must contain transverse wavevector components (i.e., kx , ky)
extending over at least a range 1/w (more, if the light is incoherent); this is just
the optical analogue of the uncertainty principle. Therefore the incident beam will
explore not just the diabolical point itself but a neighbourhood of the optic axis
in k space. In fact Hamilton knew about the off-axis waves: “it was in fact from
considering them and passing to the limit that I first deduced my expectation of
conical refraction”. Lloyd too was aware of “the angle of divergence produced by
diffraction in the minutest apertures”.

Voigt’s observation was that the strength of the light generated by the off-axis

waves inside and outside the cylinder is proportional to the radius
√

k2
x + k2

y of

the circumference of contributing rings on the wave cone. At the diabolical point
this vanishes, so the intensity is zero on the geometrical cylinder itself. Thus,
the Poggendorff dark ring is a manifestation of the area element in plane polar
coordinates in k space.

The elementary quantitative theory of the Poggendorff ring is based on geomet-
rical optics, incorporating the finite k width of the beam – which of course is a
consequence of wave physics. Rigorous geometrical-optics treatments were given
by Ludwig [1961] and Uhlmann [1982]; here, our aim is to obtain the simplest
explicit formulae. To prepare for later analysis of experiments, we formulate the
theory so as to describe the light beyond the crystal. Appropriately enough, we
will use Hamilton’s principle.

We begin with the optical path lengths from a point ri on the entrance face
z = 0 of the crystal to a point r beyond the crystal at a distance z from the
entrance face, for the two waves with transverse wavevector components kx , ky :

path length = kx(x − xi) + ky(y − yi) + l

√
k2

0n2
k± − k2

x − k2
y

(5.1)+ (z − l)

√
k2

0 − k2
x − k2

y.

The exit face of the crystal is z = l, but all our formulae are also valid for z < l,
corresponding to observations, made with lenses outside the crystal, of the virtual
field inside the crystal, as was appreciated long ago by Potter [1841], and later by
Raman [1941] and Raman, Rajagopalan and Nedungadi [1941].

For the geometrical theory and all subsequent analysis, we will use the follow-
ing dimensionless variables (fig. 7):

ρ = {ξ, η} = ρ{cos φ, sin φ} ≡ 1

w
{x + R0, y},

(5.2)κ = {κx, κy} = κ{cos φκ , sin φκ } ≡ w{kx, ky},
ρ0 ≡ R0

w
.
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Fig. 7. Dimensionless coordinates for conical diffraction theory.

Here, transverse position ρ and transverse wavevectors κ are measured in terms
of the beam width w, with ρ measured from the axis of the cylinder. Especially
important is the parameter ρ0, giving the radius of the cylinder in units of w; this
single quantity characterises the field of rays – and also of waves, as we shall see
– replacing the five quantities n1, n2, n3, l, w. Well-developed rings correspond
to ρ0 � 1.

Near the diabolical point, κ is small, so we can write the sheets of the wave
surface as

(5.3)nk± = n2

(
1 + A(−κx ± κ)

k0n2w

)
.

Now comes an important simplification, to be used in all subsequent analysis:
because all angles are small (Table 1), we use the paraxial approximation (Ap-
pendix 1) to expand the square roots in eq. (5.1). This leads to

(5.4)path length = k0(n2l + z − l) + Φ±(κ, ρ, ρi ),

where

(5.5)Φ±(κ, ρ, ρi) ≡ κ · (ρ − ρi) ± κρ0 − 1

2
κ2ζ
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and

(5.6)ζ ≡ l + n2(z − l)

n2k0w2
.

Here ζ is a dimensionless propagation parameter, measuring distance from the
‘focal image plane’ z = l(1 − 1/n2) (fig. 7) where the sharpest image of the inci-
dent beam (pinhole or laser waist) would be formed if the crystal were isotropic
(i.e., if A were zero). The importance of the focal image plane ζ = 0 was first
noted in observations by Potter [1841].

By Hamilton’s principle, rays from {ρi, 0} to {ρ, z} correspond to waves with
wavenumber κ for which the optical distance is stationary. Thus

(5.7)∇κΦ = ρ − ρi ± ρ0eκ − κζ = 0,

that is

(5.8)ρ − ρi = (κζ ∓ ρ0)eκ .

Consider for the moment rays from ρi = 0. Squaring eq. (5.8) and using ρ > 0,
κ > 0 leads to

+: two solutions: (a): κ = (ρ + ρ0)

ζ
eρ,

(5.9)(b): κ = (ρ0 − ρ)

ζ
eρ (ρ � ρ0),

−: one solution: (c): κ = (ρ − ρ0)

ζ
eρ (ρ � ρ0).

For each ρ, there are two solutions: (a); and either (b) (if ρ � ρ0) or (c) (if
ρ � ρ0). As fig. 8 illustrates, these correspond to minus the slopes of the surface

(5.10)
1

2
κ2ζ ∓ κρ0.

Fig. 8. The ‘Hamiltonian’ surface (5.10) whose normals generate the paraxial rays.
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A ray bundle dκ will reach dρ at ζ with intensity proportional to |J |−1 where
J is the Jacobian

(5.11)J = det
dρ

dκ
= det

∂(ξ, η)

∂(κx, κy)
= ζ

(
ζ ∓ ρ0

κ

)
.

The ray equation (5.8) gives

(5.12)|J |−1 = κ

ζρ
= |ρ ± ρ0|

ζ 2ρ
,

which for the minus sign vanishes linearly on the cylinder ρ = ρ0, where,
from (5.9), the contributing wavevector is the diabolical point κ = 0. Thus the
Poggendoff dark ring is an ‘anticaustic’.

This geometrical theory also explains an important observation made by
Raman, Rajagopalan and Nedungadi [1941] (fig. 1), who emphasized that the
ring pattern changes dramatically beyond the crystal; in our notation, the pattern
depends strongly on the distance ζ from the focal image plane. Raman saw that
as ζ increases, a bright spot develops at ρ = 0. This is associated with the factor
1/ρ in the inverse Jacobian (5.12), corresponding to a singularity on the cylin-
der axis ρ = 0 – a line caustic, resulting from the ring of normals where the
surface (5.10) turns over at κ = ρ0/ζ (fig. 8). At the turnover, the surface is lo-
cally toroidal, so the Raman spot is analogous to the optical glory (Nussenzveig
[1992], van de Hulst [1981]) − another consequence of an axial caustic resulting
from circular symmetry. Raman, Rajagopalan and Nedungadi [1941] pointed out
that the turnover is related to the circle of contact in external conical refraction,
so that the two effects discovered by Hamilton cannot be completely separated.
The central spot had been observed earlier by Potter [1841], who however failed
to understand its origin.

Since the factor 1/ρ in (5.12) applies to all z, why does the Raman spot ap-
pear only as ζ increases? The reason is that in the full geometrical-optics inten-
sity Igeom, the inverse Jacobian must be modulated by the angular distribution of
the incident beam. Let the incident transverse beam amplitude (assumed circu-
lar) have Fourier transform a(κ). Important cases are a pinhole with radius w,
and a Gaussian beam with intensity 1/e half-width w, for which [in the scaled
variables (5.2)]

(5.13)

circular pinhole: ap(κ) = J1(κ)

κ
,

Gaussian beam: aG(κ) = exp

(
−1

2
κ2

)
.
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Incorporating the Jacobian and the ray equations gives

(5.14)

Igeom(ρ, ζ ) = 1

2ζ 2ρ

[|ρ − ρ0|
∣∣a(|ρ − ρ0|/ζ

)∣∣2

+ (ρ + ρ0)
∣∣a(

(ρ + ρ0)/ζ
)∣∣2]

.

The first term represents the bright rings, separated by the Poggendorff dark ring;
in this approximation, the rings are symmetric. The second term is weak except
near ρ = 0, where it combines with the first term to give the Raman central spot,
with strength proportional to

(5.15)
1

ρζ 2

∣∣a(ρ0/ζ )
∣∣2

,

which (for a Gaussian beam, for example) is exponentially small unless ζ ap-
proaches ρ0, and decays slowly with ζ thereafter.

Although Igeom captures some essential features of conical refraction, it fails
to describe others. Like all applications of geometrical optics, it neglects inter-
ference and polarization, and fails where there are geometrical singularities. Here
the singularities are of two kinds: a zero at the anticaustic cylinder ρ = ρ0, and
focal divergences on the axial caustic ρ = 0 and in the focal image plane ζ = 0.

Interference and polarization can be incorporated by adding the geometrical
amplitudes (square roots of Jacobians) rather than intensities, with phases given
by the values of Φ± (from eq. (5.5)) at the contributing κ values. We will return
to improvements of geometrical-optics theory in Section 7, and compare a more
sophisticated version with exact wave theory (see fig. 12 later).

The singularity at ζ = 0 is associated with our choice of ρi = 0. Thus, although
Igeom incorporates the effect of w on the angular spectrum of the incident beam, it
neglects the more elementary lateral smoothing of the cylinder of conical refrac-
tion. One possible remedy is to average Igeom over points ρi, that is, across the
incident beam. In the focal image plane, where the unsmoothed I is singular, such
averaging would obscure the Poggendorff dark ring. However, averaging over ρi
is correct only for incoherent illumination, which does not correspond to Lloyd’s
and later experiments, where the light is spatially coherent. The correct treatment
of the focal image plane, and of other features of the observed rings, requires a
full wave theory.

§ 6. Belsky and Khapalyuk’s exact paraxial theory of conical diffraction

Nearly 40 years after Raman, the need for a full wave treatment, based on an
angular superposition of plane waves, was finally appreciated. Following (and

po50 v.2007/06/12 Prn:21/08/2007; 12:53 F:po50002.tex; VTEX/Jolanta p. 19
aid: 50002 pii: S0079-6638(07)50002-8 docsubty: REV



32 Conical diffraction and Hamilton’s diabolical point [2, § 6

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

correcting) an early attempt by Lalor [1972], Schell and Bloembergen [1978a]
supplied such a theory, but this was restricted to the exit face of the crystal (that
is, it did not incorporate the ζ dependence of the ring pattern); moreover, it was
unnecessarily complicated because it did not exploit the simplifying feature of
paraxiality. The breakthrough was provided by Belsky and Khapalyuk [1978],
who did make use of paraxiality and gave definitive general formulae, obtained
after “quite lengthy calculations”, which they omitted. We now give an elementary
derivation of the same formulae.

The field D = {Dx,Dy} outside the crystal is a superposition of plane waves
κ , each of which is the result of a unitary 2 × 2 matrix operator U(κ) acting on
the initial vector wave amplitude a(κ). Thus

(6.1)D = 1

2π

∫∫
dκ exp{iκ · ρ}U(κ)a(κ).

U(κ) is determined from two requirements: its eigenphases must be the ρ-in-
dependent part of the phases Φ± (5.5), involving the refractive indices n±(κ),
and because the diabolical point at κ = 0 is a degeneracy, its eigenvectors (the
eigenpolarizations) must change sign as φκ changes by 2π . These are satisfied by

(6.2)U(κ) = exp{−iF(κ)},
where

(6.3)

F(κ) = 1

2
κ2ζ

(
1 0
0 1

)
+ ρ0κ

(
cos φκ sin φκ

sin φκ − cos φκ

)

= 1

2
κ2ζ1 + ρ0κ · S,

in which the compact form involves two of the Pauli spin matrices

(6.4)κ · S = σ 3κx + σ 1κy.

Evaluating the matrix exponential (6.2) gives the explicit form

(6.5)U(κ) = exp

{
−1

2
iκ2ζ

}[
cos ρ0κ1 − i

sin ρ0κ

κ
κ · S

]
.

We learned from A. Newell of a connection between the evolution associated
with U(κ) and analytic functions. Although we do not make use of this connec-
tion, it is interesting, and we describe it in Appendix 2.

It is not hard to show that U(κ) possesses the required eigenstructure, namely

(6.6)U(κ)d±(κ) = λ±(κ)d±(κ),
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where

λ±(κ) = exp

{
i

(
−1

2
κ2ζ ± ρ0κ

)}
,

(6.7)d+(κ) =
(

cos 1
2φκ

sin 1
2φκ

)
, d−(κ) =

(
sin 1

2φκ

− cos 1
2φκ

)
.

Without significant loss of generality, we can regard the incident beam as uni-
formly polarized and circularly symmetric, that is

(6.8)a(κ) = a(κ)

(
d0x

d0y

)
= a(κ)d0,

where a(κ) is the Fourier amplitude introduced in the previous section [cf.
eq. (5.13)], related to the transverse incident beam profile D0(ρ) by

(6.9)D0 = d0D0(ρ) = d0

∞∫
0

dκ κJ0(κρ)a(κ).

Combining eqs. (6.1), (6.5) and (6.9), we obtain, after elementary integrations,
and recalling ρ = ρ{cos φ, sin φ},

(6.10)D =
(

B0 + B1 cos φ B1 sin φ

B1 sin φ B0 − B1 cos φ

)
d0,

where

B0(ρ, ζ ; ρ0) =
∞∫

0

dκ κa(κ) exp

{
−1

2
iζκ2

}
J0(κρ) cos(κρ0),

(6.11)B1(ρ, ζ ; ρ0) =
∞∫

0

dκ κa(κ) exp

{
−1

2
iζκ2

}
J1(κρ) sin(κρ0).

These are the fundamental integrals of the Belsky–Khapalyuk theory.
For unpolarized or circularly polarized incident light, eq. (6.10) gives the in-

tensity as

(6.12)I = D∗ · D = |B0|2 + |B1|2.
A useful alternative form for D, in terms of the eigenvectors d± evaluated at

the direction φ of ρ, and involving

(6.13)A+ ≡ B0 + B1, A− ≡ B0 − B1,
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is

(6.14)

D = A+
(

d0x cos
1

2
φ + d0y sin

1

2
φ

)
d+(ρ)

+ A−
(

d0x sin
1

2
φ − d0y cos

1

2
φ

)
d−(ρ).

D is a single-valued function of ρ, although d±(ρ) change sign around the origin.
The corresponding intensity,

(6.15)

I = |A+|2
∣∣∣∣d0x cos

1

2
φ + d0y sin

1

2
φ

∣∣∣∣
2

+ |A−|2
∣∣∣∣d0x sin

1

2
φ − d0y cos

1

2
φ

∣∣∣∣
2

,

contains no oscillations resulting from interference between A+ and A−, because
d+ and d− are orthogonally polarized. But, as we will see in the next section, the
exact rings do possess oscillations, from A+ and A− individually.

Associated with the polarization structure of the beam (6.14) (see also fig. 6) is
an interesting property of the angular momentum (Berry, Jeffrey and Mansuripur
[2005]): for well-developed rings (large ρ0), the initial angular momentum, which
is pure spin, is transformed by the crystal into pure orbital, and reduced in mag-
nitude, the difference being imparted to the crystal.

§ 7. Consequences of conical diffraction theory

We begin our explanation of the rich implications of the paraxial wave theory
by obtaining an explicit expression for the improved geometrical-optics theory
anticipated in Section 5. The derivation proceeds by replacing the Bessel functions
in eq. (6.11) by their asymptotic forms, and then evaluating the integrals by their
stationary-phase approximations. The stationary values of κ specify the rays (5.9),
and the result, for the quantities A±, is:

A+geom =
√|ρ0 − ρ|

ζ
√

ρ
a

( |ρ0 − ρ|
ζ

)
exp

{
i
(ρ0 − ρ)2

2ζ

}
×

(
1 if ρ < ρ0

−i if ρ > ρ0

)
,

(7.1)A−geom = −i

√
ρ0 + ρ

ζ
√

ρ
a

(
ρ0 + ρ

ζ

)
exp

{
i
(ρ0 + ρ)2

2ζ

}
.

For an incident beam linearly polarized in direction γ , that is

(7.2)d0 =
(

cos γ

sin γ

)
,
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the resulting electric field (6.14) is

(7.3)D = A+geom cos

(
1

2
φ − γ

)
d+(φ) + A−geom sin

(
1

2
φ − γ

)
d−(φ),

and the intensity is

Igeom1 = D∗ · D

(7.4)=
[
|A+geom|2 cos2

(
1

2
φ − γ

)
+ |A−geom|2 sin2

(
1

2
φ − γ

)]
.

The elementary geometrical-optics intensity Igeom (5.14) is recovered for un-
polarized light by averaging over γ , or by superposing intensities for any two
orthogonal incident polarizations. Without such averaging, the first term in Igeom1

gives the lune-shaped ring structure observed by Lloyd (fig. 6) with linearly po-
larized light, and both terms combine to give the unpolarized geometrical central
spot.

Next, we examine the detailed structure of the Poggendorff rings, starting with
the focal image plane ζ = 0 where the rings are most sharply focused. Figure 9

Fig. 9. Emergence of double ring structure in the focal image plane ζ = 0 as ρ0 increases, computed
from eq. (6.10) for an unpolarized Gaussian incident beam. (a) ρ0 = 0.5; (b) ρ0 = 0.8; (c) ρ0 = 2;

(d) ρ0 = 4.
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shows how the double ring emerges as ρ0 increases. Significant events, corre-
sponding to sign changes in the curvature of I at ρ = 0, are: the birth of the first
ring when ρ0 = 0.627; the birth of a central maximum when ρ0 = 1.513; and the
birth of the second bright ring when ρ0 = 2.669.

As ρ0 increases further, the rings become localized near ρ = ρ0, but their shape
is independent of ρ0 and depends only on the form of the incident beam. To obtain
a formula for this invariant shape, we cannot use geometrical optics for the large-
ρ0 asymptotics. The reason is that although eq. (7.1) is a good approximation to
A−, it fails for the function A+ that determines the rings, because the ray contri-
bution comes from the neighbourhood of the end-point κ = 0 of the integrals. So,
although the Bessel functions can still be replaced by their asymptotic forms, the
stationary-phase approximation is invalid. Near the rings, with

(7.5)�ρ ≡ ρ − ρ0,

Bessel asymptotics gives A+ as

(7.6)A+rings = 1√
ρ

f (�ρ, ζ ),

where

(7.7)f (�ρ, ζ ) =
√

2

π

∞∫
0

dκ
√

κa(κ) cos

{
κ�ρ − 1

4
π

}
exp

{
−1

2
iκ2ζ

}
.

In the focal image plane ζ = 0, f can be evaluated analytically for a pinhole
incident beam, in terms of elliptic integrals E and K . With the conventions in
Mathematica (Wolfram [1996]),

f0p(�ρ) ≡ f (�ρ, 0)

(7.8)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

2

π

[√
1 − �ρE

(
2

1 − �ρ

)
+ �ρ√

1 − �ρ
K

(
2

1 − �ρ

)]

(�ρ < −1),

2

π

[
−K

(
1

2
(1 − �ρ)

)
+ 2E

(
1

2
(1 − �ρ)

)]

(|�ρ| < 1),

0 (�ρ > 1).

Figure 10(a) shows the corresponding intensity. To our knowledge, this unusual
focused image has not been seen in any experiment.
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Fig. 10. Intensity functions f 2
0 (�ρ) of rings in the focal image plane, for (a) a circular pinhole (7.8),

and (b) a Gaussian beam (7.9).

For a Gaussian beam, the focal image can be expressed in terms of Bessel
functions:

f0g(�ρ) ≡ f (�ρ, 0)

= |�ρ|3/2 exp
(− 1

4�ρ2
)

2
√

2π

[
K 3

4

(
1

4
�ρ2

)
+ sgn �ρK 1

4

(
1

4
�ρ2

)

(7.9)+ π
√

2�(−�ρ)

(
I 3

4

(
1

4
�ρ2

)
− I 1

4

(
1

4
�ρ2

))]
.

Figure 10(b) shows the corresponding intensity, and fig. 11 shows how the ap-
proximation f0g gets better as ρ0 increases. The focal image functions f0p and
f0g have been discussed in detail by Belsky and Stepanov [1999], Berry [2004b]
and Warnick and Arnold [1997]; of several equivalent representations, eqs. (7.8)
and (7.9) are the most convenient.

Away from the focal image plane, that is as ζ increases from zero, secondary
rings develop, in the form of oscillations within the inner bright ring [the solid
curves in fig. 12(b–e)]; these were discovered in numerical computations by
Warnick and Arnold [1997]. Using asymptotics based on eq. (7.7), the secondary
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Fig. 11. Ring intensity in the focal image plane for a Gaussian incident beam, calculated exactly (solid
curves), and in the local approximation (7.6) and (7.9) (dashed curves), for (a) ρ0 = 5; (b) ρ0 = 10;
(c) ρ0 = 20. [The divergences at ρ = 0 for the approximate rings come from the factor 1/

√
ρ in

eq. (7.6).]

rings can be interpreted as interference between a geometrical ray and a wave
scattered from the diabolical point in k space (Berry [2004b]); the associated
mathematics led to a surprising general observation in the asymptotics of com-
peting exponentials (Berry [2004a]).

All the features so far discussed are displayed in the simulated image and cut-
away in fig. 13, which can be regarded as a summary of the main results of conical
diffraction theory. The parameters (ρ0 = 20, ζ = 8) are chosen to display the two
bright rings, the Poggendorff dark ring, the nascent Raman spot (whose intensity
will increase for larger ζ ), and the secondary rings.
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Fig. 12. Intensity for a Gaussian incident beam for ρ0 = 20 and (a) ζ = 1; (b) ζ = 4; (c) ζ = 6; (d)
ζ = 8; (e) ζ = 10; (f) ζ = 20. Solid curves: exact theory; dashed curves: refined geometrical-optics

theory (7.13).

As ζ increases further, the inner rings approach the Raman spot [solid curves
in fig. 12(e,f)], and are then described by Bessel functions (Berry [2004b]):

B0(ρ, ζ ; ρ0) ≈ ρ0

√
π

2ζ 3
exp

{
i

(
ρ2

0

2ζ
− 1

4
π

)
a

(
ρ0

ζ

)
J0

(
ρρ0

ζ

)}
,

B1(ρ, ζ ; ρ0) ≈ ρ0

√
π

2ζ 3
exp

{
i

(
ρ2

0

2ζ
− 3

4
π

)
a

(
ρ0

ζ

)
J1

(
ρρ0

ζ

)}
,

(7.10)(ρ � ρ0, ζ � 1).

Figure 14 illustrates how well the approximation J 2
0 +J 2

1 approximates the true
intensity. The weak oscillations (shoulders at zeros of J1(ρρ0/ζ )) are the result of
interference involving the next large-ρ0 correction term to the geometrical-optics
approximation (7.1).
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Fig. 13. (a) Density plot and (b) cutaway 3D plot, of conical diffraction intensity for ρ0 = 20, ζ = 8,
showing bright rings B, Poggenforff dark ring P, Raman spot R and secondary rings S.

In the important special case of a Gaussian incident beam, the conical diffrac-
tion integrals (6.11) for general ζ can be obtained by complex continuation from
the focal image plane ζ = 0. This useful simplification is a variant of the complex-
source trick of Deschamps [1971]. It is based on the observation

(7.11)exp

{
−1

2
κ2

}
exp

{
−1

2
iκ2ζ

}
= exp

{
−1

2
κ2(1 + iζ )

}
,
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Fig. 14. Weak oscillations decorating the Raman spot for a Gaussian incident beam; thick curve: exact
intensity; thin curve: Bessel approximation (7.10), for ρ0 = 20, ζ = 20.

and leads to

(7.12)B0,1(ρ, ζ ; ρ0) = 1

1 + iζ
B0,1

(
ρ√

1 + iζ
, 0,

ρ0√
1 + iζ

)
.

In geometrical optics, the same trick leads to a further refinement, incorporating
a(κ) into the stationary-phase approximation (so that the rays are complex):

A+geom1

=
√|ρ0 − ρ|
(ζ − i)

√
ρ

exp

{
iζ

(ρ0 − ρ)2

2(ζ 2 + 1)

}

× exp

{
− (ρ0 − ρ)2

2(ζ 2 + 1)

}
×

(
1 if ρ < ρ0

−i if ρ > ρ0

)
,

(7.13)A−geom1 = −i

√
ρ0 + ρ

(ζ − i)
√

ρ
exp

{
iζ

(ρ0 + ρ)2

2(ζ 2 + 1)

}
exp

{
− (ρ0 + ρ)2

2(ζ 2 + 1)

}
.

Figure 12 shows how accurately this reproduces the oscillation-averaged rings
and the Raman spot when ζ is not small. Near the focal plane, however, the geo-
metrical approximation is only rough, even though the refinement eliminates the
singularity at ζ = 0.

§ 8. Experiments

Experimental studies of conical refraction are few, probably because of the diffi-
culty of finding, or growing, crystals of sufficient quality and thickness. Table 1
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lists the investigations known to us. We have already mentioned the pioneering
observations of Lloyd, Poggendorff, Potter and Raman.

Lloyd [1837] stated that he used several pinholes, but gave only the size of the
largest (which he used as a way of measuring A), so we do not know the values of
w, and hence ρ0, corresponding to his rings. Poggendorff [1839] gave no details
of his experiment, except that it was performed with aragonite. Potter [1841] gave
a detailed description of his experiments with aragonite, but misinterpreted his
observation of the double ring as evidence against the diabolical connection of the
sheets of the wave surface, leading to polemical criticisms of Hamilton and Lloyd.
Raman, Rajagopalan and Nedungadi [1941] chose naphthalene, whose crystals
have a large cone angle A and which they could grow in sufficient thickness. They
emphasize that they did not see the Poggendorff dark ring in their most sharply
focused images; but in the focal image plane the two bright rings are very narrow
(comparable with w ≈ 0.5 µm), so they might not have resolved them.

Schell and Bloembergen [1978a] compared measured ring profiles with numer-
ically integrated wave theory and with the stationary-phase (geometrical optics)
approximation, in a plane corresponding to the exit face of their aragonite crystal.
From the data in Table 1, it follows that this corresponds to ζ ≈ 1.3, a regime in
which there is no central spot and no secondary rings, and, as they report, geo-
metrical optics is a reasonable approximation.

Perkal’skis and Mikhailychenko [1979] and Mikhailychenko [2005] report
large-scale demonstrations of internal and external conical refraction with rhom-
bic sulfur.

In an ingenious investigation, Fève, Boulanger and Marnier [1994] used KTP
in the form of a ball rather than a slab. The theory of Section 6 applies, provided
the parameters are interpreted as follows:

ρ0 → ρball = ρ0

(
1 − 2(n2 − 1)

d

l

)
,

(8.1)ζ → ζball = l + d(2 − n2)

n2kw2
,

where l is the diameter of the ball and d is the distance between the exit face of the
ball and the observation plane. In this case, a cone emerges from the ball, giving
rings whose radius wρball depends on d; the radius vanishes at a point, close to
the ball, where the generators of the cone (that is, the rays) cross. They obtain
good agreement between the measured ring profile and the geometrical-optics
intensity, which is a good approximation in their regime of enormous effective ρ0

and relatively modest ζ (Table 1).
The many wave-optical and geometrical-optical phenomena predicted by the

detailed theory of conical diffraction have recently been observed by Berry, Jef-
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Fig. 15. Theoretical and experimental images for a monoclinic double tungstate crystal illuminated
by a Gaussian beam (Berry, Jeffrey and Lunney [2006]), for ρ0 = 60. (a,b) ζ = 3; (c,d) ζ = 12;

(e,f) ζ = 30; (a,c,e) theory; (b,d,f) experiment.

frey and Lunney [2006] in a crystal of the monoclinic double tungstate material
KGd(WO4)2, obtained from Vision Crystal Technology (VCT [2006]). The agree-
ment, illustrated in figs. 15 and 16, is quantitative as well as qualitative. Their
measurements confirm predictions for the ζ -dependence of the radii and separa-
tion of the main rings, and of the sizes of the interference fringes: the secondary
rings decorating the inner bright ring, and the rings decorating the Raman spot.

§ 9. Concluding remarks

Although conical diffraction exemplifies a fundamental feature of crystal optics,
namely the diabolical point, it can also be regarded as a curiosity, because the
effect seems to occur nowhere in the natural universe, and no practical application
seems to have been found. To forestall confusion, we should immediately qualify
these assertions.

It is Hamilton’s idealized geometry (collimated beam, parallel-sided crystal
slab, etc.) that does not occur in nature. In generic situations, for example an
anisotropic medium that is also inhomogeneous, it is likely for a ray to encounter a
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Fig. 16. As fig. 15, with (a) ζ = 3; (b) ζ = 12; (c) ζ = 30. Solid curves: theory; dashed curves:
angular averages of experimental images. (After Berry, Jeffrey and Lunney [2006].)

point where its direction is locally diabolical, corresponding to a local refractive-
index degeneracy (Naida [1979]); or, in quantum mechanics, a coupled system
with fast and slow components (e.g., a molecule) can encounter a degeneracy of
the adiabatically evolving fast sub-system. In understanding such generic situa-
tions, the analysis of the idealized case will surely play a major part.

On the practical side, it is possible that the bright cylinder of conical refrac-
tion can be applied to trap and manipulate small particles; this is being explored,
but the outcome is not yet clear. And a related phenomenon associated with the
diabolical point, namely the conoscopic interference figures seen under polarized
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illumination of very thin crystal plates, is a well-established identification tech-
nique in mineralogy (Liebisch [1896]).

As we have tried to explain, our understanding of the effect predicted by Hamil-
ton is essentially complete. We end by describing several generalizations that are
less well understood.

Although the theory of Section 6 applies to any paraxial incident beam, detailed
explorations have been restricted to pinhole and Gaussian beams. A start has been
made by King, Hogervorst, Kazak, Khilo and Ryzhevich [2001] and Stepanov
[2002] in the exploration of other types of beam, for example Laguerre–Gauss
and Bessel beams.

A further extension is to materials that are chiral (optically active) as well as
biaxially birefringent. This alters the mathematical framework, because chirality
destroys the diabolical point by separating the two sheets of the wave surface,
reflecting the change of the dielectric matrix from real symmetric to complex
Hermitian. There have been several studies incorporating chirality (Belsky and
Stepanov [2002], Schell and Bloembergen [1978b], Voigt [1905b]), leading to
the recent identification of the central new feature: the bright cylinder of conical
refraction is replaced by a ‘spun cusp’ caustic (Berry and Jeffrey [2006a]). So far
this has not been seen in any experiment.

The introduction of anisotropic absorption (dichroism) brings a more radical
change: each diabolical point splits into two branch-points, reflecting the fact
that the dielectric matrix is now non-Hermitian (Berry [2004c], Berry and Dennis
[2003]). The dramatic effects of absorption on the pattern of emerging light have
been recently described by Berry and Jeffrey [2006b]. The combined effects of
dichroism and chirality have been described by Jeffrey [2007].

The final generalization incorporates nonlinearity. Early results were reported
by Schell and Bloembergen [1977] and Shih and Bloembergen [1969], and the
subject has been revisited by Indik and Newell [2006].

Acknowledgements
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Appendix 1: Paraxiality

The paraxial approximation requires small angles, equivalent to replacing cos θ

by 1 − θ2/2, that is, to assuming θ4/24 � 1 for all wave deflection angles θ . In
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conical refraction, deflections are determined by the half-angle of the ray cone,
which from eq. (3.7) is

(A.1)A = 1

2
arctan

(
n2

2

√
αβ

)
.

This is indeed small in practice, because of the near-equality of the three refractive
indices. For the Lloyd [1837] experiment on aragonite, the Berry, Jeffrey and
Lunney [2006] experiment on MDT, and the Raman, Rajagopalan and Nedungadi
[1941] experiment on naphthalene (whose cone angle is the largest yet reported),
the data in Table 1 give

1

24
A4

Lloyd = 3.3 × 10−9,

(A.2)
1

24
A4

Berry = 9.1 × 10−9,

1

24
A4

Raman = 8.5 × 10−6.

As is often emphasized, internal and external conical refraction are associated
with different aspects of the geometry of the wave surface. But in the paraxial
regime the difference between the cone angles (A and Aext respectively) disap-
pears. To explore this, we first note that (Born and Wolf [1999])

(A.3)Aext = 1

2
arctan

(
n1n3

√
αβ

)
.

In terms of the refractive-index differences

(A.4)μ1 ≡ n2 − n1

n2
, μ3 ≡ n3 − n2

n2
,

we have, to lowest order,

(A.5)A ≈ Aext ≈ √
μ1μ3,

which is proportional to the refractive-index differences. The difference between
the angles is

(A.6)A − Aext ≈ √
μ1μ3

[
μ1 − μ3 + 1

4

(
3μ2

1 − 2μ1μ3 + 3μ2
3

)]
,

which is proportional to the square of the index differences, except when the two
differences are equal, when it is proportional to the cube. For the aragonite, MDT
and naphthalene experiments,

ALloyd − Aext,Lloyd = 8.9 × 10−2ALloyd,

(A.7)ABerry − Aext,Berry = −4.4 × 10−3ABerry,

ARaman − Aext,Raman = −2.7 × 10−4ARaman.
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Appendix 2: Conical refraction and analyticity

We seek the paraxial differential equation for the evolution of the wave inside the
crystal. Within the framework of Section 6, the wave can be described by setting
z = l and regarding ζ = l/k0w

2 as a variable, enabling the evolution operator
(6.2) and (6.3) to be written as

(B.1)U(κ) = exp

{
−iζ

(
1

2
κ21 + Γ κ · S

)}
,

where

(B.2)Γ ≡ Ak0w.

Writing κ as the differential operator

(B.3)κ = −i∇ = −i{∂ξ , ∂η},
and differentiating eq. (B.1) with respect to ζ leads to

(B.4)i∂ζ

(
Dξ

Dη

)
=

[
−1

2
∇2

(
1 0
0 1

)
− iΓ

(
∂ξ ∂η

∂η −∂ξ

)] (
Dξ

Dη

)
.

The differential operator connects the components of D in the same way as the
Cauchy–Riemann conditions for analytic functions. The relation is clearer when
D is expressed in a basis of circular polarizations and ξ and η are replaced by
complex variables, as follows

D+ ≡ 1√
2
(Dξ − iDη), D− ≡ 1√

2
(Dξ + iDη),

(B.5)w+ ≡ ξ + iη, w− ≡ ξ − iη.

Then eq. (B.4) becomes

(B.6)i∂ζ

(
D+
D−

)
= −2

[
∂w+∂w−

(
1 0
0 1

)
+ iΓ

(
0 ∂w+

∂w− 0

)] (
D+
D−

)
.

Thus D+ and D− propagate unchanged if D+ is a function of w+ alone and D− is
a function of w− alone, that is if the field components are analytic or anti-analytic
functions. For such fields, there is no conical refraction, and (for example) a pat-
tern of zeros in the incident field propagates not conically but as a set of straight
optical vortex lines parallel to the ζ direction. However, these analytic functions
do not represent realistic optical beams, which must decay in all directions φ as
ρ → ∞.
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