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Abstract. Light passing along the optic axis of a slab of transparent biaxial crystal is
considered in the presence of optical activity. The dominant feature in the intensity, described
analytically here, is a bright cone inside the crystal, refracting into a bright horn at the exit face,
due to a divergence of the intensity of geometric rays. This divergence is removed by
diffraction, which introduces recently discovered asymptotic features, including Airy rings
across the caustic horn, and a spun cusp catastrophe. Here we concentrate on the region close
to the focal image plane, and a different set of fringes previously seen in experiments by Schell
and Bloembergen. The intensity pattern here depends dramatically on the polarisation of the
incident beam, and we present a simple analytic formula for the intensity when the incident
beam is linearly polarised.

1.  Introduction
Recent advances in the theory of conical diffraction have unveiled a subtle interplay between
geometrical optics and wave diffraction. Hamilton’s study of Fresnel’s wave surface in 1832 [1] led
him to predict that a single ray of light, incident upon a slab of biaxial crystal along its optic axis,
should refract into an infinite number of rays forming the surface of a hollow cone, a phenomenon he
called internal conical refraction. The cone would refract into a hollow cylinder at the crystal exit face,
visible as a bright ring on a screen behind the crystal. Although this striking phenomenon was quickly
confirmed by experiment [2], it was not until the end of the decade that better resolution revealed two
concentric rings separated by a “coal black sliver” [3, 4]. Hamilton himself appreciated that his
idealised ray theory of conical refraction would not be physically accurate, but it took until 1905 for
Voigt to explain the importance of the spread of wave directions in a physical beam of light [5],
beginning a wave theory of conical diffraction that would take another century to complete [3, 6, 7].

Two essential principles led to a full understanding: firstly, the simplification of paraxiality, where
deflection angles from the optic axis are small; and secondly, that although much of the phenomenon
can be understood in terms of geometrical rays, a complete description requires polarised waves. This
is particularly evident in the case of chiral conical diffraction, in which a beam of light, passing along
the optic axis of a slab of biaxial optically active crystal, emerges as a bright caustic horn. That
optically active crystals would still exhibit something approximating conical refraction has long been
known [8], but the definitive wave theory was only formulated in 2002 [9], and the dominant features
found more recently [10].

Here we present new aspects of the theory of chiral conical diffraction that demonstrate the above
principles. In section 2 we develop the geometrical optics and relate the modern view to Hamilton’s
discovery. In section 3 we consider the intensity of light rays passing through an optically active
crystal, relating them to the caustic horn and spun cusp that form beyond the crystal, identified in [10].



In section 4 we consider the spiral intensity pattern that dominated 20th century interest in the
phenomenon [8, 9, 11, 12], caused by the diffraction of a linearly polarised light beam passing through
an optically active crystal, and we obtain a simple analytic formula for the intensity.

A biaxial crystal is characterised by three principal refractive indices n1<n2<n3. Hamilton’s cone
has the optic axis as one of its generators, perpendicular to which its cross-section is circular, with
cone semi-angle
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A = 1
n2

n2 − n1( ) n3 − n2( ) . (1.1)

Paraxial analysis is appropriate because this angle is typically small (0.93° for aragonite). Optical
activity can arise either from macroscopic chirality of the crystal, or from the Faraday effect. In either
case the effect is specified by a single parameter: the optical rotary power Γ.

2.  The paraxial theory of chiral conical refraction
For a plane wave with vacuum wavenumber k0, we expand in terms of the small part of the
wavevector transverse to the optic axis, 
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k⊥ = kx ,ky( ). We define a crystal wavenumber k=n2k0, and
exploit the transversality of the electrical displacement vector D. From Maxwell’s equations, D
satisfies the eigenequation
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1
n2
D k⊥( ) = M k⊥( ) ⋅D k⊥( ) (2.1)

where, paraxially,
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with eigenvalues
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Let position in space be denoted 
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r = r⊥ ,z( ) , in terms of the transverse position 
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r⊥, and the distance
z along the optic axis measured from the sharpest focus of the incident beam. It is convenient to define
dimensionless variables for a crystal slab of length l and a beam of width w. Transverse position ρ is
measured in units of the beam width, with corresponding wavevector κ, and propagation distance ζ is
measured from the focal image plane along the optic axis in units of kw2:
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ρ = r⊥ w , κ = wk⊥ , ζ = l + n2 z − l( )( ) kw2 . (2.4)

Birefringence and chirality can be represented in terms of two phases: ρ0=Al/w, which is the radius of
Hamilton’s cone at the exit face in units of w, or the phase difference accumulated in the crystal by
two plane eigenwaves travelling at a deflection angle 1/ k0w from the optic axis; and γ, which is the
phase accumulated in the crystal by a circularly polarised wave travelling along the optic axis.

The direction dependent refractive indices for two paraxial plane waves can then be written as
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n κ( ) ≈ n2 1± 1
kl ρ0

2
κ
2

+γ
2( ) . (2.5)

In the absence of chirality this describes the diabolical point at κ=0, but the degeneracy is removed by
a non-zero γ.  The optical path length of a ray exiting the crystal is then
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Φ κ( ) = ρ ⋅ κ − 1
2 ζκ

2
m ρ0

2
κ
2

+γ
2 . (2.6)



The wave surface 
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ρ ⋅ κ −Φ κ( ) is a phase contour in κ-space, whose vector normals are the rays:
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ρ κ( ) = ∇κ ρ ⋅ κ −Φ κ( )( ) = ζ ± ρ0
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2κ2 +γ2
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 κ . (2.7)

For values of ζ corresponding to positions inside the crystal, this is the “virtual wave” surface, whose
normals are the projection of the external rays back inside the crystal. Hamilton was aware, and
credited to Cauchy the discovery, that the wave surface is related to a dual surface often called the ray
surface, in this case 
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ρ ⋅ κ −Θ κ( ), defined by the property that its normals are the wavevectors
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The duality of the surfaces can be expressed by a Legendre transform,
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∇ρ ρ ⋅ κ −Θ ρ( )( ) = ∇κ ρ ⋅ κ −Φ κ( )( )[ ]−1 (2.9)
where the ‘-1’ denotes the inverse function.

In the absence of chirality we can draw a useful analogy to Hamilton’s investigation of the true
wave surface inside the crystal [1, 13]. Corresponding to the conical point of the wave surface at κ=0
responsible for internal conical refraction, there is a circle of contact on the ray surface at ρ=ρ0.
Conversely, the circle of contact on the wave surface at κ=ρ0/ζ, corresponds to the conical point of the
ray surface at ρ=0 noted in Hamilton’s original investigation [1]. (The circle of contact is the unique
ring of points on the curved surface that can be touched by a single tangent plane).

Figure 1. Geometry of conical refraction
(nonchiral). The picture shows the correspondence
between: the optic axis OA, conical point Cint of the
wave surface, and circle of contact Tint on the ray
surface; and between: the binormal OB, circle of
contact Text on the wave surface, and conical point
Cext of the ray surface. The paraxial portions of the
surfaces shown are enlarged and angles are
exaggerated for clarity.

In the presence of chirality these degeneracies disappear, but are replaced by a rich singular
structure examined in the next section. In particular the wave surface is fourth order, that is, the ray
directions κ are the real roots of a quartic obtained from (2.8).

3.  Geometrical optics in the crystal
For observations it is sufficient to consider, as above, only the total optical path of rays once they have
exited the crystal, since any lens placed beyond the exit face images either the light intensity outside
the crystal (ζ>l/kw2), or the virtual image field intensity found by projecting these rays back inside the
crystal (ζ<l/kw2). Given the striking image intensity of chiral conical refraction, however, it is
interesting to consider also the ray intensity inside the crystal that causes it.

We first summarize the intensity of the image field found in [10]. In terms of the real solutions
κn(ρ) of (2.8), and a circularly symmetric incident beam profile a(κ), this is given by
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This geometrical optics formula diverges where axial focussing occurs, on a line along the optic axis,
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ρ = 0, ζ ≤ ρ0
2 γ ≡ζ cusp , (3.2)

which threads a caustic surface of revolution,
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ρ ρ0( )2/3 + ζ ζcusp( )2/3 =1, (3.3)

the caustic “horn”, whose mouth is in the focal plane ζ=0 with radius ρ=ρ0, and whose apex is a spun

cusp at ζ=ζcusp. This can be seen in figures 2(e),(f).

Figure 2. (a-c) Log of ray intensity inside, Z<l, and
outside, Z>l, the crystal in the 
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r⊥,Z  or ρ,ζ plane,
for: (a) A2/G→∞ (nonchiral); (b) A2/G=3, showing
the caustic cone and horn; (c) A2/G=5/4 (strong
chiral). (d-e) Log of geometrical image intensity
corresponding to (a-c), showing the intensity of
virtual rays projected back into the crystal.

Inside the crystal it is more convenient to define new dimensionless variables: the deflection vector
θ of a ray, and corresponding deflection wavevector P, and suitable optical rotary power variable G:
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θ = r⊥ z , P = k⊥ k , G =Γ k , (3.4)
The optical path length in the crystal becomes
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Φ P( ) = kz θ ⋅P− 1
2 P

2
m A2P2 +G 2( ), (3.5)

and the intensity,
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where the wavenumbers Pn(θ) are the real solutions of a quartic equation:
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θ −P( )2 A2P2 +G 2
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 − A4P2 = 0. (3.7)

The intensity again diverges along θ=0 due to axial focussing, and along a caustic cone,
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θ A( )2/3 + G A2( )
2/3

=1 , (3.8)

first identified by Voigt [8], caused by a ring of inflection points in the wave surface surrounding the
conical point. The rays forming this caustic cone refract out of the crystal to form the image caustic
(3.3), as is evident from the coincidence of the interior caustic cone and exterior caustic horn at the
exit face z=kw2

ζ=l, where θ=ρw/l, shown in figure 2(b).

4.  Diffraction Asymptotics
The paraxially exact wave theory is achieved by representing an incident beam of monochromatic
light by a superposition of plane waves,
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D ρ,ζ( ) = 1
2π dκexp iρ ⋅ κ − iF κ( )( ) a κ( )∫∫ d0, (4.1)



for a circularly symmetric incident beam profile a(κ) with polarisation state d0, evolving along the
optic axis according to the unitary operator e−iF, where
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F κ( )=12κ
2ζ1+S⋅ ρ0κ,γ( ), S= σ 3,σ1,σ 2( ) , (4.2)

where σn are the Pauli matrices. This leads to plane waves

  

€ 

D ρ,ζ( ) = B0 ρ,ζ( )1+ S ⋅
ρ
ρ B1 ρ,ζ( ),B2 ρ,ζ( ){ }[ ]d0 , (4.3)

in terms of three diffraction integrals [9, 10]:
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B0 ρ,ζ( ) = dκκ
0

∞
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ζ( )J 0 ρκ( )cos ρ0
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2

B1 ρ,ζ( ) =
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∂
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B0 ρ,ζ( ), B2 ρ,ζ( ) = i ∂
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B0 ρ,ζ( )

. (4.4)

The intensity is given by
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I ρ,ζ( ) = D ρ,ζ( ) ⋅D ρ,ζ( )∗
2

(4.5)

For an unpolarised incident beam this was first given in [9]:
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Iunpol = B0
2

+ B1
2

+ B2
2 , (4.6)

where the intensity for linear and circular polarisation were also given. Here we will be concerned
with a linearly polarised incident beam
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d0 = cos χ ,sin χ( ), for which the intensity becomes
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Iχ = Iunpol +2Re B0
∗B1[ ]cos 2χ −φρ( )+2 Im B1

∗B2[ ]sin 2χ −φρ( ). (4.7)

The asymptotics of the integrals (4.4) was studied in [10], particularly near the caustic (3.3) and cusp
(3.2). The central result is the expression, (correcting a missing 
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κn  in the numerator from [10]),

€ 

B0 ρ,ζ( ) ≈ 1
2 ρ

κn
′ ′ Φ κn( )

a κn( )exp i 12 argκn −arg ′ ′ Φ κn( )( )+Φ κn( )( ){ }
n
∑ . (4.8)

Near the focal image plane, i.e. for 
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ζ <<ρ0
2 γ , this simplifies significantly with the introduction of the

scaled position vector u, and accompanying variable v>0, defined such that
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u = ρ ρ0 , u2 + v 2 =1 . (4.9)
Far from the caustic, that is for
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u << v ≈1 , the diffraction integrals can then be written:
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The intensity can then be written simply as
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Figure 3 shows that this ζ-independent expression correctly captures the intensity pattern given by the
exact integrals (4.4). This simulation agrees qualitatively with the experimental figure 5B from [11],
(previously reproduced in [9] along with a simulation using the exact integrals (4.4)), which contains
the only detailed observations of chiral conical diffraction known to us.



Figure 3. Intensity in the focal image plane for a
vertically polarised incident beam, for ρ0=−γ=20.
(a) is calculated from the exact formulae (4.4) and
(4.7). (b) is calculated from the approximation
(4.11).

5.  Concluding remarks
The surprising singular nature of chiral conical diffraction can be explained by considering
geometrical rays, derived by considering the form of the wave surface for light leaving the crystal. The
dominant features – a caustic surface and a spun cusp – have not yet been observed. As well as
softening the geometric singularities, diffraction adds rich structure, one element of which has been
observed, namely a set of fringes near the focal image plane. For these, the theoretical and
experimental diffraction patterns for a linearly polarised incident beam are in good agreement.

Two further intriguing extensions of Hamilton’s discovery remain: to introduce dichroism
(anisotropic absorption), and nonlinearity. Dichroism fundamentally alters the mathematical structure
of the problem, reintroducing the degeneracy, but splitting the optic axis into a pair of singular axes.
We are presently exploring this new phenomenon, and will report the results later. Nonlinearity is also
the subject of current study, see [14].
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