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Abstract
The geometrical and wave optics are explored for light emerging from a slab
of transparent biaxial crystal with optical activity (chirality), for an incident
beam directed along the optic axis. The geometrical optics, here derived from
Hamilton’s principle, is dominated by a circularly symmetric cusped caustic
surface (‘spun cusp’) threaded by an axial focal line. In wave optics,
formulated exactly in the paraxial approximation in terms of integrals
previously obtained by Belsky and Stepanov and here derived using a unitary
evolution operator, the field is determined by two dimensionless parameters.
The geometrical features are decorated by interference, here explored in the
focal image plane (where the Poggendorff rings of the non-chiral case are in
sharpest focus) and along the axis. Asymptotic approximations are derived in
terms of the geometrical optics rays (including interference and evanescent
waves), near the spun cusp, and uniformly across the caustic surface far from
the cusp.
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1. Introduction

175 years after Hamilton’s discovery of conical refraction
[1–3], this remarkable optical singularity is now understood
in all its details, theoretically [4, 5] and experimentally [6].
These studies reveal a rich interplay between geometrical
rays and polarized waves (hence our term conical diffraction).
Hamilton considered a biaxial transparent crystal without
optical activity. Obvious extensions are to crystals that are
optically active and absorbing. We can expect different physics
in these cases, because each extension radically changes the
mathematical structure of the spectral problem underlying
crystal optics [7–9]: chirality changes the dielectric matrix
from real symmetric to complex Hermitian, and absorption
destroys hermiticity [10].

Here we consider the first extension, by giving a detailed
theory of optical beams transmitted by transparent optically
active birefringent crystals. The aim is to describe the structure
of the light field in the space beyond the crystal, including its
virtual extension backwards within and in front of the crystal
(which can be lensed onto an observation screen [6]). The
surprising outcome is that the field is dominated by a bright
caustic surface formed by rotating a cusped curve about the
symmetry axis—a ‘spun cusp’; the spun cusp is threaded by
an axial focal line. This contrasts sharply with the non-chiral
case, where the principal features are two bright rings separated
by the Poggendorff dark ring [11, 12], which is an ‘anti-
caustic’ [5].

Previous studies of chiral conical diffraction have missed
the dominant features. Early theories [13, 14] were largely
geometrical, concentrating on the details of the wave surface
and on the azimuthal polarization pattern. Experiments
have been performed [15] on α-iodic acid, supported by an
approximate theoretical analysis, studying the field at the exit
face of the crystal. Definitive formulation of the theory was
achieved only recently by Belsky and Stepanov [16], in terms
of three diffraction integrals. It is the rich physical content of
this theory that we explore here.

The most fundamental procedure is to develop the theory
starting from Maxwell’s equations, but we choose a simpler
route, incorporating from the start the fact that in all cases
known to us the deviations from isotropy are small, so that
conical diffraction phenomena involve small angles and can be
treated paraxially.

In section 2 we describe the paraxial plane waves
associated with the two sheets of the wave surface. Application
of Hamilton’s principle to the phases of these waves (section 3)
generates the rays of geometrical optics and the associated light
intensity. Section 4 is the formulation of the exact paraxial
diffraction theory, based on a 2 × 2 matrix evolution operator
for the action of the crystal on the transverse electric field
of the light, regarded as a superposition of plane waves; the
result is the same theory as that obtained in a different way by
Belsky and Stepanov [16]. Two special cases (section 5) are
the pattern in the focal image plane of the incident beam, and
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the field on the symmetry axis; in the latter case, the integrals
can be evaluated exactly. When the birefringence and optical
activity are large, the geometrical field is decorated by a rich
interference structure, that can be described in detail (section 6)
with explicit and accurate asymptotic approximations for the
integrals.

Birefringence is determined by the three principal
refractive indices (square roots of principal dielectric
constants)

n1 < n2 < n3. (1.1)

Acting alone, birefringence would generate conical refraction
inside the crystal, with cone semi-angle

A = 1

n2

√
(n2 − n1)(n3 − n2). (1.2)

The value of A is typically a few degrees (0.93◦ for
aragonite, 1.0◦ for the monoclinic double tungstate crystal
KGd(WO4)2 [6], and 6.9◦ for naphlalene [17]). If l is the
thickness of the crystal, the cone refracts out of the crystal to
become a cylinder with radius Al , typically a few millimetres.

Optical activity is specified by the rotation angle γ of a
linearly polarized beam travelling along an optic axis of the
crystal. The theory to follow is the same whether the optical
activity arises intrinsically, that is from microscopic chirality,
or is induced by a magnetic field (Faraday effect). Typical
values of γ for a 25 mm thick crystal are 2.7π for quartz,
10.3π for α-iodic acid [15], and about 1.1π for the Faraday
effect with a field of 1 T in terbium gallium garnet.

The incident beam is specified by its widthw, which could
represent the radius of an illuminated pinhole or the radius of
the waist of a focused Gaussian beam. We will formulate the
theory for a general beam profile, and use a Gaussian profile
for explicit calculations.

2. Paraxial plane waves

Let the position in the space beyond the crystal be denoted
{R, z}, where R represents the transverse position in an
observation plane, and z is the distance of the observation
plane, measured along the beam direction from an origin at
the sharpest focus of the incident beam (for example, pinhole
or Gaussian beam waist).

For monochromatic light with vacuum wavenumber k0,
the two plane waves with transverse wavevector components
K can be written

ψ± = exp
{

i
(

K · R + z
√

k2± − K 2
)}
, (2.1)

where the wavenumber in the crystal is given, in terms of the
two refractive indices n±(K) corresponding to wave direction
K, by

k± = k0n±(K). (2.2)

The following dimensionless variables will be convenient:

ρ = {ξ, η} = ρ{cosφ, sinφ} ≡ R
w
, κ ≡ wK,

ρ0 ≡ Al

w
, ζ ≡ l + (z − l)n2

n2k0w2
.

(2.3)

ρ is the dimensionless transverse position, measured in units
of the beam width, and κ is the corresponding transverse
wavenumber. With this choice of units, the amplitude of
the plane-wave superposition comprising an incident Gaussian
beam is particularly simple:

a(κ) = exp(− 1
2κ

2). (2.4)

ζ is a dimensionless distance, conveniently measured (as
will become apparent) from the plane where the focus of the
incident beam would be imaged inside the crystal if this were
isotropic with index n2; this ‘focal image plane’ (section 5.1)
is where biaxiality and optical activity generate the sharpest
structures in the image (in the pure biaxial case, these are the
sharpest Poggendorff rings [5, 6]).

ρ0 is the dimensionless biaxiality parameter, which
together with the chirality parameter γ specifies the crystal.
Both parameters can be regarded as phases: γ is the phase
associated with chirality, accumulated in the crystal by a
circularly polarized wave travelling along the optic axis, and
ρ0 is the phase difference due to birefringence, accumulated
by each of the two orthogonal plane eigenwaves travelling in
directions making a typical angle 1/k0w with the z axis in the
superposition comprising the incident beam.

With these variables, the direction-dependent refractive
indices can be written

n±(K) = n2(1 +�n±(κ)), (2.5)

where phases associated with the refractive index differences
�n± are [7, 8, 18]

k0n2l�n±(κ) = ±
√
κ2ρ2

0 + γ 2. (2.6)

For γ = 0 this describes the double cone, centred on the
‘diabolical point’ at the optic axis κ = 0, where the two sheets
are connected. For nonzero γ , the sheets are separated.

Extracting the unimportant direction-independent phase
factor, the plane waves outside the crystal now become

ψ± = exp{ik0(ln2 + (z − l))} exp{i�±(κ)}, (2.7)

involving the following direction-dependent phases, that will
be important in what follows (and in which it is convenient to
emphasize only the κ dependence):

�±(κ) = κ · ρ − 1
2κ

2ζ ∓
√
κ2ρ2

0 + γ 2. (2.8)

3. Geometrical optics

Hamilton’s principle determines the direction(s) κ of the ray(s)
through the point ρ, ζ by the requirement that �±(κ) be
stationary:

∇κ�±(κ) = 0. (3.1)

This gives the condition

ρ = ρ±(κ) = κ

(
ζ ± ρ2

0√
ρ2

0κ
2 + γ 2

)
, (3.2)

which after squaring to eliminate the ± signs leads to

(ρ − κζ )2(ρ2
0κ

2 + γ 2)− κ2ρ4
0 = 0, (3.3)
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Figure 1. Geometrical optics: spun cusp, axial focal line, numbers of
rays, and graphs of (3.2) for (a) ρ− (κ) outside the caustic, (b) ρ+ (κ)
everywhere, (c) ρ− (κ) inside the caustic.

a quartic equation whose real solutions (labelled by n) give the
contributing wavevectors

κ = κn(ρ, ζ )
ρ

ρ
. (3.4)

The intensity of the geometrical-optics field is determined
by the Jacobian determinant of the transformation from κ to the
field point ρ in the observation plane at distance ζ , weighted
by the amplitude a(κ) in the incident beam. The Jacobian is

det

(
dρ±
dκ

)
=

(
ζ ± ρ2

0√
ρ2

0κ
2 + γ 2

)(
ζ ± ρ2

0γ
2

(ρ2
0κ

2 + γ 2)3/2

)

= ρ

κ

(
ζ + γ 2(ρ/κ − ζ )3

ρ4
0

)
, (3.5)

generating the intensity

I (ρ, ζ ) = 1

2

∑

n

{
|a(κ)|2

∣∣∣
∣det

(
dρ±
dκ

)∣∣∣
∣

−1}

κ=κn (ρ,ζ )

= 1

2ρ

∑

n

{
κ|a(κ)|2

(
ζ + γ 2(ρ/κ − ζ )3

ρ4
0

)−1}

κ=κn (ρ,ζ )

.

(3.6)

As with any field of rays, the most important places are
the caustics, where the Jacobian vanishes and the intensity
diverges. This is the locus of multiple roots of the ray
equations (3.2) or (3.3). Vanishing of (3.5) together with (3.2),
leads to the two types of singularity: an axial focal line

ρ = 0, ζ �
ρ2

0

γ
≡ ζcusp, (3.7)

within, and ending at the cusp of, a circularly symmetric
caustic surface—the spun cusp—whose equation is

(
ρ

ρ0

)2/3

+
(
ζ

ζcusp

)2/3

= 1. (3.8)

Figure 1 illustrates the caustic and the associated ray
equations.

We emphasize that the above analysis describes the
caustic pattern in the light emerging from the crystal (and,

as mentioned already, the corresponding virtual field obtained
by continuation). Inside the crystal, the rays have a different
structure: a conical caustic if l/k0n2w

2 > ζcusp, and no caustic
if l/k0n2w

2 < ζcusp (this internal caustic structure is implicit in
the form of the wave surface, discussed in detail by Voigt [13]).

4. Diffraction

The refractive indices (2.6) are eigenvalues of the 2×2 complex
Hermitian matrix, acting on the transverse electric D vector,
that generates the eigenpolarizations, and corresponding to the
exponential involving �±(κ) in (2.7) is the 2 × 2 unitary
evolution operator that transforms an arbitrary plane wave. It
is convenient to write this as

U(κ) = exp(−iF(κ)) (4.1)

where

F(κ) = 1

2
κ2ζ1 + ρ0κ

(
cosφκ sinφκ

sinφκ −cosφκ

)
+ γ

(
0 −i
i 0

)
.

(4.2)
It can be confirmed that the eigenvalues of F(κ) are �±(κ) −
κ ·ρ, and the eigenvectors are the polarizations of the two plane
waves travelling in direction κ in the presence of biaxiality and
optical activity, namely

d±(κ) = i

√
1 ±


2

(
cos 1

2φκ

sin 1
2φκ

)
∓

√
1 ∓


2

(
sin 1

2φκ

− cos 1
2φκ

)
,

(4.3)
where


 ≡ (1 + (γ /ρ0κ)
2)−1/2. (4.4)

For nonzero γ , F(κ) is a complex Hermitian matrix, so
its degeneracies have codimension 3 and so are absent in the
two-dimensional space of wave directions κ ; this explains the
separation of wave surfaces (2.6). When γ = 0, F(κ) is a
real symmetric matrix, so its degeneracies have codimension
2, corresponding to the optic axis at the diabolical point κ = 0.
The eigenvectors (4.3) are multivalued functions of κ , but of
course the electric field D now to be derived is single valued.

Writing F(κ) compactly in terms of Pauli spin matrices,
i.e.,

F(κ) = 1
2κ

2ζ1 + V(κ) · S, (4.5)

where the vector V and the vector operator S are

V(κ) = {ρ0κ cosφκ , ρ0κ sinφκ , γ }, S = {σ 3, σ 1, σ 2},
(4.6)

brings the evolution operator to the convenient form

U(κ) = exp
(− 1

2 iκ2ζ
)

×
[
(cos |V(κ)|)1 − i

sin |V(κ)|
|V(κ)| S · V(κ)

]
. (4.7)

U operates on the incident beam, expressed as a
superposition of plane waves as

D0 = 1

2π

∫ ∫
dκ exp(iκ · ρ)a(κ), (4.8)

where a(κ) is the polarization vector of the Fourier component
κ , in the most general case where the polarization can vary
across the beam. Then the wave outside the crystal is

D = 1

2π

∫ ∫
dκ exp(iκ ·ρ)U(κ)a(κ). (4.9)
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To explore the field in more detail, we specialize to
the important case where the incident beam has uniform
polarization d0 and is circularly symmetric:

a(κ) = a(κ)d0, (4.10)

where, for example a(κ) for a Gaussian beam is given by (2.4).
Thus the incident beam profile is

D0 =
∫ ∞

0
dκ κ J0(κρ)a(κ)d0. (4.11)

Then elementary manipulations lead to the explicit formulae

D =
[

B01 + B1

(
cosφ sinφ
sinφ −cosφ

)
+ B2

(
0 −i
i 0

)]
d0,

(4.12)
involving the diffraction integrals

B0(ρ, ζ ;ρ0, γ ) =
∫ ∞

0
dκ κa(κ)

× exp
(− 1

2 iκ2ζ
)
J0(κρ) cos

√
κ2ρ2

0 + γ 2

B1(ρ, ζ ;ρ0, γ ) = ρ0

∫ ∞

0
dκ κ2 a(κ)

√
κ2ρ2

0 + γ 2
exp

(
−1

2
iκ2ζ

)

× J1(κρ) sin
√
κ2ρ2

0 + γ 2 = ρ0

γ

∂2

∂ρ∂γ
B0

B2(ρ, ζ ;ρ0, γ ) = −iγ
∫ ∞

0
dκκ

a(κ)
√
κ2ρ2

0 + γ 2
exp

(
−1

2
iκ2ζ

)

× J0(κρ) sin
√
κ2ρ2

0 + γ 2 = i
∂

∂γ
B0.

(4.13)

These expressions are equivalent to those of Belsky and
Stepanov [16], who calculate a picture corresponding to linear
incident polarization d0. Here we will not emphasize the
polarization pattern, whose implications we have explored
elsewhere [19] and which has been observed [15]. Instead,
we concentrate on the detailed spatial structure of the field.
Therefore it will suffice to give here the wave intensity
for unpolarized light, obtained by adding D∗.D for any two
orthogonal polarizations d0:

I (ρ, ζ ;ρ0, γ ) = |B0(ρ, ζ ;ρ0, γ )|2
+ |B1(ρ, ζ ;ρ0, γ )|2 + |B2(ρ, ζ ;ρ0, γ )|2. (4.14)

For the Gaussian beams (2.4) commonly employed
nowadays, the ‘complex-source’ trick [20] enables the integrals
Bm to be written in terms of functions of three variables rather
than four. The trick is based on the substitution

ζ → ζ − i, (4.15)

and leads to

B0(ρ, ζ ;ρ0, γ ) = C0(u, u0, γ )

1 + iζ

B1(ρ, ζ ;ρ0, γ ) = C1(u, u0, γ )

1 + iζ

B2(ρ, ζ ;ρ0, γ ) = C2(u, u0, γ )

1 + iζ
,

(4.16)

where, in terms of the variables

u ≡ ρ√
1 + iζ

, u0 ≡ ρ0√
1 + iζ

, (4.17)

the diffraction integrals Cm are

C0(u, u0, γ ) =
∫ ∞

0
ds s J0(su)

× exp
(− 1

2 s2
)

cos
√

s2u2
0 + γ 2

C1(u, u0, γ ) = u0

∫ ∞

0
ds s2 J1(su)

√
s2u2

0 + γ 2

× exp
(− 1

2 s2) sin
√

s2u2
0 + γ 2 = u0

γ

∂2

∂u∂γ
C0

C2(u, u0, γ ) = −iγ
∫ ∞

0
ds s

J0(su)
√

s2u2
0 + γ 2

× exp
(− 1

2 s2
)

sin
√

s2u2
0 + γ 2 = i

∂

∂γ
C0.

(4.18)

These integrals converge and can be evaluated numeri-
cally. Figure 2 shows intensity patterns in the ρ, ζ plane, for
several values of ρ0 and γ . The ray structure described in sec-
tion 3, with the cusped caustic containing an axial focal line,
is evident, but in this paraxially exact theory the geometrical
features are decorated with interference.

5. Special cases

5.1. Focal image plane (ζ = 0)

In this case the variables u and u0 are real, and the Cm

integrals (4.18) are equal to the Bm integrals (4.13). The
integrals cannot be evaluated in closed form, but are easily
computed. Figure 3 shows the light intensity as a function of ρ
for different values of optical activity γ and a fixed large value
of ρ0. For γ 	 ρ0, the focal image shows the two sharp bright
rings, separated by the Poggendorff dark ring, characteristic of
conical diffraction in the absence of chirality. As γ increases,
many additional rings develop, and the pattern spreads towards
smaller ρ, associated with the approach towards the focal
image plane of the cusp at ζcusp = ρ2

0/γ .

5.2. On the axis (ρ = 0)

Here the argument of the Bessel functions in the integrals Cm

vanishes, and the transformation

s ≡
√

2t2 − γ 2

u2
0

, (5.1)

from s to a new integration variable t , leads easily to the
following expressions for the Cm in terms of complementary
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Figure 2. Density plots of intensity for unpolarized incident light, computed from integrals in section 4, for (a) ρ0 = γ = 50, (b) ρ0 = 20,
γ = 40, (c) ρ0 = γ = 20, (d) ρ0 = 20, γ = 10.

error functions:

C0(0, u0, γ ) = cos γ + i
u0

√
π

2
√

2
exp

(
γ 2

2u2
0

− u2
0

2

)

×
[

erfc

(
γ /u0 − iu0√

2

)
− erfc

(
γ /u0 + iu0√

2

)]

C1(0, u0, γ ) = 0

C2(0, u0, γ ) = − γ
√
π

2u0

√
2

exp

(
γ 2

2u2
0

− u2
0

2

)

×
[

erfc

(
γ /u0 − iu0√

2

)
− erfc

(
γ /u0 + iu0√

2

)]
.

(5.2)

Figure 4 shows the corresponding intensities, calculated
using (4.14), (4.16) and (4.17). When ρ0 
 1 and γ 
 1,
there is a maximum near ζ/ζcusp = 1. As γ decreases,
keeping ρ0 large, the maximum moves to smaller ζ , until when
γ /ρ0 	 1 it approaches the maximum for γ = 0, namely [6]
ζ ∼ √

2/3ρ0 ≡ ζmax, i.e., ζ/ζcusp ∼ √
2/3γ /ρ0.

This behaviour can be understood in terms of the
asymptotics of the error functions. Labelling the arguments of
erfc in (5.2) as A− and A+, the two erfc terms correspond to a
single integral over exp(−u2) in the complex plane, from A− to
A+. For ζ 
 1, A+ is asymptotically close to the line arg u =
π/4 and its contribution decays as 1/ζ and can be neglected (it
corresponds to the single ray labelled + in (3.2)). When 0 	
ζ < ζcusp, then, as in the non-chiral case [5], the axial intensity
asymptotics is dominated (apparently paradoxically [21]) by
the subdominant exponential in (5.2). This comes from the

saddle point u = 0 of the integrand, and contributes the
main axial spike, with maximum at ζmax. The dominant
exponential comes from the endpoint A−. As ζ approaches
ζcusp, this contribution diverges as 1/(ζcusp − ζ ). Then A−
crosses a Stokes line [22] which eliminates the saddle-point
contribution, after which the intensity decays linearly. If γ >
ρ0

√
(3/2), i.e., ζmax > ζcusp, the subdominant exponential

never reaches its maximum.

6. Asymptotics

6.1. Stationary phase

For large values of ρ0 and/or γ , the integrands in Bm

(equations (4.13)) oscillate rapidly, and so the integrals can
be approximated by the method of stationary phase. The real
contributing points κn (solutions of (3.3)) correspond to the
rays (3.4) of geometrical optics: four inside the spun cusp, and
two outside. These give not only the amplitude associated with
each ray (square root of the intensity in (3.6), generated by
the Jacobian (3.5)), but also the interferences between them.
Outside the spun cusp, there are two complex solutions of the
ray equation (3.3), of which the one with the positive value of
Im�(κ) represents an exponentially small evanescent wave—
the ghostly remnant of the two rays that have coalesced on the
caustic.

The simplest way to determine these contributions is to
consider a point ρ on the x axis, and work not with (4.13)
but with the two-dimensional integrals (4.9), approximating
the integral over κy first and then that over κx . This
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Figure 3. (a) Exact intensity in the focal plane (section 5.1) for
ρ0 = 100; dashed curve: γ = 0 (intensity reduced by a factor 6); thin
curve: γ = 100; thick curve: γ = 200. (b) 3D plot of intensity as a
function of ρ and γ , for ρ0 = 25.

procedure allows negative stationary values of κx and enables
unambiguous determination of the phases ±π/4 associated
with each integration, and leads to

Bm(ρ, ζ ;ρ0, γ ) ≈ 1

2
√
ρ

∑

n

Fm(κn)a(κn)√|D(κn)|
× exp{i(δ(κn)+�(κn))}

D(κ) = −ζ − γ 2

ρ4
0

(
ρ

κ
− ζ

)3

,

δ(κ) = 1
2 (arg κ − arg D(κ))

�(κ) = κρ − 1

2
κ2ζ − ρ2

0

(ρ/κ − ζ )

F0(κ) = 1, F1(κ) = κ

ρ0

(
ρ

κ
− ζ

)

F2(κ) = γ

ρ2
0

(
ρ

κ
− ζ

)
.

(6.1)

Inside the caustic, the sum over n contains four real-ray
terms. Outside, there are the two real-ray terms, and the one
evanescent-wave term that is present in the region between two
sets of Stokes lines outside the caustic. For fixed ρ0 and γ , the
Stokes lines [22, 23] are the loci in the ρ, ζ plane where the
real part of the phase of the evanescent contribution equals the
(already real) phase of one of the two real rays. For diffraction

10

Figure 4. Intensity on the axis (section 5.2) ρ0 = 100 and γ = 10
(thin curve), γ = 50 (dotted curve), γ = 100 (dashed curve), and
γ = 200 (thick curve).

0
0

Figure 5. As in figure 2(a), calculated by stationary phase
(section 6.1), including the evanescent wave outside the caustic.

decorating the standard cusp [24], the Stokes lines also form
a cusp, wider than the caustic cusp and sprouting from this on
the opposite side. The corresponding analysis in the present
case is given in appendix A.

Figure 5 shows the intensity given by this stationary-phase
method and including the evanescent wave. Comparison with
figure 2(a) shows that all interference features are correctly
reproduced, though of course the approximation diverges on
the cusped caustic and the axial focal line, where two or more
stationary points κn coincide.

6.2. Near the cusp

The most dramatic failure of stationary phase occurs in the
neighbourhood of the cusp point ρ = 0, ζ = ζcusp, where
all four stationary points coincide. A simplification is possible
in this region, by mapping the integrals Bm onto the simplest
function with the same symmetry and the same deportment
of stationary points. This is the ‘spun cusp diffraction
catastrophe’:
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Figure 6. (a) Intensity near the cusp for ρ0 = γ = 100, computed numerically from the integrals in section 4; (b) as (a), computed using the
spun cusp approximation of section 4.

J (x, y) =
∫ ∞

0
dt t exp{−i(t4 + xt2)}J0(yt), (6.2)

which can be regarded as a modification, incorporating circular
symmetry, of the familiar Pearcey integral [25, 26] that
describes diffraction associated with planar cusps. Numerical
approximation of (6.2) is facilitated by choosing a contour
receding to t = ∞ exp(−iπ/8) (Kirk et al [27] call J the
Bessoid integral).

The mapping is a simplification because it approximates
three functions of four variables (ρ, ζ, ρ0, γ ) in terms of an
integral that depends only on two.

The mapping is most simply derived by replacing the
variable κ in the Bm integrals by t according to

κ(t) = t

(
8γ 2

ρ2
0(ζ − i)

)1/4
√

1 + t2ρ0

γ
√

2(ζ − i)
. (6.3)

For B0 this gives, exactly,

B0(ρ, ζ ;ρ0, γ ) =
∫ ∞

0
dt t

(
γ

ρ0

√
8

ζ − i
+ t2 4

ζ − i

)

× exp

{
−i

(
t4 + t2 γ

ρ0

√
2(ζ − i)

)}

× cos

(
γ + ρ0t2

√
2

ζ − i

)
J0(κ(t)ρ). (6.4)

This can be expressed in terms of J (x, y) simply by
approximating the function κ(t) in the Bessel function by its
linear part, corresponding to replacing the outer square root
in (6.3) by unity. Then with the definitions

x± ≡ √
2

(
γ

√
ζ − i

ρ0
∓ ρ0√

ζ − i

)
,

y ≡ ρ

(
8γ 2

ρ2
0(ζ − i)

)1/4

,

(6.5)

the diffraction integrals become

B0(ρ, ζ ;ρ0, γ ) ≈ γ

ρ0

√
2

ζ − i

×
(

1 + i
ρ0

γ

√
2

ζ − i

∂

∂x

)
[exp(iγ )J (x+, y)

+ exp(−iγ )J (x−, y)]

B1(ρ, ζ ;ρ0, γ ) ≈ i
25/4

(ζ − i)3/4

√
γ

ρ0

∂

∂y
[exp(iγ )J (x+, y)

− exp(−iγ )J (x−, y)]

B2(ρ, ζ ;ρ0, γ ) ≈ − γ

ρ0

√
2

(ζ − i)
[exp(iγ )J (x+, y)

− exp(−iγ )J (x−, y)].

(6.6)

At the cusp point itself, exact evaluation of J (0, 0) and
∂x J (0, 0) and substitution into (6.6) leads, for γ 
 1 (i.e.,
when the cusp is fully developed) to the intensity

I (ρ = 0, ζ = ζcusp) ≈ πγ 3

4ρ4
0

. (6.7)

The extraordinary accuracy of the spun cusp approxima-
tion (6.6) in capturing the wave near the caustic and the axial
focal line is illustrated in figure 6. The only errors arise for
small ζ , where the approximation decorates not the true ge-
ometrical caustic (3.8) but the following approximation to it,
that gets more accurate as ζ approaches ζcusp:

ρ

ρ0
≈

√
ζcusp

ζ

[
2

3

(
1 − ζ

ζcusp

)]3/2

. (6.8)

It is probably possible to fix this error by a mapping more
sophisticated than (6.3), but this is unnecessary because the
approximation in the following section deals with the caustic,
including the region far below ζcusp where (6.6) begins to fail.

6.3. Near the caustic

For ζ < ζcusp and away from the axial focal line (i.e., ρ not
small), the stationary phase approximation fails in the simplest
way, by two of the four real stationary points coinciding
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Figure 7. Full curves: uniform Airy approximation for intensity I
(section 6.3 and appendix B) for (a) ρ0 = γ = 20, ζ = ζcusp/2 = 10,
(b) ρ0 = γ = 50, ζ = ζcusp/2 = 25, (c) ρ0 = γ = 100,
ζ = ζcusp/2 = 50; dots: exact computations (section 4); thin curves:
stationary phase approximation (section 6.1), including evanescent
waves as well as the real rays of geometrical optics.

on the caustic. The standard remedy is the technique of
uniform approximation [28, 29], in which the integrand is
matched to a cubic exponential capturing the topology of
stationary-point coalescence, leading to an approximation in
terms of the Airy function Ai(x) [30] and its derivative. Rather
than repeating the usual derivation, we give in appendix B
a simplified argument demonstrating the inevitability of the
formulae in a form that can be applied immediately, using only
geometrical quantities appearing in the bare stationary phase
approximation.

Figure 7 shows how accurate the uniform approximation
is, when applied to the two coalescing stationary phase
contributions to (6.1) according to the recipe (A.13), even when
ρ0 and γ are not large.

7. Concluding remarks

The richness of the diffraction pattern outside a chiral
biaxial crystal is surprising. Its dominant geometric features

(section 3), emerging clearly from the exact integrals
(section 4) when the dimensionless parameters ρ0 and γ

are large, are the spun cusp caustic and the axial focal
line threading it. Describing the local details requires both
elementary and sophisticated asymptotics. Away from the
caustic, the simple method of stationary phase (section 6.1)
endows the geometrical rays with phase, explaining much
of the interference, as well as the evanescent waves outside
(appendix A). On the axis, the asymptotics involves error
functions (section 5.2); across the caustic, matching to Airy
functions is required (section 6.3); and the region near the spun
cusp point requires a rotationally symmetric modification of
the Pearcey function (section 6.2). In all cases, the philosophy
is the same: to simplify the exact general theory by describing
the local phenomena with functions of fewer variables.

These caustic and interference phenomena, predicted
by theory, have not been observed. In the only detailed
experimental study known to us [15], observations were
restricted to a single plane, namely the exit face of the crystal;
this is close to the focal image plane (in our notation, ζ ∼
1, and the experiment corresponded to parameters ρ0 ∼
γ ∼ 20), so the spun cusp and axial focal line were not
apparent. With this present paper, we hope to stimulate further
experimental study, complementing and extending our recent
detailed comparison of experiment with theory [6] for conical
diffraction in the non-chiral case.

The theory reported here does not exhaust the physics
associated with Hamilton’s remarkable discovery, because we
have still not included anisotropic absorption. This will restore
the degeneracy that chirality eliminated, which will reappear
not as the original double-cone (‘diabolical’) intersection of
wave surfaces at the optic axis but as a pair of branch-points—
the ‘singular axes’ [7]. We are exploring the influence of this
radically different mathematical structure on an incident light
beam, and will report the results later. A further extension,
especially appropriate to thick crystals, involves nonlinearity,
and considerable progress has been made in formulating the
theory for this case [31].
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Appendix A. Stokes lines

With the new coordinates u, v and the new variable τ , defined
by

u ≡ ρ

ρ0
, v ≡ ζ

ζcusp
, τ ≡ u − vρ0

γ
κ, (A.1)

the ray equation (3.3) takes the simpler form

(τ − u)2(τ 2 − 1)+ v2τ 2 = 0, (A.2)

the caustic (3.8) becomes

u2/3 + v2/3 = 1, (A.3)
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Figure A.1. (a) Caustic (full) and Stokes lines (dashed), indicating
the number of real and evanescent waves in each region. (b) Exact
Stokes line (thick) and approximation (A.6) (thin).

and, after removing irrelevant τ -independent constants and
using (A.2), both phases (2.8) can be written in the common
form

�±(κ) ≡ φ(τ ; u) = −1

2
τ 2 − u

τ
. (A.4)

Let the roots of the quartic equation (A.2) be τn(u, v) (n =
1, 2, 3, 4), where n = 1, 2 refer to the two roots that coincide
on the caustic and become complex conjugates outside, and
n = 3, 4 refer to the roots that are real everywhere, and denote
the corresponding phases by φ(τn(u, v), u) = φn(u, v). Then
in the region outside the caustic that we are interested in, that
is u2/3 + v2/3 > 1, φ2 = φ∗

1 and both φ3 and φ4 are real.
The condition for a Stokes line, that the real part of either

of the complex phases equals either of the real ones, can
be written in the following convenient form, free of explicit
stipulations of real parts and without ± signs:
[

1
2(φ1(u, v)+ φ2(u, v))− φ3(u, v)

]

× [ 1
2 (φ1(u, v)+ φ2(u, v))− φ4(u, v)] = 0. (A.5)

Figure A.1(a) shows the full real and complex ray structure
in the ρ, ζ plane, including the Stokes lines numerically
computed from (A.5). We have not been able to find an
explicit analytic expression for the Stokes lines, but an accurate
approximation, illustrated in figure A.1(b), is obtained by
interpolating between the exact Stokes lines near and far from
the cusp:

v2 − a(u − 1)3

1 + a(u − 1)
= 0, where a = 10

27
+ 2

3
√

3
. (A.6)

(This represents just one of the eight branches of the Stokes
lines in figure A.1(a); the others are easily obtained by
changing signs and interchanging u and v.)

Appendix B. Elementary derivation of uniform Airy
approximation

This is a simplified derivation, using physical arguments,
complementing the standard mathematical derivation [28].

Consider a function depending on some variables, that we
do not need to specify, described approximately (for example,
by stationary phase) in a region R by the superposition of two
exponentials (‘waves’), that is

fstatonary phase = a1 exp{i(φ1 + 1
4π)} + a2 exp{i(φ2 − 1

4π)},
(A.7)

where φ1 and φ2 are real, with the convention

φ2 > φ1 (A.8)

(so that in the stationary phase approximation φ2 corresponds
to a maximum and φ1 to a minimum, justifying the signs of the
phases π/4).

In the situation envisaged here, φ1 approaches φ2

near the boundary (‘caustic’) of R, on which their values
coincide and the amplitudes a1 and a2 diverge, so that the
approximation (A.7) fails. Outside R, φ1 and φ2 are complex
conjugates of each other, and f involves the exponential whose
Imφ is larger (‘evanescent wave’).

Now we argue that a better approximation, curing the
divergence on the boundary of R, and therefore uniformly valid
near and far from the boundary, is obtained by representing f
as a superposition of Ai and its derivative Ai′, as follows:

funiform = exp{ 1
2 i(φ1 + φ2)}[PAi(−x)+ QAi′(−x)], (A.9)

involving the unknown quantities P and Q and the argument

x = ( 3
4(φ2 − φ1))

2/3. (A.10)

Only this form is capable of reproducing (A.7) far from the
boundary of R, via the Airy asymptotic formulae

Ai(−x) ≈ sin( 2
3 x3/2 + 1

4π)

x1/4
√
π

,

Ai′(−x) ≈ x1/4 cos( 2
3 x3/2 + 1

4π)√
π

.

(A.11)

The requirement that (A.9) reproduces (A.7) exactly in the
geometrical-optics regime fixes P and Q uniquely as

P = x1/4√π(a1 + a2), Q = i

x1/4

√
π(a1 − a2).

(A.12)
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Thus the uniform approximation, superseding (A.7), is

funiform = √
π exp{ 1

2 i(φ1 + φ2)}
×

[
x1/4(a1 + a2)Ai(−x)+ i

x1/4
(a1 − a2)Ai′(−x)

]
.

(A.13)

We note that this formula involves only quantities
appearing in the less accurate version (A.7). Moreover, (A.13)
also reproduces the single evanescent-wave contribution
outside R, where φ1 − φ2 is imaginary, when (A.10) is
interpreted to make the Airy argument −x positive.
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