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Abstract
With dichroism (anisotropic absorption), the dielectric tensor of a crystal
becomes non-Hermitian, and each optic axis (diabolical point) splits into two
singular axes (branch-point degeneracies). For a Gaussian beam incident on a
dichroic crystal in a direction near the singular axes, the polarized light
beyond the crystal is given by the same diffraction integrals as for a
transparent crystal illuminated along the optic axis, but with the variables
complexified. Unexpectedly, the effects of absorption and beam direction can
be described with a single parameter. The theory predicts several new types
of interference, visible in logarithmic intensity plots: between the
nonorthogonally polarized geometrical rays, and between these rays and
waves diffracted by the singular axes. The phenomena are analysed in terms
of saddle-point, end-point and uniform asymptotics of the diffraction
integrals.
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1. Introduction

Our main purpose here is to incorporate dichroism (anisotropic
absorption) into the theory of conical diffraction [1, 2], that
is, conical refraction and the associated wave effects. This
will extend the physical theory of conical diffraction that
was begun by Hamilton in 1832 [3, 4]. Interest in the
phenomenon has revived, partly as a result of the bicentenary
in 2005 of Hamilton’s birth, and there have been several recent
developments. These include: definitive formulation of the
theory for transparent biaxial crystals, greatly simplified by
the realistic assumption of paraxiality [1, 5]; understanding
the phenomena implied by the theory [6–8]; experimental
demonstration of the theoretical predictions [9]; extension of
the theory to include chirality (optical activity) [10, 11]; and
extension of the theory to include nonlinearity [12].

Conical refraction is associated with degeneracy of the
matrix generating the wave surface [13] (polar plot of the
two refractive indices as a function of directions of plane
waves). For transparent biaxial non-chiral crystals, this matrix
is real symmetric, and its degeneracies take the form of conical
intersections—‘diabolical points’ [1]—corresponding to the
optic axes. Conical refraction is the physical manifestation of
this degeneracy: a narrow beam directed along an optic axis

splits into a hollow cone inside the crystal, and refracts into a
hollow cylinder beyond [13, 14].

With absorption (but without chirality [10]), the matrix is
complex symmetric, that is, non-Hermitian. This changes the
degeneracy structure radically [15]: each conical intersection
splits into two branch-points, which in optics are called the
singular axes [14, 16–20]. We will study beam propagation
associated with these singular axes. The effect of dichroism
will be quantified (section 2) by a 2-vector parameter δ.

The splitting of axes raises a problem concerning the
direction of the incident beam. Should this be aimed at one
of the singular axes? If so, which? Or half-way between
the axes? To resolve this difficulty, we allow variation of the
beam direction, specified by a second 2-vector parameter κ0,
representing the transverse wavevector. Of course κ0 could
have been incorporated into the theory of ordinary conical
diffraction, where [21] it describes the transition from conical
to double refraction.

In the pioneering observations [22–24], the incident
beam profile was restricted by a pinhole, but the theory is
considerably simplified by studying conical diffraction for
Gaussian incident beams, for which the diffraction detail is
different [5, 8]. Moreover, Gaussian beams correspond to
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current experiments with lasers [9, 25–27]. Therefore we will
develop the theory for Gaussian beams.

With Gaussian beams, our study (section 2) reveals an
unanticipated and remarkable fact: the effect of changing
the direction κ0 of the incident beam is exactly the same as
introducing dichroism δ; moreover, the two vector parameters
δ and κ0 can be replaced by a single scalar parameter u.
The resulting theory is identical with that for ordinary conical
diffraction by a transparent crystal, except that the variables
in the theory are complex. The reason why double refraction
in a transparent crystal can mimic the effect of absorption is
connected with the fact that a Gaussian beam can be regarded
as a bundle of complex rays [28].

Previous theory [1, 5] showed that conical diffraction
by a transparent crystal is determined by a single parameter
ρ0, defined as the radius of the geometrical cylinder beyond
the crystal divided by the waist width of the incident beam.
Therefore the complexified situation considered here, of
biaxial birefringence plus absorption, depends on the two
parameters ρ0 and u. Interesting and subtle interference
features in the light beyond the crystal occur in the regime
ρ0 � 1, corresponding to thick crystals. Isolating and
understanding these features in detail requires several levels of
asymptotic approximation to the theory (section 3).

We will display a number of simulated images and
graphs of the light intensity. The intensities can exhibit
exponentially large variations across the images. As a result,
important interference fringes are concealed in direct plots of
the intensity, and can be discerned only on logarithmic plots.

Although the effects of anisotropic absorption are
dramatic, its cause—an imaginary part in the dielectric
tensor—is likely to be small in practice. For completeness, we
also consider (section 4) the opposite extreme, where all the
anisotropy is in the dichroism, and the refractive properties of
the crystal are isotropic.

For the constitutive equation of the crystal, assumed
nonmagnetic and optically inactive, we choose the inverse
complex dielectric tensor

η = ε0ε
−1 =

(
η1 0 0
0 η2 0
0 0 η3

)
. (1.1)

The components of Re η represent the principal refractive
indices:

Re η1 = 1

n2
1

> Re η2 = 1

n2
2

> Re η3 = 1

n2
3

. (1.2)

The optic axes are the propagation directions for which the
2 × 2 transverse part of Re η is degenerate. The singular axes
are the propagation directions for which the 2 × 2 transverse
part of η itself is degenerate.

The components of Im η represent the anisotropic
absorption which is our main concern here. There is slight
lack of generality in (1.1), which assumes that the principal
axes of Re η and Im η coincide; this is true for orthorhombic
crystals but not for crystals with lower symmetry. The
assumption is not a serious restriction, because the phenomena
to be described require only that the optic axes, generated by
Re η, and the corresponding directions generated by Im η, are
distinct, which is true in general for (1.1).

With polar coordinates θ , φ in direction space, one pair
of singular axes is conveniently given [20] in stereographic
coordinates Z by

Z = tan
1

2
θ exp(iφ) =

√
η1 − η3 − √

η2 − η3√
η1 − η2

,

and Z∗ = tan 1
2θ exp(−iφ).

(1.3)

For a transparent crystal (Im η = 0), the optic axis lies in the
plane φ = 0, with polar angle [1]

tan θ =
√

R12

R23
, (1.4)

where

Ri j ≡ Re(ηi − η j ) = 1

n2
i

− 1

n2
j

. (1.5)

Absorption splits this into two singular axes with azimuth
angles ±φ, the angular splitting being

� = 2φ sin θ = 4
1+|Z |2 Im Z

= R23 Im η1 + R31 Im η2 + R12 Im η3

R13
√

R12 R23
. (1.6)

2. Non-Hermitian paraxial theory

For later comparison with the dichroic case, it is helpful first
to review conical diffraction for transparent crystals [1, 9],
referring to the principal features by the names of their
discoverers. In the interesting regime ρ0 � 1, the typical
image in planes beyond the crystal, when viewed under
low resolution, consists of a Hamilton [4] bright ring: the
geometrical image of the incident beam. Closer examination
reveals that the ring is really two thin rings, separated by
the Poggendorff [29] dark ring: an anti-caustic. Still-finer
resolution reveals that inside the inner ring are Warnick–
Arnold [6] fringes: interference between a geometrical ray and
a wave diffracted by the diabolical point on the wave surface.
At the centre of the rings, and getting more prominent further
from the screen, is a bright Raman [24] spot, decorated with
fringes: an axial caustic.

It is also convenient to recapitulate the paraxial
theory [1] that explains these conical diffraction phenomena for
transparent crystals. Geometrically, the light inside the crystal
forms a cone of half-angle

A = 1

2
arctan

(
n2

2

√
R12 R23

)
≈

√
(n2 − n1)(n3 − n2)

n2
. (2.1)

Outside, the cone refracts into a cylinder of radius Al , where l
is the thickness of the crystal. The parameter ρ0 governing the
field outside the crystal is this radius, measured in units of the
beam waist width w:

ρ0 ≡ Al

w
. (2.2)

Transverse position in the field, also measured in units of
w, is specified by

ρ ′ = {ξ ′, η′}. (2.3)
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Longitudinal position in the field is measured in units of the
Fresnel length of the beam, by

ζ ≡ l + (z − l)n2

n2k0w2
, (2.4)

where z is measured from the beam waist and k0 is the vacuum
wavenumber of the light; thus ζ = 0 corresponds to the ‘focal
image plane’ where the virtual image of the beam waist would
be formed by an isotropic crystal with index n2.

In terms of these quantities, the two-component transverse
electric D vector beyond the crystal, for incident polarization
d0, is given by a superposition of plane waves with transverse
wavevectors κ , measured in units of w−1:

D = 1

2π

∫ ∫
dκa(κ) exp(iκ ·ρ ′)Utransparent(κ)d0. (2.5)

The origin κ = 0 represents plane waves travelling along the
optic axis. Directions κ �= 0 near the optic axis will be treated
paraxially. a(κ) is the Fourier transform of the profile of the
incident beam, and Utransparent is the unitary operator

Utransparent(κ) = exp
{−i

(
1
2κ2ζ + ρ0κ · S

)}
, (2.6)

conveniently written in terms of the Pauli matrices

S = {σ 3, σ 1} =
{(

1 0
0 −1

)
,

(
0 1
1 0

)}
. (2.7)

As previously emphasized [9], the theory based on (2.5)
describes not only the light beyond the crystal but also the
virtual field within and before the crystal, which can easily be
imaged onto a screen.

Dichroism can be incorporated by making the exponent in
the operator in (2.6) non-Hermitian, so U itself is nonunitary:

κ · S ⇒ (κ + iδ) · S. (2.8)

In terms of the splitting � of the singular axes, given by (1.6),

|δ| ≡ δ = 1
2�n2k0w. (2.9)

In writing (2.8), we are ignoring the κ-dependence of δ,
because we treat δ as a (singular) perturbation; alternatively
stated, we assume that the optic axes of absorption (Im η) are
distinct from those of birefringence (Re η).

δ is proportional to the traceless (anisotropic) part of
Im η. To guarantee that the crystal is absorbing rather than
amplifying, we should add a diagonal (isotropic) part to Im η,
sufficiently large to make Tr Im η < 0; we do not write
this explicitly because its only effect on the field beyond
the crystal is multiplication by a z-dependent attenuation
factor. We note the fundamental difference between the
nonunitary modification (2.8), describing absorption, and the
modification [10] required to include chirality (not considered
here), which involves keeping U unitary while adding the
imaginary Pauli matrix σ2.

With (2.8), the matrix in (2.5) becomes

U(κ) = exp
{−i

(
1
2κ2ζ + ρ0(κ + iδ) · S

)}
. (2.10)

The singular axes (degeneracies) occur at directions κd ,
satisfying

(κd + iδ) · (κd + iδ) = 0 ⇒ κd = ±{−δy, δx }. (2.11)

We represent the Gaussian incident beam, in direction κ0, by
its Fourier transform

a(κ) = exp
{− 1

2 (κ − κ0)
2
}
. (2.12)

Thus the field at {ρ ′, ζ } is

D = 1

2π

∫ ∫
dκ exp{−iF(κ)} d0, (2.13)

where the non-Hermitian operator in the exponent is

F(κ) = − 1
2 i(κ −κ0)

2 −κ ·ρ ′ + 1
2κ

2ζ +ρ0(κ + iδ) ·S. (2.14)

We now make several transformations, whose merit will
soon become clear. It is obviously convenient to define the
modified variables

κ̃ ≡ κ + iδ, ζ̃ ≡ ζ − i. (2.15)

We also use the less obvious parameter combination

u ≡ ζδ − κ0 ≡ ueξ , (2.16)

and the transverse coordinate shift and complex scaling

ρ ≡ ρ ′ −δ = {ξ, η}, ρ̃ ≡ ρ+ iueξ ≡
{
ρ̃ cos φ̃, ρ̃ sin φ̃

}
(2.17)

where in (2.16) we have chosen the orientation of the
transverse ξ axis to lie along the direction of u.

After these transformations, the operator (2.14) becomes

F(κ) = F̃(κ̃) = 1
2 κ̃

2ζ̃ − κ̃ · ρ̃ + ρ0κ̃ · S + F0, (2.18)

where

F0 ≡ i
(
δ · ρ + 1

2 (δ2 − κ2
0 )

) + δ · κ0 − 1
2δ2ζ, (2.19)

so that (after a complex shift of integration contour)

D = 1

2π

∫ ∫
dκ̃ exp

{−iF̃(κ̃)
}

d0. (2.20)

Since the operator U involves only 2×2 matrices, it is easy
to evaluate the exponential and perform the integration over the
direction of κ̃ , giving

D = exp {−iF0}
(

B0 + B1 cos φ̃ B1 sin φ̃

B1 sin φ̃ B0 − B1 cos φ̃

)
d0,

(2.21)
involving the fundamental integrals

B0(ρ̃, ζ̃ ;ρ0) =
∫ ∞

0
dκ̃ κ̃ exp

{
− 1

2 iζ̃ κ̃2
}

J0 (κ̃ρ̃) cos(κ̃ρ0)

B1(ρ̃, ζ̃ ;ρ0) =
∫ ∞

0
dκ̃ κ̃ exp

{
− 1

2 iζ̃ κ̃2
}

J1 (κ̃ρ̃) sin(κ̃ρ0).

(2.22)
The number of variables can be reduced from three to two
by rescaling κ̃ , but the forms (2.22) are convenient for later
analysis.

The integrals (2.22) are exactly those in the theory of
conical diffraction without dichroism (i.e. δ = 0), with light
directed along the optic axis (i.e. κ0 = 0). The four new
parameters (two components of each of the vectors δ and
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a b c d

e f g h

3ρ0 3ρ0 4ρ0 4ρ0

Figure 1. Density plots of exact intensity (equations (2.32) and (2.22)) in the ρ = {ξ, η} plane, showing transition between conical (a) and
double ((c), (d)) refraction, for ρ0 = 20, ζ = 6, and: (a) u = 0, (b) u = 1/2, (c) u = 2, (d) u = 5. In (c) and (d) the brighter (right-hand) spots
are saturated, in order to display the fainter spots. (e)–(h) Corresponding plots for the geometrical optics intensity (equations (2.32) and (3.3)).

κ0) are represented by the single parameter u. Moreover,
the form of (2.16) implies the unexpected fact that for any
absorption δ and any observation distance ζ , it is possible
to choose a beam direction κ0 for which u vanishes, so the
conical diffraction pattern is identical, up to a prefactor, to
that for a transparent crystal illuminated along the optic axis.
The prefactor exp{−iF0} in (2.21) simply multiplies the image
intensities |D|2 by the exponential ramp exp{2δ · ρ}; in the
images to be presented later, we will not include this factor.

The only effect of δ and κ0 on the diffraction integrals is
to complexify the radial coordinate, whose length and direction
are given (cf (2.17)) by

ρ̃2 ≡ ρ̃ · ρ̃ = (ξ + iu)2 + η2,

cos φ̃ = ξ + iu

ρ̃
, sin φ̃ = η

ρ̃
.

(2.23)

In the next section, an important role will be played by
the ‘branch-points’ in the ρ plane where the complex length
vanishes, namely

ρ̃2 = 0 ⇒ ρ = ρb± = {0,±u}. (2.24)

Around each of these branch-points, ρ̃ changes sign. Of course
D must be single-valued: in (2.21), B0 (2.22) is single-valued
because J0 is an even function of ρ̃, and the sign change of
B1, arising from the odd function J1, is compensated by sign
changes in cos φ̃ and sin φ̃ (2.23).

For later interpretation in terms of geometrical optics, it is
convenient to define the sum and difference integrals

A+ ≡ B0 + B1, A− ≡ B0 − B1. (2.25)

In terms of these, (2.21) becomes

D = 1
2 exp {−iF0} (A+m+ + A−m−) · d0, (2.26)

where

m+ =
(

1 + cos φ̃ sin φ̃

sin φ̃ 1 − cos φ̃

)
,

m− =
(

1 − cos φ̃ − sin φ̃

− sin φ̃ 1 + cos φ̃

)
.

(2.27)

We note in passing that A± are the coefficients in the
expansion of the electric field in terms of the local eigenvectors
of the operator (2.18):

D = exp {−iF0}
[
A+ (d+ · d0) d+ + A− (d− · d0) d−

]
,

(2.28)
where

d+(ρ̃) =
(

cos 1
2 φ̃

sin 1
2 φ̃

)
, d−(ρ̃) =

(
sin 1

2 φ̃

− cos 1
2 φ̃

)
. (2.29)

In the ρ plane, the eigenvectors are not single-valued. Because
of the factors 1/2, and the sign change of ρ̃, d± acquire, in
a circuit of each branch-point (2.24), the phase factors ±i
familiar around degeneracies (‘exceptional points’) of complex
symmetric matrices [30], making them singularities of index
±1/4 [20].

It is easier to observe not D itself but the light intensity I .
This is

I = D∗ · D = 1
4 exp{2 Im F0}d∗

0 · M · d0, (2.30)

where

M = (A∗
+m†

+ + A∗
−m†

−)(A+m+ + A−m−). (2.31)

This can be calculated without difficulty for any incident
polarization d0. For our later illustrations, however, we will
consider unpolarized light, which is the average of I over
any two orthogonal incident polarizations. A short calculation
gives the simple result

exp {−2 Im F0} Iunpolarized = 1
8 Tr M

= |B0|2 + |B1|2(|cos φ̃|2 + |sin φ̃|2)
= 1

4 [(|A+|2 + |A−|2)(1 + |cos φ̃|2 + |sin φ̃|2)
+ 2 Re A∗

+ A−(1 − |cos φ̃|2 − |sin φ̃|2)]. (2.32)

Figure 1 shows the transition between the Hamilton–
Poggendorff rings (figures 1(a), (b), (e), (f)) and the deformed
pair of images characteristic of double refraction (figures 1(c),
(g), (d), (h)) as u increases from zero. This transition is
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ρb−

ρb+
ρc

Rc

η

ρ0

ξ
e-

s+

s-

e+

Figure 2. Schematic diagram of principal features of dichroic
conical diffraction images, drawn for ρ0 = 20, u = 6, ζ = 2.8.
Dashed circle: Hamilton ring, radius ρ0; full circle: dark ring (3.7)
where two geometrical contributions cancel, radius Rc, centre ρc;
square dots: branch-points (2.24) at ρb±. The regions where the
contributions from the saddles s± (geometrical rays (3.3)) and
endpoints e± (waves (3.11) and (3.15) scattered from degeneracies)
dominate are also indicated.

expected for a transparent crystal, as the orientation of the
incident beam deviates from the optic axis, but the same
behaviour is surprising when the incident beam direction is
fixed while the strength of the dichroism is increased.

An important implication of (2.32), to be explored in the
next section (and not apparent in figure 1), arises from the
complexification introduced by dichroism and the Gaussian
beam. This makes the angle φ̃ complex, so that |cosφ̃|2 +
|sinφ̃|2 �= 1 (cf (2.23)). Then the interference term Re A∗+ A−
between the contributions from A+ and A− can give a non-
zero contribution. Alternatively stated, this interference of
unpolarized light is a physical consequence of the fact that
the eigenvectors (2.29) of the non-Hermitian operator are
nonorthogonal. Absorption can introduce similar effects
for the interference of initially unpolarized plane waves in
conoscopic figures [20].

3. Asymptotics

It seems that the basic integrals (2.22) cannot be expressed
in closed form in terms of standard special functions.
Nevertheless, the rich phenomena that emerge when ρ0 �
1 can be understood using asymptotics. In this section we
describe a series of asymptotic approximations, each capturing
different aspects of the light beyond the crystal, including not
only the most prominent features but several kinds of subtle
interference. The different phenomena are associated with
asymptotic contributions from the saddle-points and end-points
of the integrals representing A+ and A−, relevant in different
parts of the images as indicated schematically in figure 2,
whose significance will emerge in the remainder of this
section.

Most fundamental is geometrical optics, derived by apply-
ing the method of stationary phase to the double integral (2.13)
or, more conveniently, the single integrals (2.22). We inter-
pret ‘geometrical’ in a generalized sense, because the ‘rays’—
saddle-points of the integrals over κ̃—are complex, as a result
of the complexification introduced by dichroism and the Gaus-
sian beam. The approximation of the integrals A±, defined
in (2.25), begins by assuming that ρ is not very close to one of
the branch-points (2.24), and applying the following standard
large-argument forms for the Bessel functions in (2.22) [31]:

J0 (κ̃ρ̃) cos (κ̃ρ0) ± J1 (κ̃ ρ̃) sin (κ̃ρ0)

≈
√

2

πρ̃
cos

{
κ̃ (ρ̃ ∓ ρ0) − 1

4
π

}
. (3.1)

Thus

A± ≈
√

2

πρ̃

∫ ∞

0
dκ̃ κ̃1/2 exp

{
−1

2
iζ̃ κ̃2

}
cos{κ̃ (ρ̃ ∓ ρ0)

− 1
4π}. (3.2)

The second step is to split the cosines into their component
exponentials, and treat the resulting exponentials in the
integrands as fast-varying, justifying the standard application
of the method of stationary phase and leading to the simple
result

A± ≈ A±geom = −μ±
ζ̃

(
ρ0 ∓ ρ̃

ρ̃

)1/2

exp

{
i

2ζ̃
(ρ̃ ∓ ρ0)

2

}

μ+ = sgn

[
Im

(
ρ0 − ρ̃√

1 + iζ

)]
, μ− = i,

(3.3)
where here and hereafter square roots are defined as

√
x ≡

exp{ 1
2 i arg x}, |arg x | < π (this is the definition used in

MathematicaTM, which we have used for all computations).
The phases in A± are determined by careful consideration
of the steepest-descent integration contours; in A+, the sign
switches across a Stokes line [32, 33], where the exponential
is subdominant relative to the end-point contribution to be
considered later. The result (3.3) reveals the reason for working
with A+ and A−, rather than B0 and B1: in this leading-order
approximation, A+ and A− represent separate geometrical
rays.

From figures 1(e)–(h), it is clear that geometrical optics
captures the main features of the transition between the
Hamilton–Poggendorff rings and double refraction as u
increases from zero. Discrepancies between figures 1(a)
and (e), and between 1(b) and (f), arise from a type of
interference that we will explain later.

The new feature introduced by complexification is
interference between the geometrical rays labelled + and −,
even for unpolarized incident light. From (2.32), this can be
significant only when | cos φ̃|2 + | sin φ̃|2 differs substantially
from unity. From (2.23) and (2.24), this occurs only near the
branch-points, where

|cos φ̃|2 + |sin φ̃|2 ≈ 2u2

|ρ̃2| . (3.4)

(This condition appears to contradict the assumption made in
expanding the Bessel functions, but we will see that it does
describe the geometrical interference phenomena, and fails
only in the immediate neighbourhood of the branch-points.)

Geometrical interference requires not only (3.4) but also
the condition that A+geom = A−geom, implying, from (3.3), the
complex condition

exp

{
−2iρ0

ρ̃

ζ̃

}
= −i. (3.5)

Equality of moduli now requires

Im
ρ̃

ζ̃
= 0. (3.6)
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a b

c d

0.05ρ03ρ0

0.001ρ0

Figure 3. (a) Logarithmic density plot of geometrical intensity from
figure 1(h), showing the dark ring of geometrical-optics interference
described by equation (3.6). (b) 60× magnification of the region
indicated in (a), with contours added for clarity, showing the dark
spots of complete geometrical interference given by equation (3.10);
note the small bright spot at the branch-point where the geometrical
intensity diverges (inset: 50× magnification, also showing the dark
spot nearest the branch-point and the weak unphysical discontinuity
across the branch cut). (c) and (d): Logarithmic plots of the exact
intensity corresponding to (a) and (b).

A short calculation shows that this restricts geometrical
interference to an arc of a circle (figure 2), on which the
geometrical intensity is exponentially smaller than elsewhere.
The two branch-points lie on this circle, and the arc excludes
the region between the branch-points. The circle is(

ρ − ρc

) · (ρ − ρc) = R2
c , (3.7)

where

ρc =
{

−u
(
ζ 2 − 1

)
2ζ

, 0

}
, Rc = u

(
ζ 2 + 1

)
2ζ

. (3.8)

The dark circle is clearly visible in logarithmic density plots
(figures 3(a) and (c)); it is invisible in the intensity plots of
figure 1.

Equality of phases in (3.5) further requires

sin

{
2ρ0 Re

ρ̃

ζ̃

}
= +1 (3.9)

giving dark spots on the dark circle, where

Re
ρ̃

ζ̃
=

(
n + 1

4

)
π

ρ0
, n = . . .−1, 0, 1, . . . . (3.10)

The spots, barely visible in figures 3(a) and (c), can be seen in
the magnified figures 3(b) and (d).

Receding from the branch-points, | cos φ̃|2 + | sin φ̃|2
approaches unity, and geometrical interference disappears. But

a b

c d

3ρ0

Figure 4. Logarithmic density plots of intensity corresponding to
figure 1(c) with: (a) geometrical optics including the endpoint
contribution from A+ (equation (3.11)); the dark spots are the
remnants of the Warnick–Arnold rings. (b) The uniform asymptotic
approximation (equation (3.13)). (c) As (a), including the end-point
contribution from A− (equation (3.15)), showing additional fringes.
(d) Exact intensity from the integrals (2.22).

non-geometrical interference remains, arising from the end-
points κ̃ = 0 of the integrals A±. Since κ̃ is the complex length
of the vector κ̃ (2.15), κ̃ = 0 corresponds to the contributions
from the complex degeneracies (2.11).

Consider first the interference between the contributions
from the integral A+: a geometrical ray, and a diffracted
wave scattered from the end-point κ̃ = 0. This interference,
which can be seen in figures 1(a) and (b), and faintly in
figure 3(c), is the complexified remnant of the Warnick–Arnold
rings [1, 6, 8, 9] decorating the inner Poggendorff ring of
ordinary conical diffraction. It can be captured by augmenting
A+geom with the end-point contribution

A+endpoint = − 1√
2ρ̃ (ρ0 − ρ̃)

3/2
�

(
Re

ρ0 − ρ̃√
1 + iζ

)
, (3.11)

where � denotes the unit step, switching on across a Stokes
line, where the end-point contribution is subdominant relative
to the geometrical contribution (3.3). Including A+endpoint does
indeed capture the remnants of the Warnick–Arnold rings, as
figure 4(a) clearly indicates.

But (3.11) comes at a price: a divergence on the
complexified Poggendorff ring ρ̃ = ρ0, at

ξ = 0, η = ±
√

ρ2
0 + u2. (3.12)

The divergence is visible as bright arcs near the top and
bottom of figure 4(a). It can be eliminated by observing that
the integrals (3.2) can be evaluated exactly, albeit somewhat
impenetrably. Of several different forms [8], the one most
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Figure 5. Intensity along the ξ axis for ρ0 = 20, ζ = 6, u = 2,
showing the additional fringes visible in figures 4(c) and (d). Full
curve: exact; dotted curve: geometrical approximation (3.3),
augmented by the end-point contribution (3.15) from A−. The
vertical bar at ξ = −12 indicates the intersection of the dark
geometrical circle with the ξ axis.

convenient in the complexified case is

A± ≈ A±rings = 2√
ρ̃ (1 + iζ )3/4

f

(
(ρ̃ ∓ ρ0)√

1 + iζ

)
, (3.13)

where f involves hypergeometric functions:

f (t) = 1

4
√

π

[
23/4�

(
3

4

)
1 F1

(
3

4
,

1

2
,−1

2
t2

)

+ 2−3/4�
(

1
4

)
t1 F1

(
5
4 , 3

2 ,− 1
2 t2

)]
. (3.14)

This powerful uniform approximation incorporates geometri-
cal optics (including interference between complex geometri-
cal rays) and the remanent Warnick–Arnold interferences from
κ̃ = 0, without diverging at the points (3.12). Figure 4(b) il-
lustrates this.

Additional interference is associated with A−. In the
approximation (3.2), the leading-order end-point contribution
to A− vanishes in the relevant region. To determine the correct
leading-order end-point contribution, (3.13) is inadequate,
and it is necessary to go beyond (3.1) and include the first
asymptotic corrections to J0 and J1; the result is

A−endpoint = − 1

(2ρ̃)
3/2

√
ρ0 − ρ̃

�

(
Re

ρ0 − ρ̃√
1 + iζ

)
. (3.15)

Incorporating this adds the faint additional fringes visible in
figure 4(c); as figures 4(d) and 5 indicate, these are indeed
present in the exact intensity.

All approximations so far described (saddle-point, uni-
form hypergeometric and end-point) introduce the unphysical
feature that the field D inherits the branch-points ρb (equa-
tion (2.24)) where ρ̃ = 0. An approximation that correctly
reproduces the smooth behaviour of D near ρb is obtained by
observing that for small ρ̃ the Bessel functions in (2.22) are
slowly-varying, so that they can be approximated in terms of
the κ̃ values corresponding to the stationary points of the re-
mainder of the integrands. This leads to the complexified ver-
sions of the approximations that in the transparent case [8] de-
scribe the rings decorating the axial Raman spot in the far field,

log I

η
2 4 6 8 10 12 14

-6
-8

-4
-2
0
2
4
6

0

Figure 6. Intensity (2.32) along the η axis, with ρ0 = 20, ζ = 16,
u = 5. Full curve: exact intensity from (2.22); dashed curve: small ρ̃
(Bessel) approximation (3.16); dotted curve: geometrical optics
approximation (3.3), which is singular at the branch-point at η = 5.

namely

B0 ≈ B0b =
√

π

2

ρ0

ζ̃ 3/2
exp

{
i

(
ρ2

0

2ζ̃
− 1

4
π

)}
J0

(
ρ0ρ̃

ζ̃

)

B1 ≈ B1b = −
√

π

2

ρ0

ζ̃ 3/2
exp

{
i

(
ρ2

0

2ζ̃
+ 1

4
π

)}
J1

(
ρ0ρ̃

ζ̃

)
.

(3.16)
Figure 6 illustrates how this approximation is regular at the
branch-points and matches smoothly onto the geometrical
oscillations already discussed. (In the transparent limit
u = 0, the geometrical oscillations disappear because the
polarization states are orthogonal, and (3.16) reproduces weak
‘shoulders’ [1, 8], associated with higher-than-geometrical
saddle corrections.)

4. Extreme dichroism

In the previous sections, we have regarded the absorption δ as a
perturbation of the biaxial birefringence described by ρ0. Now
we briefly consider the opposite limiting case, where the crystal
is refractively isotropic, so that n1 = n3 = n2 in (1.1), and all
the anisotropy is embodied in Im η. The theory is then formally
identical with that for ordinary conical refraction, with the
difference that the analogue of ρ0 is imaginary, because it is
proportional to the analogue of the cone half-angle A (2.2),
which itself depends linearly on the differences between the
components of Im η (analogous to (2.1)). Thus

ρ0 ⇒ iσ0. (4.1)

The components of Im η determine a well-defined optic
axis, along which the incident beam can be directed, so we can
take κ0 = 0. The light beyond the crystal is given by (2.21)
with F0 = 0 and φ̃ ⇒ φ, and the integrals (2.22) with ρ̃ ⇒ ρ

and (4.1). In the intensity (2.32) for unpolarized light, there is
no interference term, because |cos φ̃|2 + |sin φ̃|2 ⇒ 1, so

Iunpolarized = |B0|2 + |B1|2 = 1

2

(|A+|2 + |A−|2) . (4.2)

Geometrical optics survives this extreme complexifica-
tion, so the analogue of (3.3) is

A±geom = −i

ζ − i

(
ρ ∓ iσ0

ρ

)1/2

exp

{
i

2 (ζ − i)
(ρ ∓ iσ0)

2

}
,

(4.3)
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Figure 7. Extreme dichroic intensity (4.4), scaled by multiplication
by exp(−σ 2

0 ), for σ0 = 10 and ζ = 2 (thick curve), 4 (dashed curve),
6 (dotted curve), 8 (thin curve). On this scale the false geometrical
central singularity is invisible, and the geometrical and exact
intensities are indistinguishable.

giving the intensity

Iunpolarized,geom

=
√

1 + σ 2
0 /ρ2

ζ 2 + 1
exp

{
σ 2

0 − ρ2

ζ 2 + 1

}
cosh

{
2σ0ζρ

ζ 2 + 1

}
. (4.4)

This predicts an expanding cone of light beyond the crystal
(figure 7), contrasting with ordinary conical diffraction in
which there are two bright cylinders separated by the
Poggendorff dark cylinder. The cone is approximately
Gaussian, with radius σ0ζ and width

√
(1 + ζ 2). In addition,

the geometrical intensity possesses a weak central spike
singularity, somewhat analogous to the Raman spike, but
invisible in plots showing the bright cone.

Computations with the exact theory confirm these
predictions, except that there is no central singularity, and not
even a central maximum when ζ is large enough (for large σ0,
there is a maximum at ρ = 0 when ζ < 1/

√
3 and a minimum

when ζ > 1/
√

3).

5. Concluding remarks

There are two surprises in the theory reported here. First, the
effects of dichroism and beam direction are identical if the
incident beam is Gaussian. This means that the light patterns
in planes beyond a dichroic crystal are not new: they were
already contained (unrecognized) in the patterns of transition
between conical and double refraction for a transparent crystal.
Second, in the patterns themselves the geometrical intensity is
decorated by several types of interference, mostly too faint to
see in direct intensity plots but visible in logarithmic plots.

Each of these surprises raises a question. What happens
for nonGaussian beams, for example light transmitted by a
pinhole? The exact relation between beam direction and
dichroism will no longer hold, but we expect a qualitative
similarity. The theory is essentially the same as that in
section 2, but with a Bessel function J1 replacing the Gaussian
amplitude in (2.12). This deserves further study.

Can the predicted interference fringes be observed? This
would be a challenge, since the effects are faint, but they
represent qualitatively new optical phenomena and so are
worth searching for. Dichroism is a familiar phenomenon,
but our efforts to make quantitative predictions for particular
dichroic crystals were frustrated by the apparent absence of
tables of the real and complex components of the dielectric

tensor in (1.1). In view of the identity between beam direction
and dichroism, a more promising strategy is to study images
away from the optic axes of a transparent biaxial crystal. (In
the images in our experimental study (figure 2 of [9], close
to the crystal, and unpublished additional images for larger
values of ζ closer to that simulated in figure 1), the transition
between double and conical refraction was evident, but the
dynamic range was too small to show the predicted dark ring
and interference fringes.)

Finally, we note a further level of generalization:
incorporating optical activity (chirality) as well as dichroism.
For Gaussian beams, the argument in section 2 can be easily
adapted, and shows that even with chirality the effects of
dichroism and beam direction are the same. In view of the rich
caustic structure of chiral conical refraction for illumination
along the optic axis [10], we anticipate that the transition to
double refraction will be even richer than for the non-chiral
case we have studied here.
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