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A point charge moving uniformly around a circle produces an electric field pattern which
co-rotates with it, constituting, for relativistic motion, synchrotron radiation.
Surprisingly perhaps, the wealth of knowledge on synchrotron radiation does not seem
to include explicit knowledge of the field itself, and of the consequent field lines. As with
any relativistic motion, there is an obstruction to writing an explicit formula for the field;
evaluation of the retarded time requires solving an implicit equation. However, as the
relativistic limit is approached the field grows very strong in a very confined ribbon
region shaped like a spiral watch spring. Here, the field can be written as an explicit
scaling, or universal similarity, formula, which is our main result. From it the field lines
can be derived analytically. In terms of scaled coordinates along the directions of the
length, width and thickness of the ribbon, they twist in two side-by-side bundles in
‘bipolar’ cylinder surfaces, mirror symmetric about the orbit plane.
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1. Introduction

A great deal is known (Jackson 1999; Duke 2000) about synchrotron radiation,
namely the radiation froma point chargemoving uniformly in a circle at relativistic
speed bc.The pattern of electric andmagnetic fields rotates rigidlywith the charge.
Surprisingly perhaps, all this theoretical and experimental understanding seems
not to have required explicit knowledge of the field itself (in the ‘time domain’ as it is
sometimes called), and of the geometry of its field lines in space. Conventional
analysis concentrates instead on the most practically useful functionals of the field
such as its temporal Fourier transform (frequency spectrum) and the angular power
distribution at large range. To obtain the field itself onemust start further back. As
is the usual practice, we shall concentrate on the electric field because the magnetic
field is naturally obtained from it (and also because the magnetic field structure is
dull in comparison with the electric, as we explain in the concluding remarks).

There is an obstruction to writing an explicit formula for the fields from any
moving charge; the expression for E (and B) involves the retarded position. To
locate this requires solving an implicit (i.e. transcendendal) equation of the form
sin qfq2Cconst: qCconst. This is little hindrance to numerical computation by
iteration (though high accuracy is required relativistically, and we have used it to
check our results numerically). Nevertheless, the lack of an explicit formula for
the field, especially in the synchrotron case where it is constant in time in the
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Figure 1. (a) For a hypothetical point charge circulating at the speed of light the nested spheres of
constant retardation generate a curve as their caustic; the unwrap spiral in the orbit plane formed by a
geometrical construction shown on the right. (b) For a charge circulating at close to the speed of light
the nested spheres of constant retardation crowd up dramatically just outside the unwrap spiral. This
spiral is generated by a hypothetical taut string with endpoint S unwrapping from the bold ring (the
orbit) centre O. Before unwrapping, the string end lies at Q, the present position of the charge.
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co-rotating coordinates, is disappointing. It also effectively prevents any analytical
attempt to describe the field lines, in other words to ‘integrate’ the flow field. The
adverse consequences of implicitness are also felt in the conventional analysis of
functionals of the field, forcing approximation.

One might hope that invoking the relativistic limit, which is closely
approximated in the synchrotron, would simplify matters, and it does in the
following respects. The field becomes stronger and stronger in a smaller and
smaller region near a particular curve in space. Elsewhere, the field attains a finite
value in the limit, the field lines being almost complete circles. Though simple,
the implicit step in the algebraic representation persists as an obstruction (to
finding which circle), and we shall have little further to say about the finite field.
The high-field region, on the other hand, where the field grows stronger as b/1,
is sufficiently confined that the obstruction of implicitness can be circumvented
and the field does have a simple explicit scaling, or universal similarity,
expression to be derived. It should be mentioned that an asymptotic scaling
relationship for the frequency power spectrum of synchrotron radiation was noted
in 1981 by Risley et al. (1981). For us, seeking the field itself, the problem is
largely geometrical and some preparatory geometry is needed.
2. Preparatory geometry

The involute curve or ‘unwrap spiral’, of a circle, is obtained by imagining the
past trajectory of the circulating charge to be a thread wound up around a post
(figure 1). The end of the thread is where the charge is now (Q). Unwrap the
thread from the post, round and round in the same plane, keeping it taut. The
locus of the thread end S defines the unwrap spiral. It is in a narrow region
asymptotically close to the unwrap spiral that the electric field diverges in the
relativistic limit.

An associated geometrical intensification underlies that of the field. Space is
filled with nested ‘spheres of constant retardation’. Each is centred on some point
R on the orbit circle lying at some angle q backwards around the orbit circle from
Proc. R. Soc. A (2005)



3601Electric field of synchrotron radiation
the present position of the charge Q. R represents the common retarded position
of the charge for all field points on its sphere. If the orbit circle has radius a, the
unwrapped length of thread RS equals the arc length, aq, and S represents the
‘extrapolated’ position of the charge; where it would be now if it had been
released from the circle orbit at R, and drifted at constant velocity. The radius of
the sphere of constant retardation centred on R is aq/b.

For bZ1 (hypothetically), successive nested spheres of constant retardation
touch their neighbours at the points S of the unwrap spiral curve, that is, the unwrap
spiral is the ‘caustic’ of the spheres, and the field is infinite there. For b close to 1 the
spheres donot touchbut are very crowdedup just outside the unwrap spiral, and the
region of dense crowding is a ribbon (length[width[thickness) wound like a
spiral watch spring. The cross-section of the watch spring ribbon is not flat but
arched (tomatch the local sphere surface). In this densely crowded region the field is
strongest. The location can be specified more precisely with the help of a suitably
defined orthogonal coordinate system in three dimensions.

Let the orbit plane be called horizontal and denote height above it by the
coordinate z. Vertical half planes tangent to the orbit circle supply perpendicular
cross-sections across the unwrap spiral (the half planes having a vertical
boundary edge through the tangency point). The cross-section half planes are to
be labelled by the angle q0 of their tangency point around the orbit circle. It is
important to distinguish this coordinate q0, constant on half planes, from the
variable q, constant on retardation spheres. It will turn out that in the high-field
region the values of q0 and q differ only slightly, but crucially.

On the cross-section half planes the coordinates are to be ordinary Cartesian
ones x, and the height z. To make an orthogonal coordinate system together with
q0, the origin of x needs to be on the unwrap spiral (since, the spiral intersects the
half plane perpendicularly). In other words, x and z are coordinates marked on a
rigid vertical plane rolling, without slipping, on the orbit circle, and having
xZzZ0 at Q. We shall not be troubled by the lack of coordinates ‘inside’ the
orbit circle which the half plane never accesses (being tangent to it), nor by the
multiple covering as the half plane sweeps through more than one turn.

The locus of special points for which qZq0 is the family of semicircles, radius
aq0/b, whose retarded points do exactly lie at the tangency points of their half
planes.On each semicircle, there is a small central arc ‘outside’ S, that is, with xO0.
It is the family of these small arcs that will generate the arched sectioned ribbon
region of high field (figure 2). The depth of the arch is aq0(b

K1K1), which means,

with gZ1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kb2

p
, that it is proportional to 1/g2 relativistically. In consequence,

the span of the arch perpendicular to the orbit plane is proportional to 1/g. This is

the well-known ‘beam width’ of synchrotron radiation. It will emerge later (after
equation (4.9)) that the thickness of the high-field ribbon region is proportional to
1/g3. This importantw1/g3 thickness has also beenmore or less known all through
the synchrotron literature; for example, a heuristic argument is given in Duke
(2000, eq. 14.49), and a geometric calculation of a field feature is given in Tsien
(1972; Fig. 7), to be mentioned later (after equation (4.9)). It is also inherent in the
standard spectral calculation (Jackson 1999; Duke 2000) of synchrotron radiation.

Having zero divergence (though not zero curl) the electric field is legitimately
described in terms of unending field lines from the charge, whose flux density
supplies the field magnitude. In the strong field region described, these field lines
Proc. R. Soc. A (2005)
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Figure 2. Oblique view of the orbit (radius a), and the unwrap spiral. Along the spiral a ribbon-like
region of high electric field (for bZ0.99) is shown. The ribbon is very narrow, relativistically, with
widthw1/g, arch-depthw1/g2, and thicknessw1/g3. Its cross-section in scaled coordinates (DQ,Z )
consists of sets of bipolar circles whose flow direction is shown.
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will be shown to form two, side by side, oppositely twisted bundles, mirror
symmetric about the orbit plane. The cross-section of each of the two bundles is
strongly squashed to form (half) the arch shape. The field lines, while twisting,
proceed along the spiral (though not everywhere monotonically). The starting
point for this analysis is the standard set of formulas for the field (figure 2).
3. The standard field formulas

The electric field (and thence the magnetic one) from a point charge in general
motion can be written either (Jackson 1999) in the Heaviside–Feynman form,
or the more conventional velocity–acceleration form (Jackson 1999; Duke
2000), which we use here. The formula expresses E as EZEvelCEacc, where
Evel depends only on the velocity, not the acceleration, at the retarded time,
while Eacc is proportional to the acceleration. For our case of uniform circular
motion, the field E is constant in time at a fixed position P in the coordinates
co-rotating with the charge. It can be expressed in terms of the retarded
position R (with its associated extrapolated position S), which depends on
P, and the circle centre O. If the charge has velocity bc, the formulas for E
(and B) are

E ZEvelCEacc; ð3:1Þ

Eacc Z ðq=4p30Þðb2=a2ÞRPoðSPoROÞRP3=ðSP$RPÞ3; ð3:2Þ

Evel Z ðq=4p30Þð1=g2ÞSP RP3=ðSP$RPÞ3; ð3:3Þ

BZRPoE=cRP: ð3:4Þ
Evidently Eacc lies everywhere tangent to the nested spheres of constant
retardation (perpendicular to RP). Indeed, the lines of Eacc are circles (figure 3),
all of them on any given sphere passing through the two null points U1 and U2

where Eacc is zero on the sphere (the chord U1, U2 has midpoint S and is parallel
Proc. R. Soc. A (2005)
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Figure 3. Field geometry. (a) The acceleration field Eacc is everywhere tangent to arcs on the
spheres of constant retardation, centre R, along circle arcs from the point U1 and the point U2, at
each of which the field vanishes. U1 to U2 lie in the orbit plane with the midpoint of the chord
between them at S. (b) The velocity field Evel over the same surface points everywhere radially
outward from the point S. Both pictures are for bZ0.8.

3603Electric field of synchrotron radiation
to OR). Evel on the other hand pierces the spheres, directed radially out from S
(a different S, though, for each sphere). Using the retardation condition
bRPZRS, the quantity in the denominator SP$RPZðRPKRSÞ$RP, can only
be zero in the extreme relativistic limit and even then only if PZS. Thus, in this
limit Eacc is finite, not infinite, except on the unwrap spiral, and by the same
reasoning Evel is zero because of the infinite g factor. Approaching the limit,
then, Eacc dominates almost everywhere, both outside and inside the high-field
region of interest. However, inside the high-field region the components of Eacc

and Evel in the ‘crowded-up’ x direction (of the retardation spheres) are
comparable, and Evel must be retained for the correct connectivity of the field
lines.
4. The scaling analysis

The scaling formula for the electric field as the relativistic limit is approached
derives from appropriate Taylor expansion of the numerator and denominator of
the formulas (3.1–3.3), to be carried out shortly. It is natural to fix the cross-
section half plane (q0Zconstant) and expand jointly in the coordinates in that
plane as well as in the quantity (1Kb) measuring deviation from the relativistic
extreme. Actually, although the coordinate z is acceptable as an expansion
variable, the coordinate x is not good directly, for the reason given below
equation (4.8) (roughly speaking, because of the crowding up of spheres in this
direction). Instead the expansion needs to be in the (uncrowded) variable
labelling the spheres, namely the polar angle coordinate q of the retarded position
R. The criterion for the leading terms in a multi-variable expansion is Newton’s
polyhedron convex hull construction in index space, though for us it is simple
enough to be obvious anyway.

Given a field point P with coordinates (x, q0, z), the associated retarded
position R, at angle q backwards around the orbit circle, is only expressible
Proc. R. Soc. A (2005)



J. H. Hannay and M. R. Jeffrey3604
implicitly in terms of P. Requiring that RP equals aq/b gives

½a sinðqKq0ÞCaq0 Cx�2 Ca2½1KcosðqKq0Þ�2 Cz2 Z ðaq=bÞ2: ð4:1Þ

Thus, q is an implicit function of (x, q0, z) though x is an explicit function of q0, z
and q. In particular for qZq0, the (appropriate) solution for x is x0ZKaq0Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaq0=bÞ2Kz2

q
. Setting DxZxKx0 and DqZqKq0 and expanding the equation

(4.1) jointly in (1Kb) and Dq0 gives the cubic equation

Dx=a Z
1

6
Dq3 Cð1KbC

1

2
ðz=aq0Þ2ÞDq: ð4:2Þ

The cubic has a single real root,

DqZ ½$�1=3K2ð1KbC
1

2
ðz=aq0Þ2Þ½$�K1=3; ð4:3Þ

where

½$�Z ½3Dx=aC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1KbC

1

2
ðz=aq0Þ2Þ3C9ðDx=aÞ2

r
�; ð4:4Þ

the square and cube roots being real and positive. Though now explicit by virtue of
the expansion, this solution is non-analytic, involving these roots, and this is the
mathematical obstruction to a direct expansion in x.

For the expansion of the field we calculate three components, an ‘x ’ one which
requires further comment, and straightforward y and z ones, where y is
perpendicular to the x, z plane. In fact (aq0Cx)Vq0 is the unit vector in the
y direction, and the xVq0 part of this is negligible. The ‘x’, y and z components to
be calculated are specifically: E$aq0VDq, E$aq0Vq0, E$Vz, and all three will turn
out to be of the same order, g4 relativistically. The last two are straightforward
field components, the multiplying vectors being unit vectors (relativistically).
The x component of E is much smaller (E$Vx is of order g3 and E$VDx is of order
g2), relativistically, but is nonetheless vital for finding the field lines. Its
multiplying vector, the gradient aq0VDq, is large in compensation, involving Dq
rather than x or Dx to conform with the choice of expansion coordinate. Its
direction, though not exactly in the x direction, is asymptotically so as b/1. For
the y and z components it suffices to use EzEacc, since Evel is of order g

2 only,
but for the ‘x’ one both parts are required because Eacc is nearly perpendicular
to VDq.

All the three field components sought share the same denominator ðSP$RPÞ3
so we start by finding the expansion of SP$RP.

SP$RP Z xðxCaq0Ca sin DqÞCz2: ð4:5Þ

With x supplied by the solution of equation (4.1) this gives, on expansion

SP$RPza2q20½ð1KbÞC 1

2
Dq2 C

1

2
ðz=aq0Þ2�: ð4:6Þ

Next, we expand the numerators of the field components. The common factor
fqRP3=4p30ðSP$RPÞ3g will be shortened to [*]. We treat the x component last,
since it is the most subtle.
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Using aq0Vq0zq0jVq0jORzOR=a (the first equality is not exact because
R lies at angle q, not q0, around the orbit circle; the second because the
exact relation is ðaq0CxÞjVq0jZ1, as stated above), we have, for the y
component,

E$aq0Vq0zEacc$aq0Vq0z½��ðb2=a2Þð1=aÞOR$ðRPoðSPoROÞÞ ð4:7Þ

Z ½��ðb2=a3Þ½ðOR$SPÞðRP$ROÞ
KðOR$ROÞðRP$SPÞ�

ð4:8Þ

z½��aq20½ð1KbÞC 1

2
ðz=aq0Þ2K

1

2
Dq2�: ð4:9Þ

For zZ0 the two locations where this component is zero, namely DqZ
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1KbÞ

p
generate, as q0 varies, a pair of curves in space running side by

side outside the unwrap spiral. Their spatial separation is, from equation

(4.2), a constant in space: 2DxZ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1KbÞ3

q
a=3. The curves are the

(expansion approximation to the) loci in space of the points U1 and U2

(figure 3) on successive spheres. Actually the U1 and U2 arms of this locus
join together near the charge, forming a single curved U-shape, whose
geometry was well described by Tsien (1972, fig. 7).

Next the z component,

E$VzzEacc$Vzz½��ðb2=a2Þaq20Dqz=aq0: ð4:10Þ
Finally, the ‘x ’ component can be found using Eacc$VqZ0, since Eacc is tangent
to the sphere of constant retardation.

E$aq0VDqZEvel$aq0VqKE$aq0Vq0: ð4:11Þ
The last term was expanded in equation (4.7) above. The first can be evaluated
exactly using ajVqjZbRP2=SP$RP. (This formula follows from the geometry
of adjacent nested spheres: the gap at P between the spheres q and qCdq is
a dqð1Kcos:SRPÞ=bZa dqSP$RP=bRP2:Þ

Evel$aq0VqZ ½��ð1=g2Þq0ðbRP2=SP$RPÞðSP$RPÞ=RP

Z ½��ð1=g2Þbq0RP: ð4:12Þ

This can then be combined with the last term from equation (4.11) above and
expanded, using 1=g2z2ð1KbÞ,

E$aq0VDqz½��aq20 2ð1KbÞK ð1KbÞK1

2
Dq2 C

1

2
ðz=aq0Þ2

� �� �
ð4:13Þ

Z ½��aq20 ð1KbÞC 1

2
Dq2K

1

2
ðz=aq0Þ2

� �
: ð4:14Þ

We now summarize these results. The dot product of the field E(x, q0, z) with
three basis vectors is supplied, the vectors having, relativistically, the directions
of the orthogonal coordinates (x, q0, z). All have the same order g4, and the latter
two directly represent field components, since the vectors are unit vectors
(relativistically). The first component is much smaller (the multiplying vector
Proc. R. Soc. A (2005)
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being much larger than a unit vector) but is nonetheless essential for the correct
specification of the field lines.

E$aq0VDqzðq=4p30ð1KbÞ2a2q0ÞD _Q; ð4:15Þ

E$aq0Vq0zðq=4p30ð1KbÞ2a2q0Þ _Q0; ð4:16Þ

E$Vzzðq=4p30ð1KbÞ2a2q0Þ _Z ; ð4:17Þ
where the three universal similarity functions are defined by

D _QðDX ;ZÞZ 1C
1

2
DQ2K

1

2
Z2

� ��
1C

1

2
DQ2 C

1

2
Z2

� �3

; ð4:18Þ

_Q0ðDX ;ZÞZ 1K
1

2
DQ2 C

1

2
Z2

� ��
1C

1

2
DQ2C

1

2
Z2

� �3

; ð4:19Þ

_ZðDX ;ZÞZZDQ

�
1C

1

2
DQ2C

1

2
Z2

� �3

: ð4:20Þ

Here,DQZ ½$�1=3K2ð1C 1
2 Z

2Þ½$�K1=3,where ½$�Z 3DXC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1C 1

2 Z
2Þ3C9DX2

qh i
,

the square and cube roots being real and positive, and DX and Z are defined by

DX ZDx=að1KbÞ3=2; Z Z z=aq0ð1KbÞ1=2; ð4:21Þ

withDxZxKx0 and x0ZKaq0C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaq0=bÞ2Kz2

q
. (AlsoDQ representsDq=ð1KbÞ1=2

andQ0 represents q0=ð1KbÞ1=2 but, as intermediate variables, these are not strictly
part of the specification.)
5. Field lines

The field lines or ‘integral curves’ of the ‘flow’ equations (4.18–4.20) can be
found analytically (below). The first and last equations are the primary ones,
since the right-hand sides of all three equations depend on DQ and Z only. They
preserve invariant the quantity ZI hð1C 1

2 DQ2C 1
2 Z

2Þ=Z , meaning that the
vector ðD _Q, _ZÞ is tangent to the contours of this quantity. These contours are the
nested circles of ‘bipolar’ coordinates (otherwise known as ‘coaxal’ or ‘coaxial’
circles), with ZI being the coordinate of its circle’s centre along the Z axis. The

circle’s radius is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
I K2

p
, with zero radius circles at ZZG

ffiffiffi
2

p
. Nested bipolar

circles are realized elsewhere in physics as magnetic field lines of parallel wires
with opposite currents, or in geometry as the stereographic projection of latitude
lines projected from a equator point rather than a pole.

The field lines, then, lie on twin nests of bipolar cylinders of circular cross-
section in DQ, Z coordinates (figure 5). They wind around their cylinders in
distorted helices. To specify them introduce a coordinate F which measures angle
around the circles from the point nearest the orbit plane (increasing initially in
the direction of increasing x). Then, in terms of this parameter, and of the
cylinder centre coordinate ZI :
Proc. R. Soc. A (2005)



∆X

Figure 4. The peak electric field of synchrotron radiation. The field is largest in the orbit plane,
near, and in a direction parallel to, the unwrap spiral. It has a universal similarity form
supplied in full in equations (4.15–4.21). In this plot, the component of the field in the spiral
direction is shown as a function of scaled coordinate DX (fdistance!g3) across the spiral in
the orbit plane zZ0. The universal function shown is ð1K1

2 DQ
2Þ=ð1C 1

2 DQ
2Þ3 with

DQZ ½$�1=3K2½$�K1=3, where (deriving from equations (4.9) or (4.19)). The peak field strength
is proportional to g4. The corresponding electric field line has the zig-zag form sketched, with
the two turning points being the two zeros of the plotted field component, and the field being
much stronger in between them than outside.
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DQZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
I K2

q
sin F; ð5:1Þ

Q0 Z 2
ffiffiffi
2

p
tanK1 1ffiffiffi

2
p ZI C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
I K2

q� �
tan

F

2

� �
K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
I K2

q
sin FCconst:; ð5:2Þ

Z ZZIK
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
I K2

q
cos F; ð5:3Þ

where different values of the constant in the second equation label different field
lines on the cylinder (translates of each other along the cylinder). All lines on all

cylinders have the same physical repeat distance 2
ffiffiffi
2

p
paq0

ffiffiffiffiffiffiffiffiffiffiffi
1Kb

p
along the

cylinder (corresponding to a repeat in Q0 of 2
ffiffiffi
2

p
p).

As figure 5 shows, on narrow cylinders the field line helices are little
distorted. On cylinders of radius greater than

ffiffiffi
6

p
, which are wide enough to

cross the hyperbolas 1K1
2 DQ2C 1

2 DZ
2Z0, the lines backtrack along the

cylinder temporarily in the region where 1K1
2 DQ2C 1

2 Z
2!0 while still

winding around it azimuthally. As can be seen from the picture, and
anticipated from the equations, for large radius cylinders the field lines have a
planar circular shape for most of their path around the cylinder, and then a
skip to the next such circle. These circle arcs in DQ, Q0, Z space actually map,
very nearly, to arcs of circles in true space. Indeed, they are the circle field
lines mentioned near the beginning above, not too close to the high-field
region. That is, they correspond to the larger arcs of circles between U1 and
U2 in figure 3, rather than the smaller ones through the high-field region. Of
course, very far away from the high-field region our field lines, which involve
the cubic approximation (4.2), cannot expect to reproduce the true field line
circles accurately.
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Figure 5. Windings of electric field on two selected bipolar cylinders in the scaled coordinates (DQ,
Z ). Depicted are two field lines flowing into the page, with their shapes more clearly seen in top and
side view projections. At smaller radii (b) the field lines form slightly distorted helices, while at
larger radii (a) they form stacked circle arcs with short linking sections. All the field lines have the
same repeat distance proportional to 1/g. This picture would have an exact mirror image by
reflection in the orbital plane.
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6. Concluding remarks

– It is interesting to check the flux of electric field, the correct value q/30, for
any surface enclosing the charge, being known from Gauss’ law.
A preliminary remark is that for particular surfaces, namely the spheres
of constant retardation, the flux through the surface comes entirely from
Evel, since Eacc is tangential. However, this does not apply to other surfaces
because neither V$Eacc nor V$Evel is individually zero, only their sum is. In
the relativistic limit Evel vanishes except near the unwrap spiral, and,
therefore, V$Eacc must vanish except in the neighbourhood of the spiral,
which therefore, controls the flux. It is straightforward to evaluate the flux
through a cross-section half plane. It is the integral over the plane of
E$aq0Vq0 in equation (4.15):

ðq=4p30ð1KbÞ2a2q0Þ
ðð ð1K1

2 DQ
2C 1

2 Z
2Þ

ð1C 1
2 DQ

2 C 1
2 Z

2Þ3
dzdx: ð6:1Þ

The Jacobian for conversion to dDQdZ is ðvDx=vDQÞðvz=vZÞ (since
ðvz=vDQÞZ0), which is found from equation (4.2), and the definition of Z.
This gives the Jacobian as ð1KbÞ2a2q0ð1C 1

2 CDQ2C 1
2 Z

2Þ. The integral is
marginally convergent and gives the correct value q/30, provided the DQ
integration is performed last (otherwise it gives zero, or half the result if
performed in polar coordinates). We have not sought justification for the
Proc. R. Soc. A (2005)
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favourable order of integration which probably requires more than just the
present, dominant, asymptotics.

– A limitation of the formulas should be mentioned. They are not valid very
close to the charge, where the short distance limit competes with the
relativistic one. Thus, within a distance of wa/g2 the velocity field Evel

becomes significant (even dominant) over Eacc, and also the cubic
approximation is insufficient.

– The field formulas have more general applicability than to uniform motion
in a circle. By Lorentz transformation of the specified field with a uniform
motion perpendicular to the orbit plane, the field of a charge in helical
motion due to an external uniform magnetic field can be accessed, for
example.
More speculatively, further extension of the formalism to general

highly relativistic motion may be possible as follows. For any charge
trajectory with a present position Q, space is again filled with nested
spheres of constant retardation, centres R. For each there is a centre of
curvature O of the motion, an extrapolated position S and peak field
point T (with RTZRS/b as before). It may be that any longitudinal
acceleration along the path, or torsion of the curve (in the sense of
Frenet), do not affect the field to leading order. Then, in the cross-
section half plane, the field should be given by the stated formulas.

– The magnetic field as opposed to the electric deserves comment. It is much
simpler in that, by equation (3.4), it is exactly tangent to the retardation
spheres. In consequence the lines of magnetic field are exactly closed loops
(having zero divergence and lying in surfaces implies loops). Relativisti-
cally, the loops are everywhere orthogonal to the circle field lines of the field
Eacc, that is, they are themselves nests of circles on the retardation spheres,
enclosing the points U1 and U2. Only the smallest loops near these points
(where Evel dominates Eacc) are distorted. The sense of circulation is such
that the B at the symmetry point T is antiparallel to the angular velocity
vector of the charge circulation. (Together the orthogonal circles of Eacc

and B form a Möbius transform of the latitude-longitude mesh.) When
displayed in the cross-section scaled space, DQ, Z the magnetic flow is
around a set of bipolar circles (since, circles in Q0, Z on the retardation
sphere become circles in DQ, Z ). In fact, the magnetic family of bipolar
circles is identical to the electric family rotated by a right angle. The zero
size circles lie at the two points DQZG

ffiffiffi
2

p
, ZZ0, mentioned after equation

(4.9) above. The magnetic field lines in DQ, Q0, Z are just 458 cuts
(dDQ/dQ0ZK1, since Q is constant) across the magnetic bipolar cylinders.

– Analysis of the high fields from a hypothetical point source circulating
faster than light (as a Green function for a superluminal wave of charge
or current density) has been supplied in papers by H. Ardavan. These
are cited, with the necessary correction of principle, in Hannay
(submitted). There exist infinitely strong fields (on caustic surfaces) for
any bO1, quite different from the strong fields analysed here which only
approach infinity in the limit as b/1 from below.

This work began as a final year undergraduate project at the University of Bristol.
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